Constrained Pseudorandom Functions From Homomorphic Secret Sharing

Geoffroy Couteau¹, Pierre Meyer^{1,2}, Alain Passelègue^{3,4}, and

<u>Mahshid Riahinia</u>⁴

¹ Université Paris Cité, CNRS, IRIF, Paris, France.
 ² Reichman University, Herzliya, Israel.
 ³ Inria, France.
 ⁴ ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France.

Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly

random function. ([GGM'1984])



Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

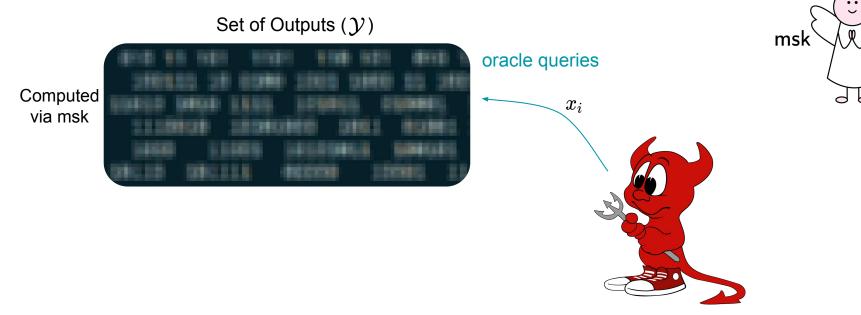
Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])

Set of Outputs (\mathcal{Y})

Computed via msk

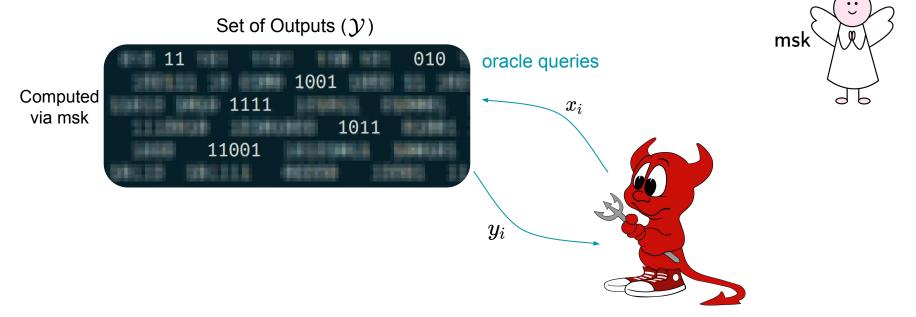
Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])



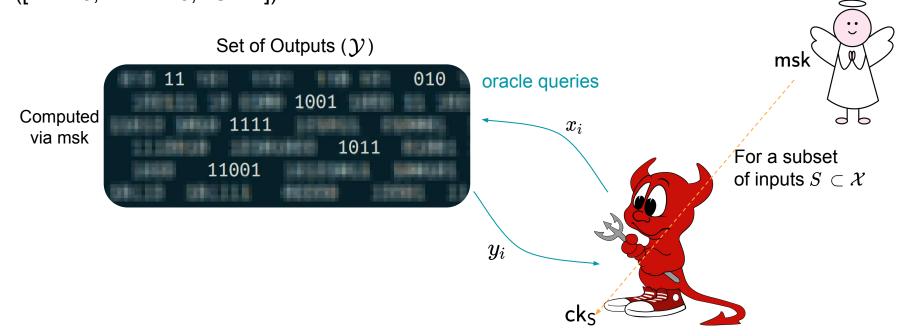
Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A deterministic keyed function that is computationally indistinguishable from a truly random function. ([GGM'1984])



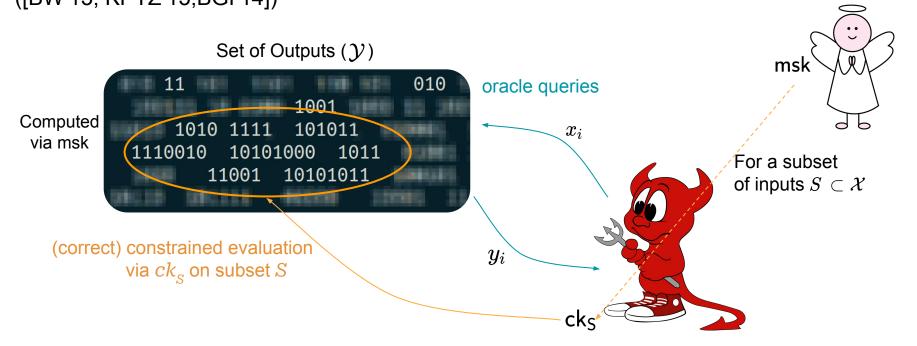
Constrained Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A pseudorandom function with constrained access to the evaluation. ([BW'13, KPTZ'13,BGI'14])



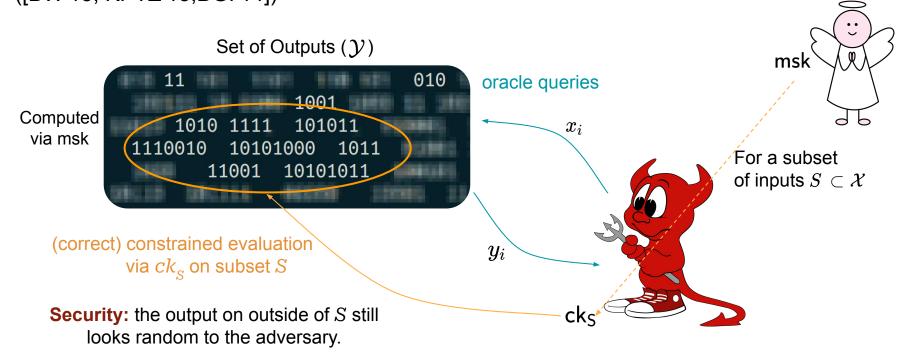
Constrained Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

Definition. A pseudorandom function with constrained access to the evaluation. ([BW'13, KPTZ'13,BGI'14])



Constrained Pseudorandom function: $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$

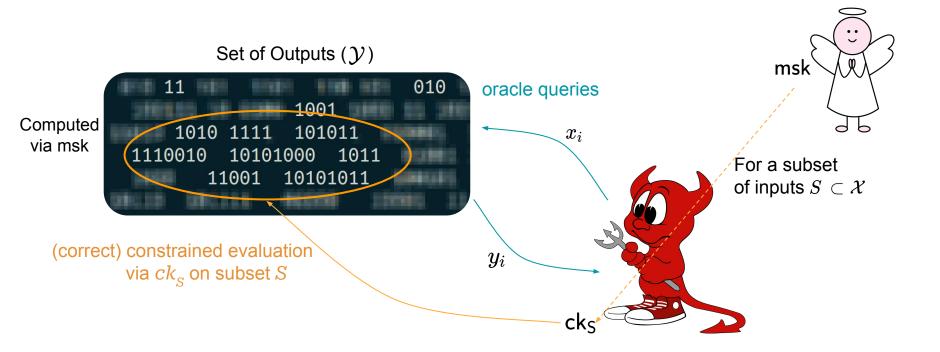
Definition. A pseudorandom function with constrained access to the evaluation. ([BW'13, KPTZ'13,BGI'14])



Subset *S* is defined via a predicate

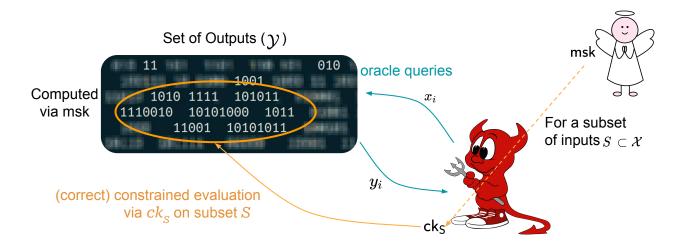
$$C:\mathcal{X}
ightarrow \{0,1\};$$

$$C: \mathcal{X}
ightarrow \{0,1\}; \hspace{1cm} S_C = \{x \in \mathcal{X}: \; C(x) = 0\}$$



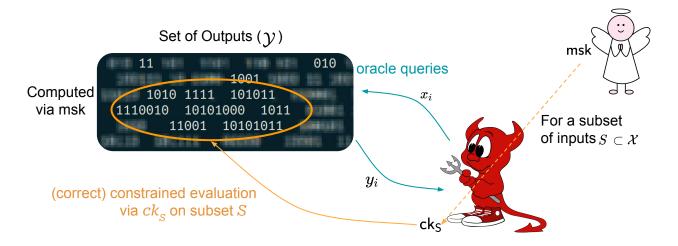
Our contributions

1-key (selectively-secure) constrained PRF for inner-product and NC¹ predicates.



Our contributions

1-key (selectively-secure) constrained PRF for inner-product and NC¹ predicates.



+ MPC Applications

Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])

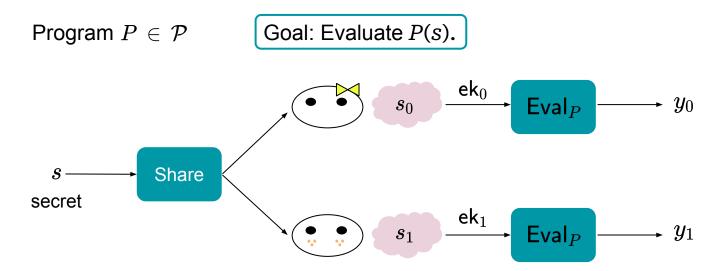
Program $P \in \mathcal{P}$

Goal: Evaluate P(s).

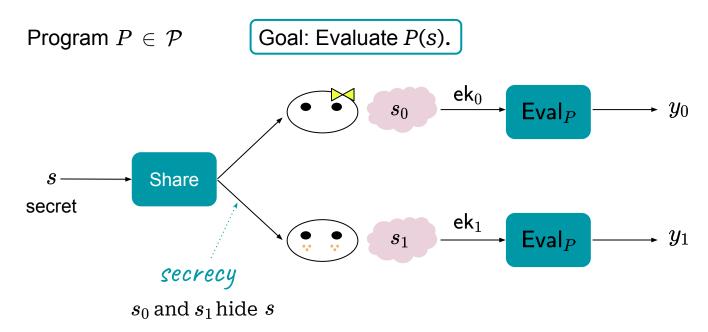
s

secret

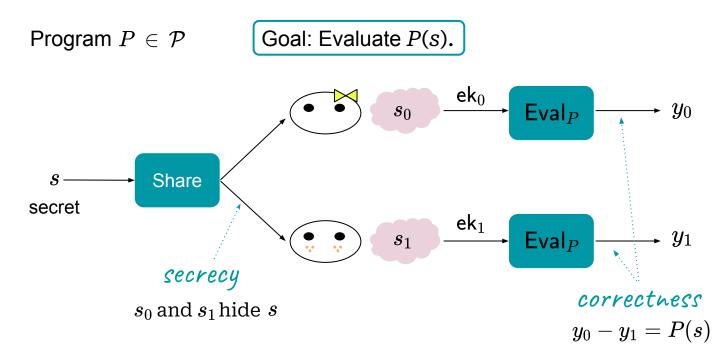
Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])



Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])



Definition. Protocol for performing distributed evaluation on a secret. ([BGI'16])



Our contributions

1-key constrained PRF for inner-product and NC predicates from homomorphic secret sharing.

- Extending homomorphic secret sharing properties.
- (most of) Existing HSS schemes satisfy these properties.
 - ~~ new constructions of constrained PRF.
- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing, and
 - Secure computation with sublinear communication.

Our contributions

1-key constrained PRF for inner-product and NC predicates from homomorphic secret sharing.

- Extending homomorphic secret sharing properties.
- (most of) Existing HSS schemes satisfy these properties.
 - ~~ new constructions of constrained PRF.
- Revisiting Applications of HSS to Secure Computation.
 - o Secure computation with silent preprocessing, and
 - Secure computation with sublinear communication.

- (1) **D**ecisional **C**omposite **R**esiduosity
- (2) **LWE** with superpolynomial modulus
- (3) Hardness of the **Joye-Libert** encryption scheme
- (4) **DDH & DXDH** over class groups
- (5) **H**ard **M**embership **S**ubgroup over class groups

Constrained PRF

from

(general strategy)

For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

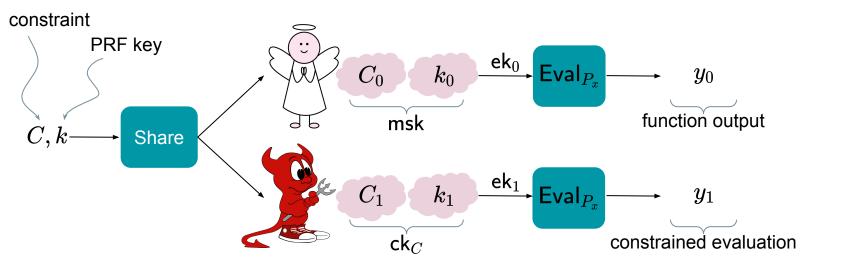
The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)$.

For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

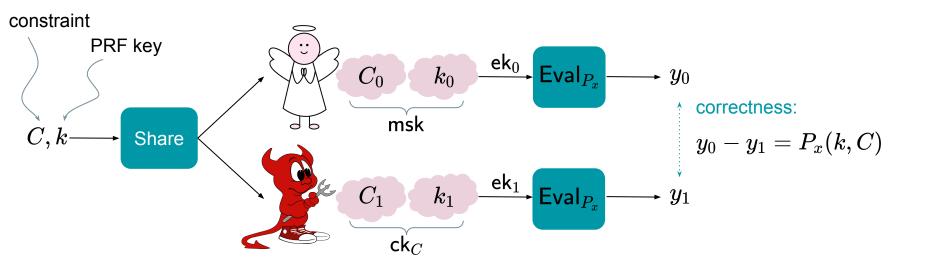
Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x).\,$



For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

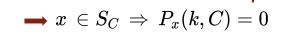
Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)$.

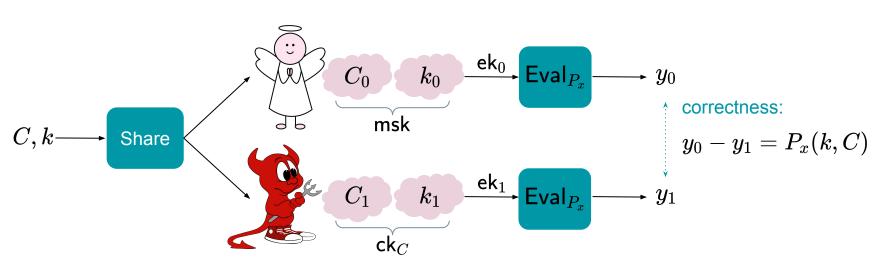


For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)$.



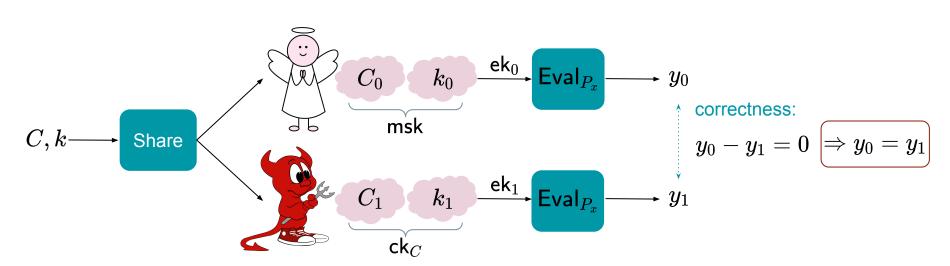


For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$.

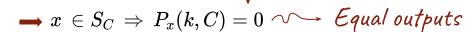
$$igspace x \in S_C \, \Rightarrow \, P_x(k,C) = 0$$

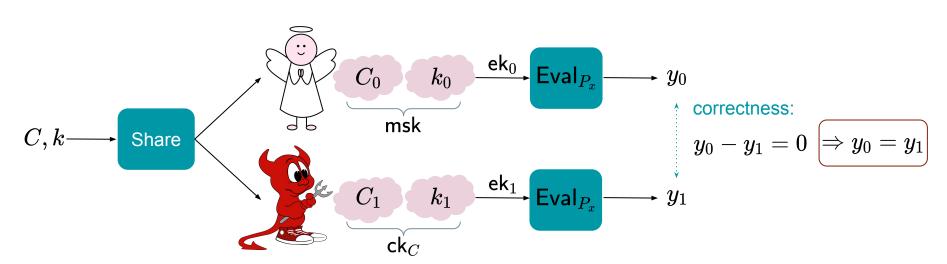


For a constraint $C: \mathcal{X} ext{->} \{0,1\} : S_C = \{x \in \mathcal{X} : C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$.

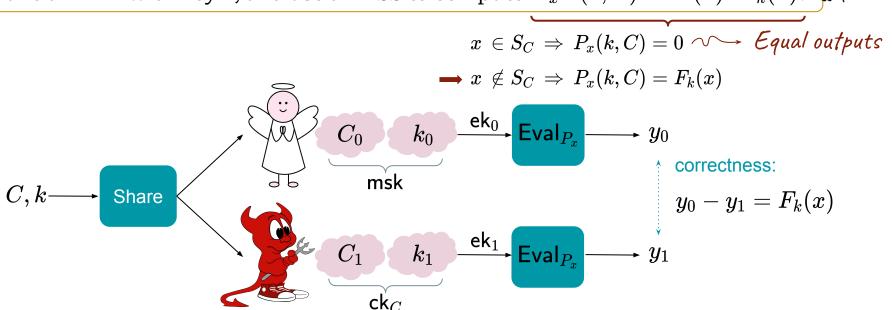




For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

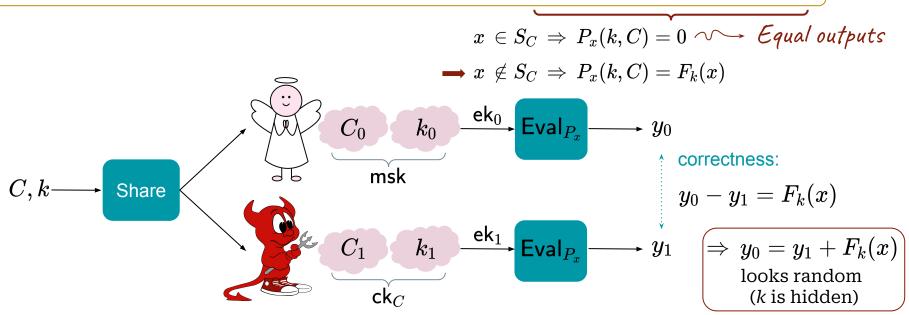
Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)$. $\, \stackrel{ extstyle extst$



For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

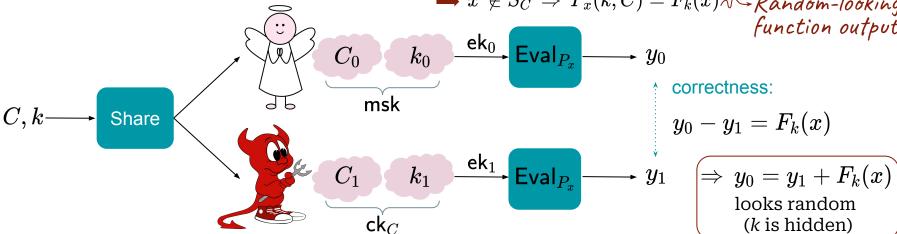
Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)$. $\,$



For a constraint $C: \mathcal{X} ext{->} \{0,1\} : S_C = \{x \in \mathcal{X} : C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

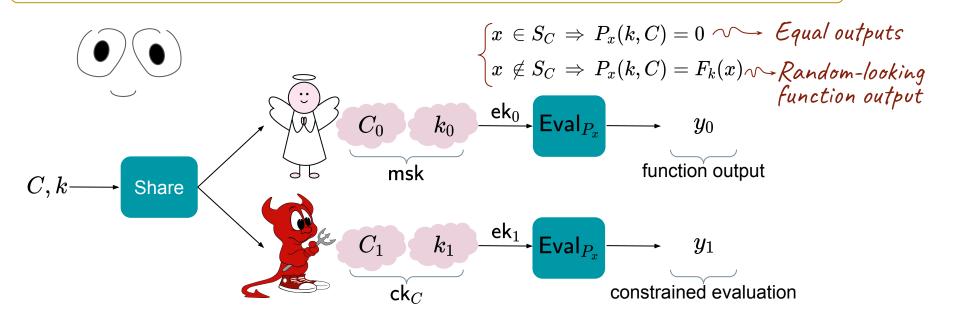
Take a PRF F with key k, and use an HSS to compute $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$. $x\in S_C\Rightarrow P_x(k,C)=0 \quad \text{Equal outputs}$ $\Rightarrow x\not\in S_C\Rightarrow P_x(k,C)=F_k(x) \text{ Random-looking function output}}$ $C_0 \qquad k_0 \qquad \text{Eval}_{P_x} \qquad y_0$



For a constraint $C: \mathcal{X} ext{->} \{0,1\} : S_C = \{x \in \mathcal{X} : C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it. \checkmark

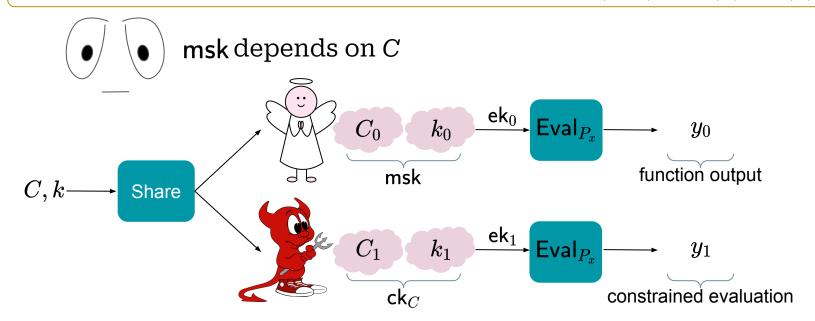
Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)$. $\,$



For a constraint $C: \mathcal{X} ext{->} \{0,1\} : S_C = \{x \in \mathcal{X} : C(x) = 0\}$

The adversary can evaluate on S_C , while learning nothing about the output outside of it.

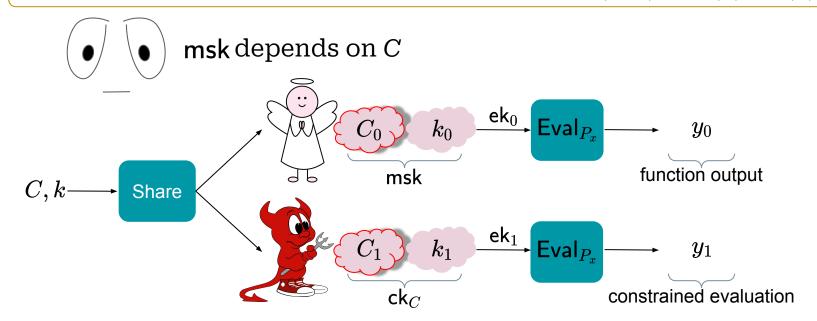
Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)\,.$



For a constraint $C: \mathcal{X} \rightarrow \{0,1\}: S_C = \{x \in \mathcal{X}: C(x) = 0\}$

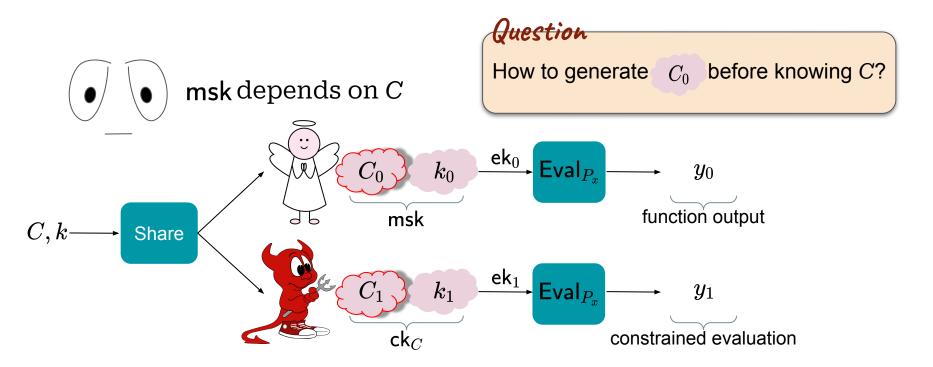
The adversary can evaluate on S_C , while learning nothing about the output outside of it.

Take a PRF F with key k, and use an HSS to compute $\,P_x:(k,C)\mapsto C(x)\cdot F_k(x)\,$



For a constraint $C: \mathcal{X} ext{->} \{0,1\} : S_C = \{x \in \mathcal{X} : C(x) = 0\}$

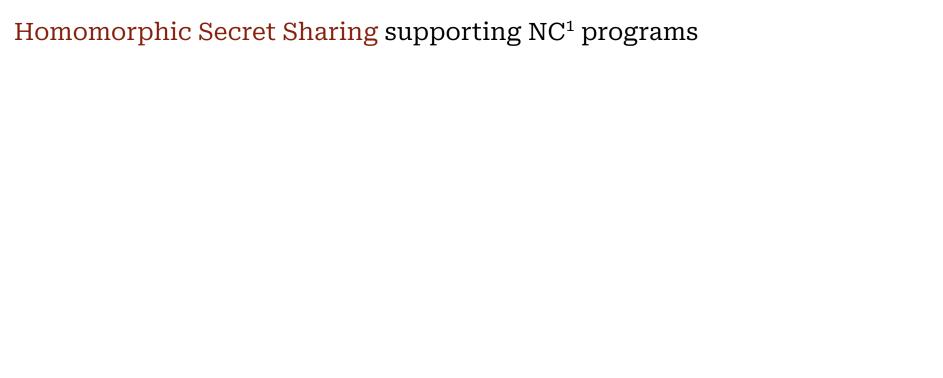
The adversary can evaluate on S_C , while learning nothing about the output outside of it.



Constrained PRF

What really happens!

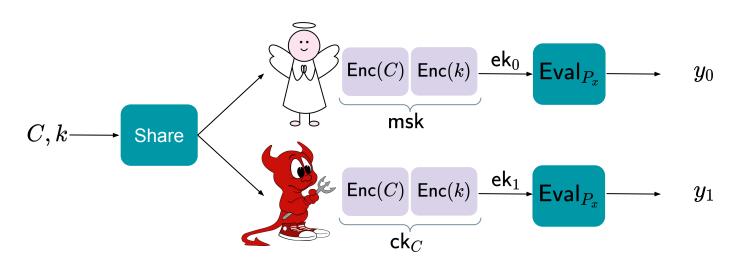
Homomorphic Secret Sharing supporting $P_x:(k,C)\mapsto C(x)\cdot F_k(x)$



Homomorphic Secret Sharing supporting NC¹ programs

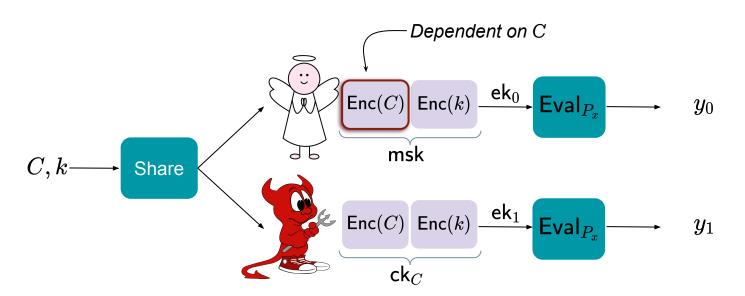
Using (additively homomorphic) public-key encryption scheme.

Shares: Encryptions



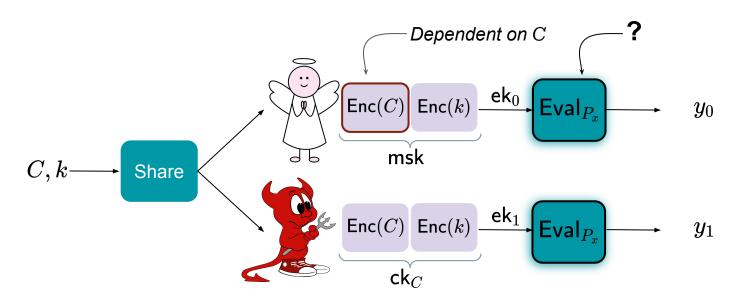
Using (additively homomorphic) public-key encryption scheme.

Shares: Encryptions



Using (additively homomorphic) public-key encryption scheme.

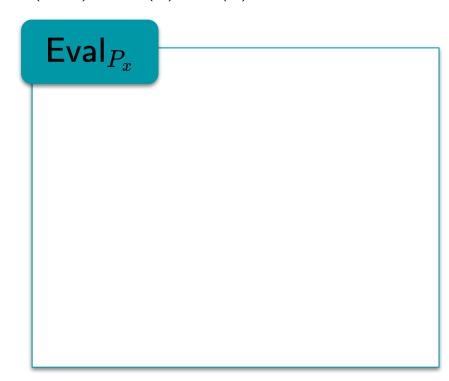
Shares: Encryptions



Homomorphic Secret Sharing supporting NC¹ programs

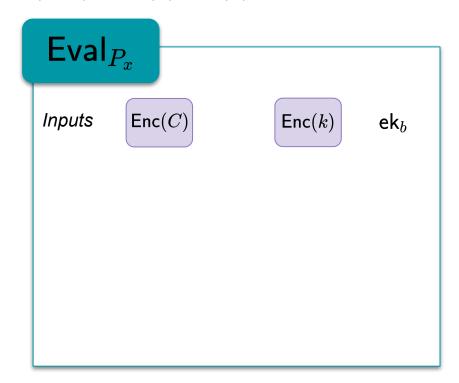
Using (additively homomorphic) public-key encryption scheme.

$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



Using (additively homomorphic) public-key encryption scheme.

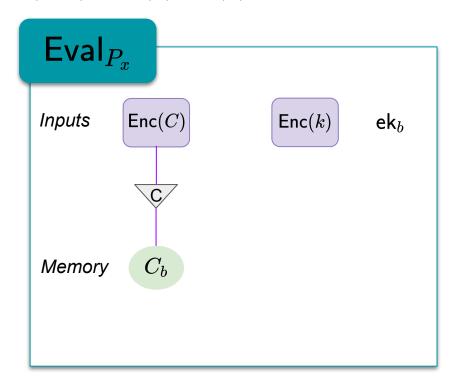
$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



Homomorphic Secret Sharing supporting NC¹ programs

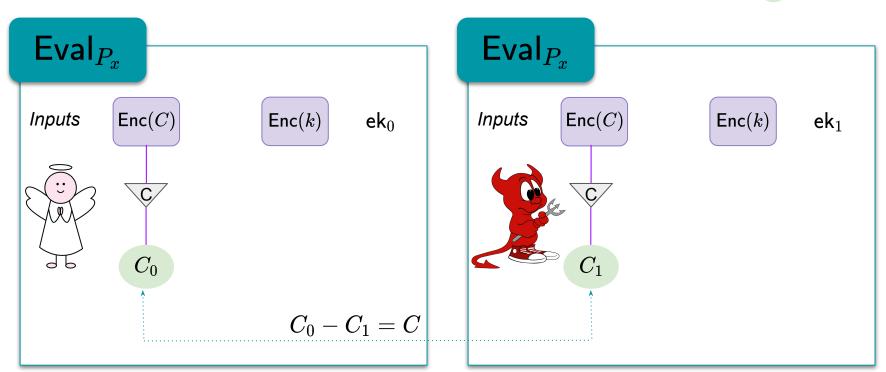
Using (additively homomorphic) public-key encryption scheme.

$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$

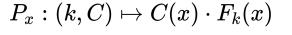


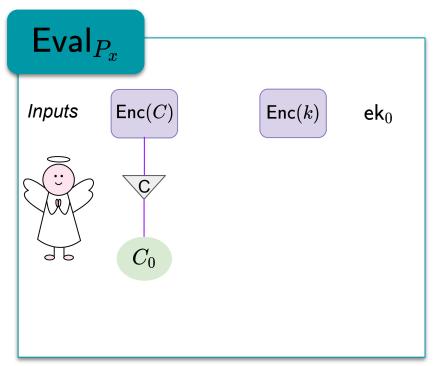
Using (additively homomorphic) public-key encryption scheme.

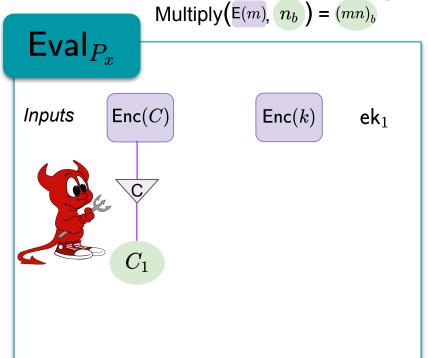
$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



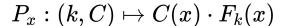
Using (additively homomorphic) public-key encryption scheme.

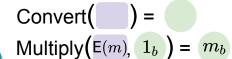


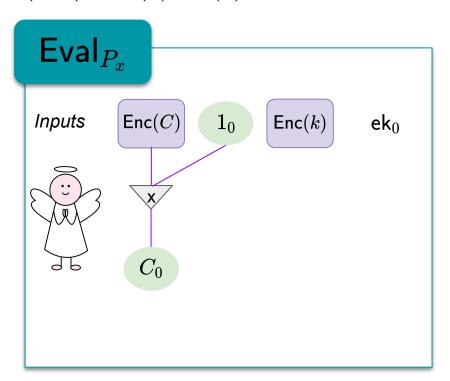


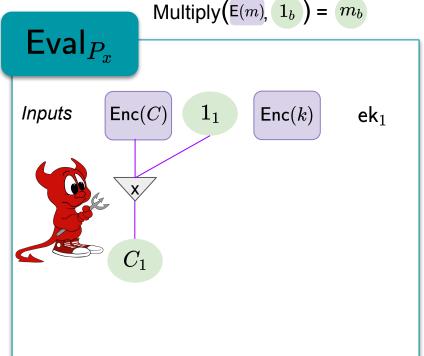


Using (additively homomorphic) public-key encryption scheme.

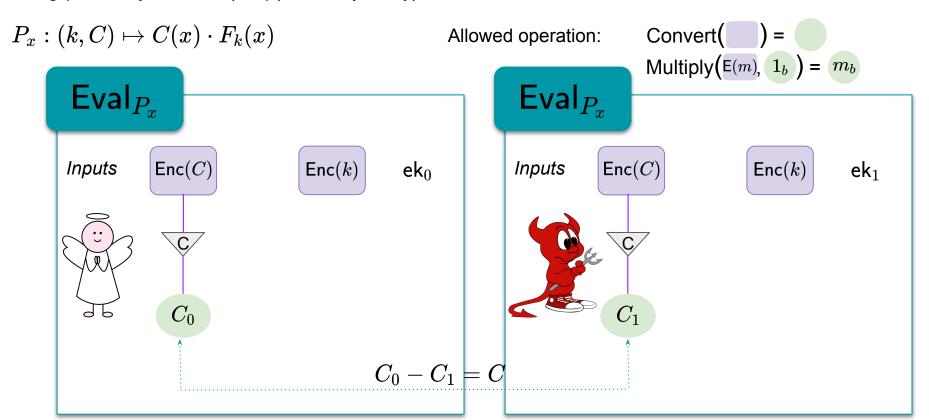




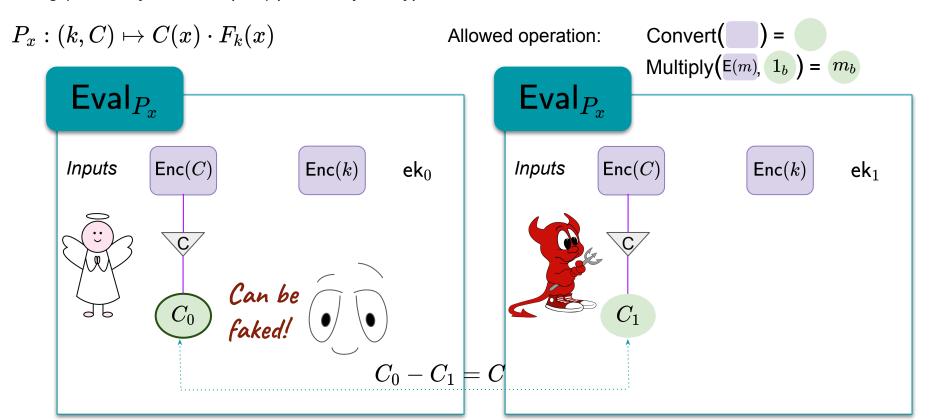




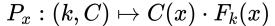
Using (additively homomorphic) public-key encryption scheme.

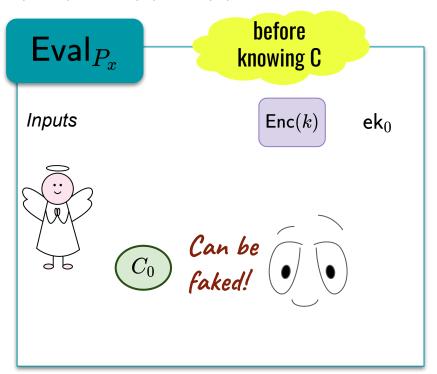


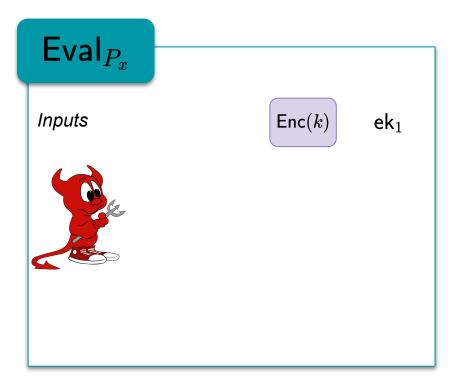
Using (additively homomorphic) public-key encryption scheme.



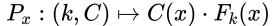
Using (additively homomorphic) public-key encryption scheme.

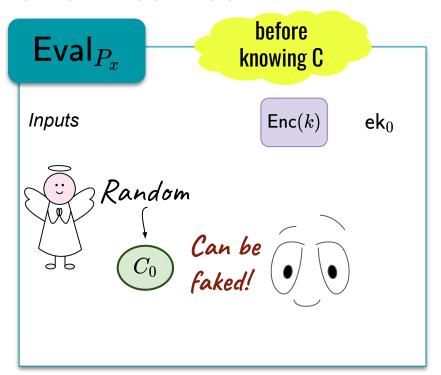


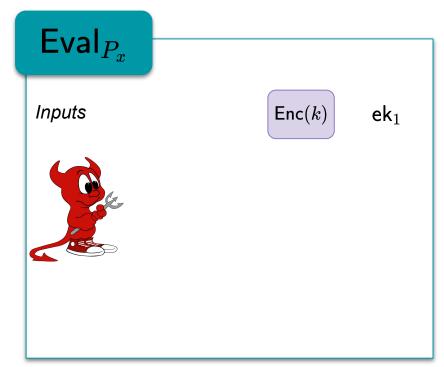




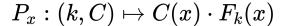
Using (additively homomorphic) public-key encryption scheme.

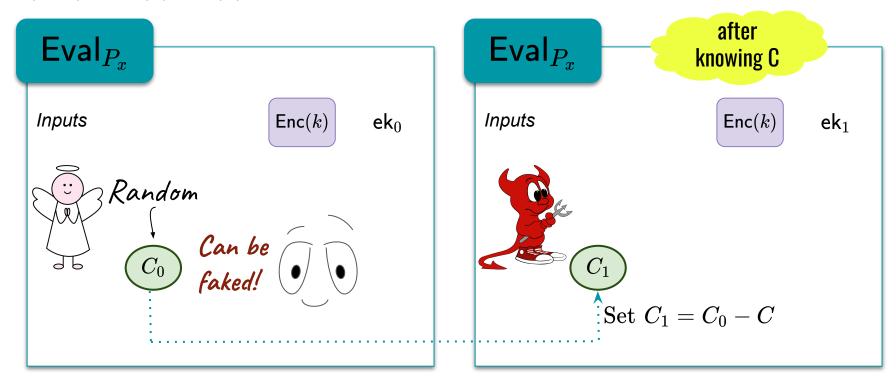




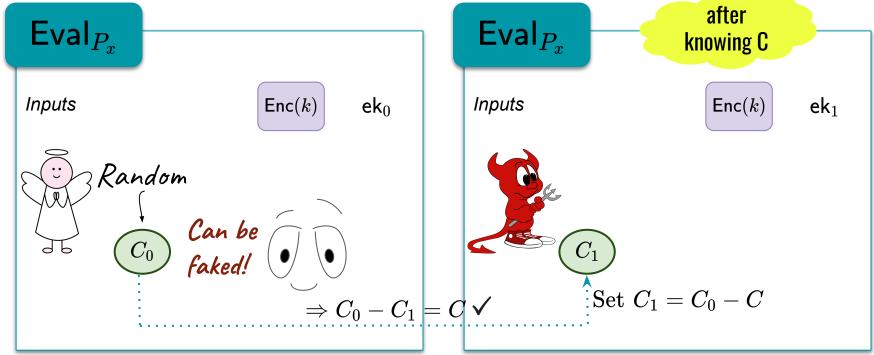


Using (additively homomorphic) public-key encryption scheme.



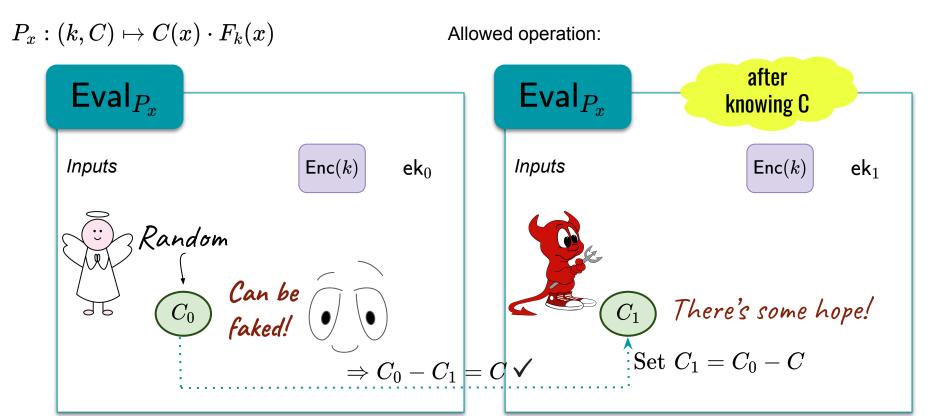


Using (additively homomorphic) public-key encryption scheme.



Homomorphic Secret Sharing supporting NC¹ programs

Using (additively homomorphic) public-key encryption scheme.



Constrained PRF

from

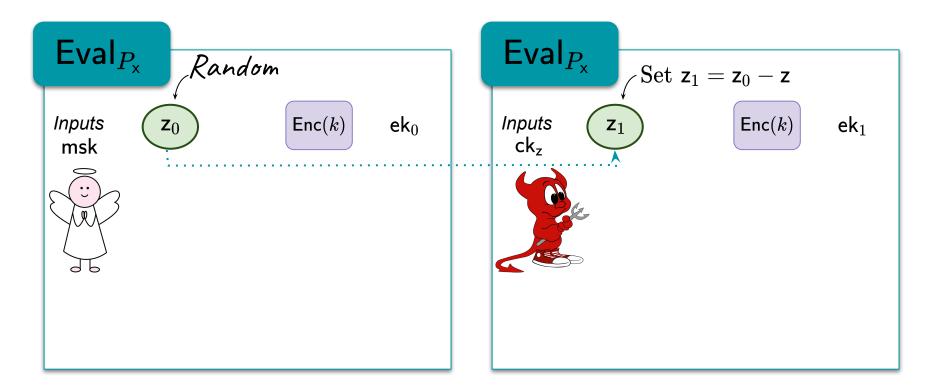
Homomorphic Secret Sharing

For Inner-Product.

 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x}) \,$ for a vector **z**.

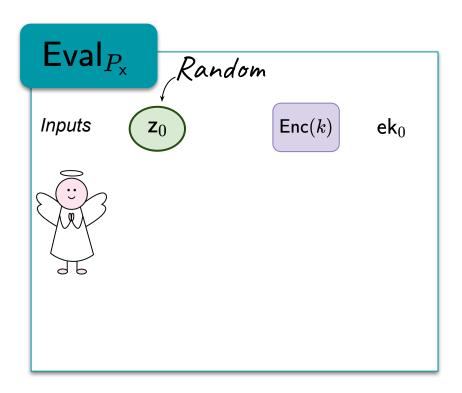
 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto\langle\mathsf{z},\mathsf{x}\rangle\cdot F_k(\mathsf{x})$ for a vector **z**. Adversary can compute on **x** iff $<\mathsf{z},\mathsf{x}>=0$.

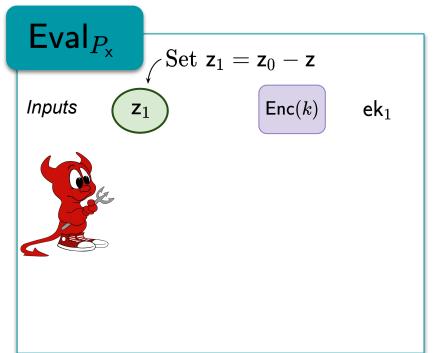
 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x}) \; ext{ for a vector } \mathsf{z}.$



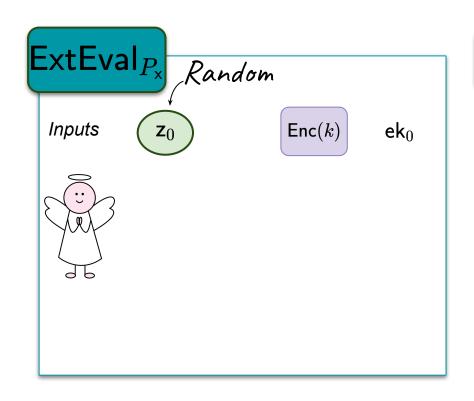
 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x}) \,$ for a vector z .

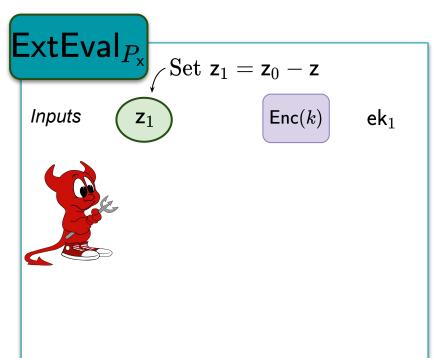
Convert(
$$E(m)$$
) = m_b := Multiply($E(m)$, 1_b) = m_b





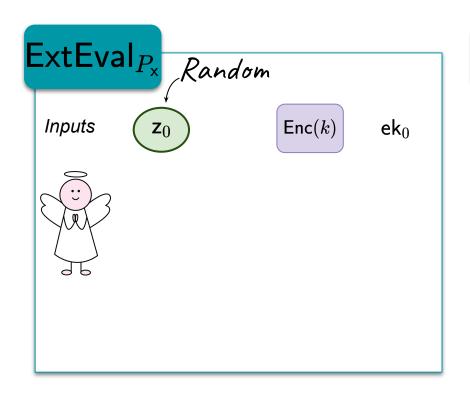
 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x}) \, ext{ for a vector } \mathsf{z}.$

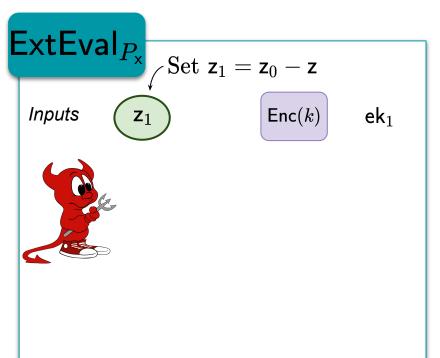




 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x}) \, ext{ for a vector } \mathsf{z}.$

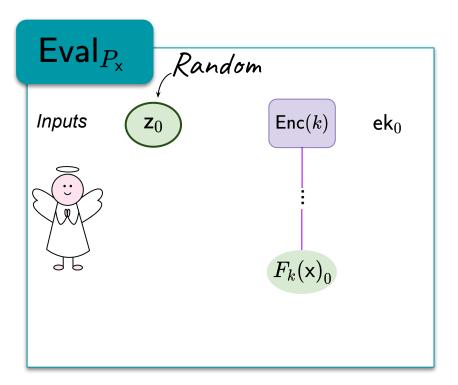
Convert() = := Multiply(
$$E(m)$$
, z_b) = $(z \cdot m)_b$

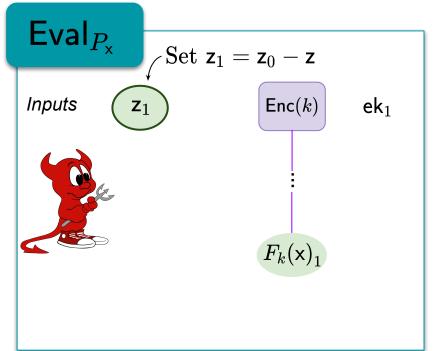




 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x}) \; ext{ for a vector } \mathsf{z}.$

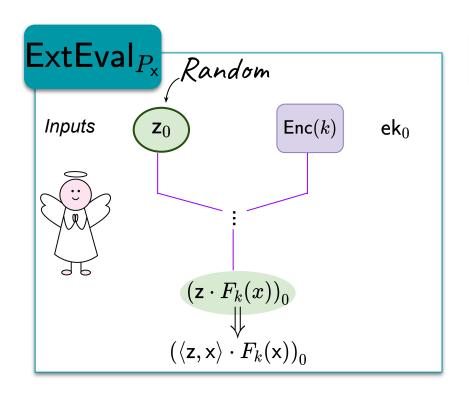
Convert() = := Multiply(
$$E(m)$$
, 1_b) = m_b

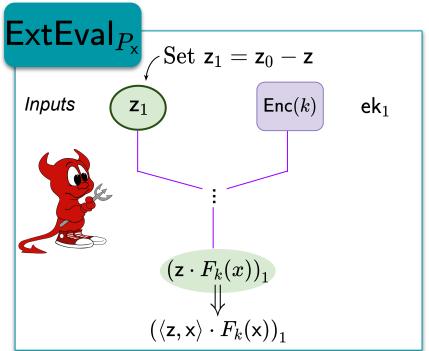




 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}\rangle\cdot F_k(\mathsf{x})$ for a vector **z**.

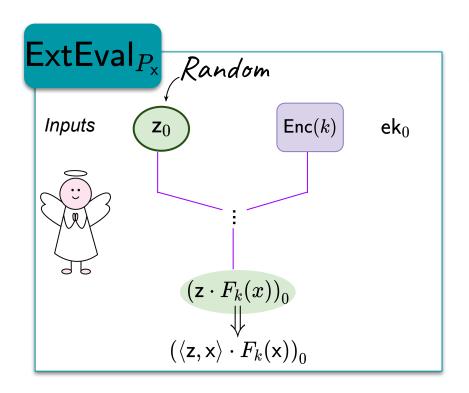
Convert() = := Multiply(
$$E(m)$$
, (z_b)) = $(z \cdot m)_b$

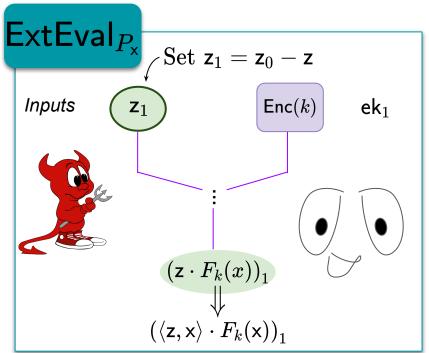




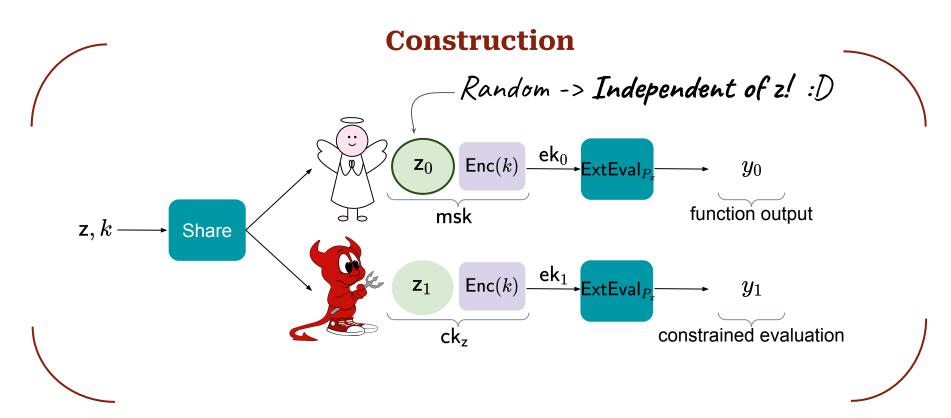
 $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}\rangle\cdot F_k(\mathsf{x})$ for a vector z .

Convert() = := Multiply(
$$E(m)$$
, (z_b)) = $(z \cdot m)_b$



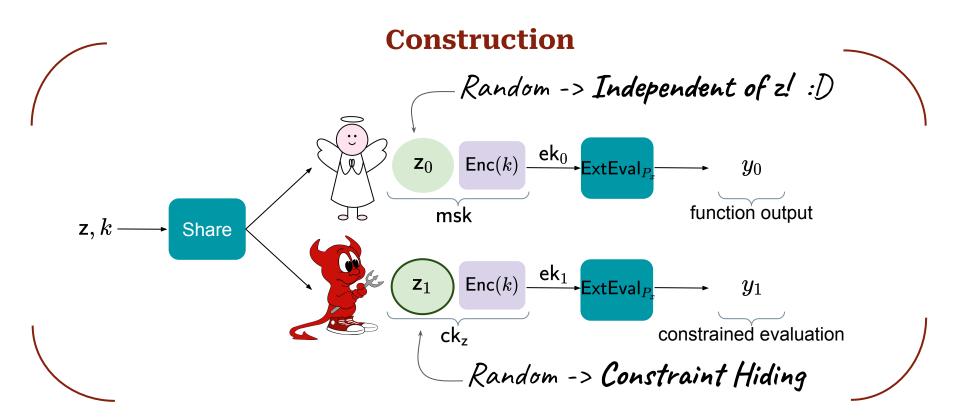


Inner-Product Constraint C : vector \mathbf{z} $P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x})$



Inner-Product Constraint constraint C: vector **z**

$$P_{\mathsf{x}}:(k,\mathsf{z})\mapsto \langle \mathsf{z},\mathsf{x}
angle \cdot F_k(\mathsf{x})$$



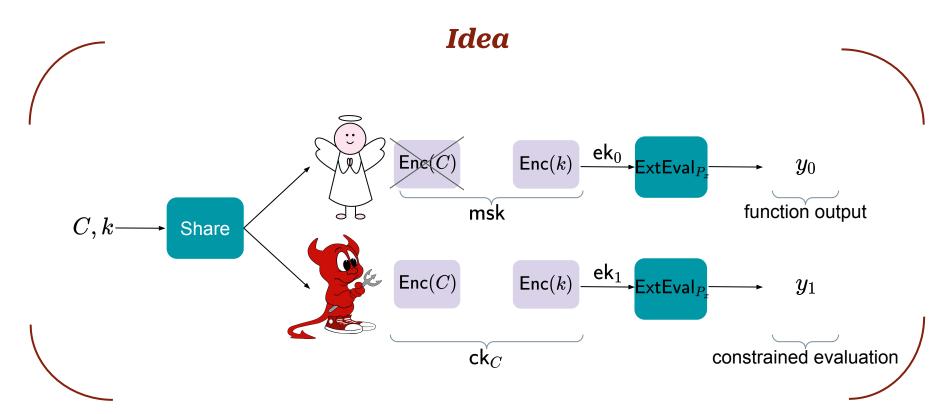
For NC1

Constrained PRF

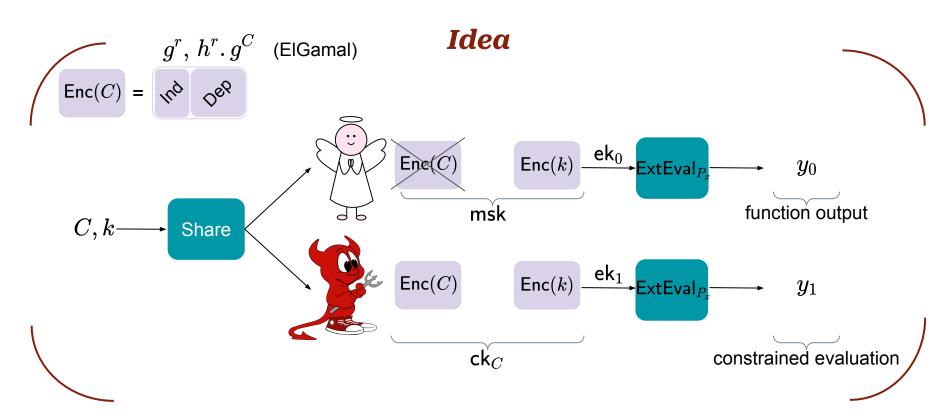
from

Homomorphic Secret Sharing

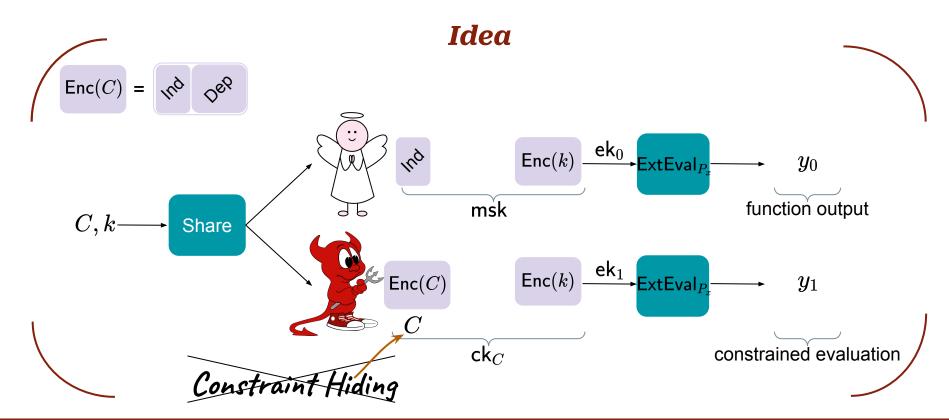
$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



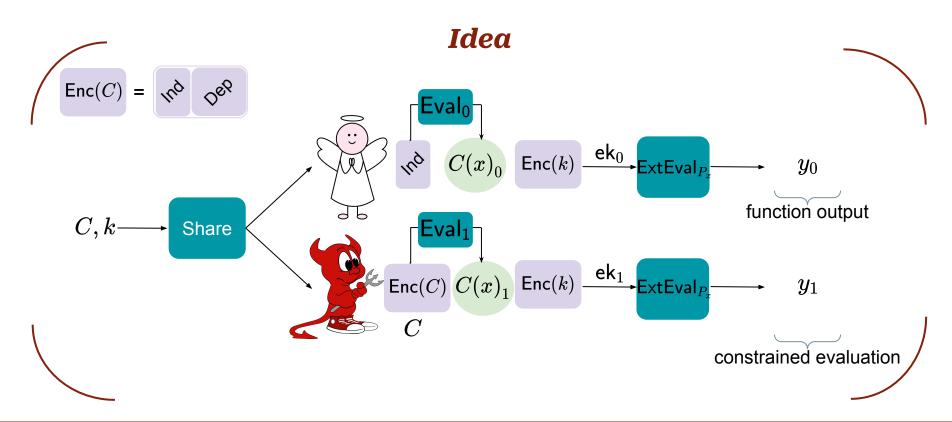
$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



$$P_x:(k,C)\mapsto C(x)\cdot F_k(x)$$



Conclusion

- HSS + (some level of) Programmability -> Constrained PRF (for inner-product and NC¹)
- New constructions of constrained PRF.
 - (1) **D**ecisional **C**omposite **R**esiduoisity, (2) **LWE** with superpolynomial modulus,
 - (3) Hardness of the **Joye-Libert** encryption scheme, (4) **DDH & DXDH** over class groups, (5) **H**ard **M**embership **S**ubgroup over class groups
- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing. (one party can preprocess even before knowing the identity of the other party)
 - One-sided statistically secure computation with sublinear communication.
 (without FHE!)

Conclusion

- HSS + (some level of) Programmability -> Constrained PRF (for inner-product and NC¹)
- New constructions of constrained PRF.
 - (1) **D**ecisional **C**omposite **R**esiduoisity, (2) **LWE** with superpolynomial modulus,
 - (3) Hardness of the **Joye-Libert** encryption scheme, (4) **DDH & DXDH** over class groups, (5) **H**ard **M**embership **S**ubgroup over class groups
- Revisiting Applications of HSS to Secure Computation.
 - Secure computation with silent preprocessing. (one party can preprocess even before knowing the identity of the other party)
 - One-sided statistically secure computation with sublinear communication.
 (without FHE!)

eprint.iacr.org/2023/387