
SuperPack:
Dishonest Majority MPC with Constant Online Communication

Daniel Escudero
Vipul Goyal

Antigoni Polychroniadou
Yifan Song

Chenkai Weng

J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE
NTT Research
J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE
Tsinghua University
Northwestern University

Peter Scholl Aarhus UniversityPresented by:

Secure Multi-Party Computation

A set of parties securely
compute a function

on their private inputs
while leaking only the output .

n P1, …, Pn

y ← f(x1, …, xn)

(x1, …, xn)
y

ℱ𝖬𝖯𝖢

P1

P2

P3

Pn

x1

x2

x3

xn

…

y

y

y

y

Our MPC Protocol - Setting

• parties

• is represented by an arithmetic circuit

• Dishonest majority

• corrupted parties

• For constant

• Malicious adversary (secure with abort)

n P1, …, Pn

y ← f(x1, …, xn)

t = n(1 − ϵ)

ϵ ∈ (0,1/2)

Our Results

• online communication per multiplication gate (among all parties)

• Any constant fraction of corruptions (for)

• Communication decreases as the number of honest parties increases

O(1)

0 < ϵ < 1/2

ϵn

[Escudero Goyal Polychroniadou Song Weng 23]

Online Circuit-dependent
Preprocessing

Circuit-independent
Preprocessing

Communication overhead (number of field elements) per multiplication gate among all parties.

6/ϵ 4/ϵ 6n + 35/ϵ

Previous Work

• BeDOZa, SPDZ: all-but-one corruptions

• Hard to benefit with honest parties. Best: remove parties?

• GPS22: total communication per multiplication gate

• Benefits from increased but with large constants

• TinyKeys: MPC for Boolean circuits

• corruptions; still communication

• TurboPack: online communication; honest-majority

ϵn > 1 n − t − 1

58/ϵ + 96/ϵ2

ϵn

n(1 − ϵ) O(n)

O(1)
[BDOZ11] Semi-homomorphic encryption and multiparty computation. Bundling et al. Eurocrypt 2011.
[DPSZ12] Multiparty computation from somewhat homomorphic encryption. Damgård et al. CRYPTO 2012.
[GPS22] Sharing transformation and dishonest majority MPC with packed secret sharing. Goyal et al. CRYPTO 2022.
[HOSS18a] Concretely efficient large-scale MPC with active security (or, TinyKeys for TinyOT). Hazay et al. Asiacrypt 2018.
[HOSS18b] TinyKeys: A new approach to efficient multi-party computation. Hazay et al. CRYPTO 2018.
[EGPS22] TURBOPACK: Honest Majority MPC with Constant Online Communication. Escudero et al. CCS 2022.

Compare with Turbospeedz
: number of parties. : percentage of honest partiesn ϵ

Online Circuit-dependent
Preprocessing

Circuit-independent
Preprocessing

SuperPack

Turbospeedz

Communication overhead (number of field elements) per multiplication gate among all parties.
We assume that the preprocessing phase of Turbospeedz is instantiated by Le Mans.

The cost of VOLE/OLE is ignored.

6/ϵ 4/ϵ 6n + 35/ϵ

2(1 − ϵ)n 4(1 − ϵ)n 6(1 − ϵ)n

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019.
Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

0.0 0.1 0.2 0.3 0.4 0.5
e

0

50

100

150

200

250

300
M

in
im

um
n

24 25 26 27 28

n

0.05

0.10

0.15

0.20

0.25

M
in

in
um

e

Compare with Turbospeedz - Online
Requirements on parameters in order to outperform Turbospeedz*(n, ϵ)

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019.
Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

The larger ,
the more honest parties,

the less needed to outperform Turbospeedz.

ϵ

n

The larger ,
the less honest parties

needed to outperform Turbospeedz.

n

When ,
SuperPack has less

communication
when

ϵ = 0.1

n ≥ 34

0.0 0.1 0.2 0.3 0.4 0.5
e

0

50

100

150

200

250

300
M

in
im

um
n

24 25 26 27 28

n

0.05

0.10

0.15

0.20

0.25

M
in

in
um

e

Requirements on parameters in order to outperform Turbospeedz*(n, ϵ)

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019.
Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

The larger ,
the more honest parties,

the less needed to outperform Turbospeedz.

ϵ

n

The larger ,
the less honest parties

needed to outperform Turbospeedz.

n

When ,
SuperPack has less

communication
when

ϵ = 0.3

n ≥ 15

Compare with Turbospeedz - Online

0.0 0.1 0.2 0.3 0.4 0.5
e

0

50

100

150

200

250

300
M

in
im

um
n

24 25 26 27 28

n

0.05

0.10

0.15

0.20

0.25

M
in

in
um

e

Requirements on parameters in order to outperform Turbospeedz*(n, ϵ)

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019.
Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

The larger ,
the more honest parties,

the less needed to outperform Turbospeedz.

ϵ

n

The larger ,
the less honest parties

needed to outperform Turbospeedz.

n

When ,
SuperPack has less

communication
when

n = 25

ϵ ≥ 0.26

Compare with Turbospeedz - Online

0.0 0.1 0.2 0.3 0.4 0.5
e

0

50

100

150

200

250

300
M

in
im

um
n

24 25 26 27 28

n

0.05

0.10

0.15

0.20

0.25

M
in

in
um

e

Requirements on parameters in order to outperform Turbospeedz*(n, ϵ)

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019.
Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

The larger ,
the more honest parties,

the less needed to outperform Turbospeedz.

ϵ

n

The larger ,
the less honest parties

needed to outperform Turbospeedz.

n

When ,
SuperPack has less

communication
when

n = 27

ϵ ≥ 0.06

Compare with Turbospeedz - Online

Communication complexity based on choice of (n, ϵ)

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019.
Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

SuperPack has advantage for small and large .
The ratio of Turbospeedz / SuperPack is between 0.83 and 1.6.

The cost is reasonable considering the performance gain during online phase.

ϵ n

50 100 150 200 250
n

0

C
om

m
un

ic
at

io
n

co
st Ours,e = 0.1

Ours,e = 0.4
Tb,e = 0.1
Tb,e = 0.4

Compare with Turbospeedz - Preprocessing

Implementation and Evaluation
Performance evaluation of online protocols - running time factor of

Communication ratio.

𝖳𝗎𝗋𝖻𝗈𝗌𝗉𝖾𝖾𝖽𝗓
𝖲𝗎𝗉𝖾𝗋𝖯𝖺𝖼𝗄

Bandwidth # Parties
Percentage of Honest Parties

20% 30% 40%

500 mbps
32 0.68 0.68 0.72

80 1.27 1.57 1.4

100 mbps
32 1.67 1.88 1.95

80 3.88 4.57 4.56

10 mbps
32 2 2.53 2.68

80 4.56 5.73 6.22

Comm.
Factor

32 1.71 2.24 2.56

80 4.27 5.6 6.4

Implementation and Evaluation
Performance evaluation of online protocols - running time factor of

Under high-
bandwidth network,
the computation is

the bottleneck.

Our implementation
can be further

improved with e.g.
FFT.

𝖳𝗎𝗋𝖻𝗈𝗌𝗉𝖾𝖾𝖽𝗓
𝖲𝗎𝗉𝖾𝗋𝖯𝖺𝖼𝗄

Bandwidth # Parties
Percentage of Honest Parties

20% 30% 40%

500 mbps
32 0.68 0.68 0.72

80 1.27 1.57 1.4

100 mbps
32 1.67 1.88 1.95

80 3.88 4.57 4.56

10 mbps
32 2 2.53 2.68

80 4.56 5.73 6.22

Comm.
Factor

32 1.71 2.24 2.56

80 4.27 5.6 6.4

Implementation and Evaluation
Performance evaluation of online protocols - running time factor of

Under low-
bandwidth network,
the communication

is the bottleneck.

The comparison of
the performance

aligns with analysis.

𝖳𝗎𝗋𝖻𝗈𝗌𝗉𝖾𝖾𝖽𝗓
𝖲𝗎𝗉𝖾𝗋𝖯𝖺𝖼𝗄

Bandwidth # Parties
Percentage of Honest Parties

20% 30% 40%

500 mbps
32 0.68 0.68 0.72

80 1.27 1.57 1.4

100 mbps
32 1.67 1.88 1.95

80 3.88 4.57 4.56

10 mbps
32 2 2.53 2.68

80 4.56 5.73 6.22

Comm.
Factor

32 1.71 2.24 2.56

80 4.27 5.6 6.4

SuperPack Protocol

• Parameters .

• Packed Shamir secret sharing: for .

• distinct values .

• Define a degree- polynomial satisfying

• .

• For , party learns .

n, k, d

[v]d v ∈ 𝔽k

k + n α1, …, αk, β1, …, βn ∈ 𝔽

d

f(αi) = vi, i ∈ [k]

i ∈ [n] Pi f(βi)

Background

Number of parties, packing parameter, degree.

SuperPack Protocol

• Parameters .

• Packed Shamir secret sharing: for .

• distinct values .

• Define a degree- polynomial satisfying

• .

• For , party learns .

n, k, d

[v]d v ∈ 𝔽k

k + n α1, …, αk, β1, …, βn ∈ 𝔽

d

f(αi) = vi, i ∈ [k]

i ∈ [n] Pi f(βi)

Background

Evaluation points.

SuperPack Protocol

• Parameters .

• Packed Shamir secret sharing: for .

• distinct values .

• Define a degree- polynomial satisfying

• .

• For , party learns .

n, k, d

[v]d v ∈ 𝔽k

k + n α1, …, αk, β1, …, βn ∈ 𝔽

d

f(αi) = vi, i ∈ [k]

i ∈ [n] Pi f(βi)

Background

 evaluated at .v α1, …, αk

SuperPack Protocol

• Parameters .

• Packed Shamir secret sharing: for .

• distinct values .

• Define a degree- polynomial satisfying

• .

• For , party learns .

n, k, d

[v]d v ∈ 𝔽k

k + n α1, …, αk, β1, …, βn ∈ 𝔽

d

f(αi) = vi, i ∈ [k]

i ∈ [n] Pi f(βi)

Background

Each party gets a secret share .Pi f(βi)

SuperPack: Main Invariant

• For each wire indexed by with value , sample random

• is secret-shared

• knows

• Note: determines

α vα ∈ 𝔽 λα ∈ 𝔽

λα

P1 μα = vα − λα

μα, λα vα

From SIMD to Arbitrary Circuit

• Problem: wires in each packed share may come from different packed shares from
previous layers.

k

E.g. for batched gate input wires , needs ⃗α [⃗μα]k−1, [⃗λα]n−k

Layer i − 3

Layer i − 2

Layer i − 1

Layer i

[v1]d [v2]d

[v3]d [v4]d

[v5]d

[v6]d

(v2[i1], v1[i2], v5[i3], v3[i4], v4[i5])

From SIMD to Arbitrary Circuit

• Problem: wires in each packed share may come from different packed shares from
previous layers.

• Idea: Follow the framework of TurboPack to maintain wiring consistency.

k

[EGPS22] TurboPack: Honest majority MPC with constant online communication. Escudero et al. ACM CCS 2022.

From SIMD to Arbitrary Circuit

• During the circuit-dependent preprocessing:

• Prepare shares of for each wire

• Prepare packed shares of for each batch of wires

λα ∈ 𝔽 α
⃗λα ∈ 𝔽k k ⃗α

Communication cost comes
from degree reduction.

From SIMD to Arbitrary Circuit

• During the circuit-dependent preprocessing,

• Prepare shares of for each wire .

• Prepare packed shares of for each batch of wires

• During the online phase, for any batch of wires whose wire values has already
been computed:

• knows for any wire , thus it constructs correct for this batch

λα ∈ 𝔽 α
⃗λα ∈ 𝔽k k ⃗α

k ⃗α

P1 μα α ⃗μα

No extra cost for
network routing.

Online Protocol (Simplified)

MULT
⃗μα, [⃗λα]n−k

⃗μβ, [⃗λβ]n−k

⃗μγ, [⃗λγ]n−1

For each batch of multiplication gates.
 Given gate inputs

,
 compute gate output

k

vα = ⃗μα + ⃗λα, vβ = ⃗μβ + ⃗λβ

vγ = ⃗μγ + ⃗λγ

Online Protocol (Simplified)

 knowsP1

All parties knows / shares

[Γγ]n−1 = [⃗λα * ⃗λβ − ⃗λγ]n−1

⃗μα, ⃗μβ

[⃗λα]n−k, [⃗λβ]n−k, [⃗λγ]n−1

[⃗μα]k−1, [⃗μβ]k−1

Known from previous gates

MULT
⃗μα, [⃗λα]n−k

⃗μβ, [⃗λβ]n−k

⃗μγ, [⃗λγ]n−1

Online Protocol (Simplified)

Distributed by P1

MULT
⃗μα, [⃗λα]n−k

⃗μβ, [⃗λβ]n−k

⃗μγ, [⃗λγ]n−1
 knowsP1

All parties knows / shares

[Γγ]n−1 = [⃗λα * ⃗λβ − ⃗λγ]n−1

[⃗λα]n−k, [⃗λβ]n−k, [⃗λγ]n−1

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Online Protocol (Simplified)

From preprocessing

MULT
⃗μα, [⃗λα]n−k

⃗μβ, [⃗λβ]n−k

⃗μγ, [⃗λγ]n−1
 knowsP1

All parties knows / shares

[Γγ]n−1 = [⃗λα * ⃗λβ − ⃗λγ]n−1

[⃗λα]n−k, [⃗λβ]n−k, [⃗λγ]n−1

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Online Protocol (Simplified)

Goal: compute and reveal it to .

• Parties compute

• Parties reveal to

⃗μγ P1

[⃗μγ]n−1 = [⃗μα]k−1 * [⃗μβ]k−1 + [⃗μα]k−1 * [⃗λβ]n−k

+[⃗μβ]k−1 * [⃗λα]n−k + [Γγ]n−1

⃗μγ P1

MULT
⃗μα, [⃗λα]n−k

⃗μβ, [⃗λβ]n−k

⃗μγ, [⃗λγ]n−1
 knowsP1

All parties knows / shares

[Γγ]n−1 = [⃗λα * ⃗λβ − ⃗λγ]n−1

[⃗λα]n−k, [⃗λβ]n−k, [⃗λγ]n−1

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Online Protocol

 is computed by a packed Beaver triple during preprocessing.

The actual online phase of SuperPack combines:
1. The computing of via packed Beaver triple

2. The computation of
Thus reduces communication overhead

⃗λα * ⃗λβ

⃗λα * ⃗λβ

⃗μγ

 knowsP1

All parties knows / shares

[Γγ]n−1 = [⃗λα * ⃗λβ − ⃗λγ]n−1

[⃗λα]n−k, [⃗λβ]n−k, [⃗λγ]n−1

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Achieving Active Security

• Idea: use message authentication codes (MACs).

• Notations.

• Shamir secret sharing & value shared at :

• Additive secret share:

αi [v |i]d

⟨v⟩

[BDOZ11] Semi-homomorphic encryption and multiparty computation. Bundling et al. Eurocrypt 2011.
[DPSZ12] Multiparty computation from somewhat homomorphic encryption. Damgård et al. CRYPTO 2012.

Achieving Active Security
With message authentication codes

MULT

[λα]n−k

[λβ]n−k

μγ

(⟨Δ ⋅ λα1⟩, …, ⟨Δ ⋅ λαk⟩)

(⟨Δ ⋅ μβ1
⟩, …, ⟨Δ ⋅ μβk

⟩)

μα

μβ

(⟨Δ ⋅ μγ1
⟩, …, ⟨Δ ⋅ μγk

⟩)

[λγ]n−1

(⟨Δ ⋅ μα1⟩, …, ⟨Δ ⋅ μαk⟩)

(⟨Δ ⋅ λβ1
⟩, …, ⟨Δ ⋅ λβk

⟩)

(⟨Δ ⋅ λγ1
⟩, …, ⟨Δ ⋅ λγk

⟩)

• Secret global key shared in the form .

• Authenticated wire values:

Δ ∈ 𝔽 ([Δ |1]t, …, [Δ |k]t)

Ways to Obtain Authenticated Shares

• Authenticated additive shares from VOLE.

• Obtain via VOLE.

• Random authenticated packed Shamir shares from VOLE.

• Obtain via VOLE and locally convert to .

• Authenticated additive shares from authenticated packed Shamir shares.

• Compute and convert to locally.

⟨v⟩, ⟨Δ ⋅ v⟩

⟨Δ ⋅ v⟩ [Δ ⋅ ⃗r]n−1

[Δ ⋅ v]d ⟨Δ ⋅ v1⟩, …, ⟨Δ ⋅ vk⟩

Compute Authenticated Value Online (Simplified)
With message authentication codes

 knowsP1

All parties knows / shares

[Δ ⋅ ⃗λα]n−k, [Δ ⋅ ⃗λβ]n−k

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβKnow from previous gates.

⟨Δ ⋅ (λαi
* λβi

− λγi
)⟩, i ∈ [k]

With message authentication codes

 knowsP1

All parties knows / shares

[Δ ⋅ ⃗λα]n−k, [Δ ⋅ ⃗λβ]n−k

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Distributed by .P1

Compute Authenticated Value Online (Simplified)

⟨Δ ⋅ (λαi
* λβi

− λγi
)⟩, i ∈ [k]

With message authentication codes

 knowsP1

All parties knows / shares

⟨Δ ⋅ (λαi
* λβi

− λγi
)⟩, i ∈ [k]

[Δ ⋅ ⃗λα]n−k, [Δ ⋅ ⃗λβ]n−k

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

From preprocessing.

Compute Authenticated Value Online (Simplified)

With no extra communication overhead for online phase

• Compute authenticated .

μγi

⟨Δ ⋅ μγi
⟩ = ⟨Δ ⋅ μαi

⋅ μβi
⟩

+⟨Δ ⋅ μαi
⋅ λβi

⟩

+⟨Δ ⋅ μβi
⋅ λαi

⟩

+⟨Δ ⋅ (λαi
λβi

− λγi
)⟩

 knowsP1

All parties knows / shares

[Δ ⋅ ⃗λα]n−k, [Δ ⋅ ⃗λβ]n−k

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Converted from
[Δ |i] * [⃗μα]k−1 * [⃗μβ]k−1

Compute Authenticated Value Online (Simplified)

⟨Δ ⋅ (λαi
* λβi

− λγi
)⟩, i ∈ [k]

With no extra communication overhead for online phase

• Compute authenticated .

μγi

⟨Δ ⋅ μγi
⟩ = ⟨Δ ⋅ μαi

⋅ μβi
⟩

+⟨Δ ⋅ μαi
⋅ λβi

⟩

+⟨Δ ⋅ μβi
⋅ λαi

⟩

+⟨Δ ⋅ (λαi
λβi

− λγi
)⟩

 knowsP1

All parties knows / shares

[Δ ⋅ ⃗λα]n−k, [Δ ⋅ ⃗λβ]n−k

[⃗μα]k−1, [⃗μβ]k−1

⃗μα, ⃗μβ

Converted from
 [⃗μα]k−1 * [Δ ⋅ ⃗λβ]n−k

[⃗μβ]k−1 * [Δ ⋅ ⃗λα]n−k

Compute Authenticated Value Online (Simplified)

⟨Δ ⋅ (λαi
* λβi

− λγi
)⟩, i ∈ [k]

Full version of the paper available at https://eprint.iacr.org/2023/307
Open sourced benchmark available at https://github.com/ckweng/SuperPack

Questions

https://eprint.iacr.org/2023/307
https://github.com/ckweng/SuperPack

