SuperPack:
 Dishonest Majority MPC with Constant Online Communication

Daniel Escudero
Vipul Goyal
Antigoni Polychroniadou
Yifan Song
Chenkai Weng
J.P. Morgan AI Research \& J.P. Morgan AlgoCRYPT CoE NTT Research
J.P. Morgan AI Research \& J.P. Morgan AlgoCRYPT CoE Tsinghua University
Northwestern University

Secure Multi-Party Computation

Our MPC Protocol-Setting

- n parties P_{1}, \ldots, P_{n}
- $y \leftarrow f\left(x_{1}, \ldots, x_{n}\right)$ is represented by an arithmetic circuit
- Dishonest majority
- $t=n(1-\epsilon)$ corrupted parties
- For constant $\epsilon \in(0,1 / 2)$
- Malicious adversary (secure with abort)

Our Results

- $O(1)$ online communication per multiplication gate (among all parties)
- Any constant fraction of corruptions (for $0<\epsilon<1 / 2$)
- Communication decreases as the number of honest parties ϵn increases

Online	Circuit-dependent Preprocessing	Circuit-independent Preprocessing
$6 / \epsilon$	$4 / \epsilon$	$6 n+35 / \epsilon$

Communication overhead (number of field elements) per multiplication gate among all parties.

Previous Work

- BeDOZa, SPDZ: all-but-one corruptions
- Hard to benefit with $\epsilon n>1$ honest parties. Best: remove $n-t-1$ parties?
- GPS22: $58 / \epsilon+96 / \epsilon^{2}$ total communication per multiplication gate
- Benefits from increased ϵn but with large constants
- TinyKeys: MPC for Boolean circuits
- $n(1-\epsilon)$ corruptions; still $O(n)$ communication
- TurboPack: $O(1)$ online communication; honest-majority
[BDOZ11] Semi-homomorphic encryption and multiparty computation. Bundling et al. Eurocrypt 2011.
[DPSZ12] Multiparty computation from somewhat homomorphic encryption. Damgård et al. CRYPTO 2012.
[GPS22] Sharing transformation and dishonest majority MPC with packed secret sharing. Goyal et al. CRYPTO 2022.
[HOSS18a] Concretely efficient large-scale MPC with active security (or, TinyKeys for TinyOT). Hazay et al. Asiacrypt 2018.
[HOSS18b] TinyKeys: A new approach to efficient multi-party computation. Hazay et al. CRYPTO 2018. [EGPS22] TURBOPACK: Honest Majority MPC with Constant Online Communication. Escudero et al. CCS 2022.

Compare with Turbospeedz

n : number of parties. ϵ : percentage of honest parties

	Online	Circuit-dependent Preprocessing	Circuit-independent Preprocessing
SuperPack	$6 / \epsilon$	$4 / \epsilon$	$6 \mathbf{n}+35 / \epsilon$
Turbospeedz	$2(1-\epsilon) \mathbf{n}$	$4(1-\epsilon) \mathbf{n}$	$6(1-\epsilon) \mathbf{n}$

Communication overhead (number of field elements) per multiplication gate among all parties.
We assume that the preprocessing phase of Turbospeedz is instantiated by Le Mans.
The cost of VOLE/OLE is ignored.

Compare with Turbospeedz-Online

Requirements on parameters (n, ϵ) in order to outperform Turbospeedz*

The larger ϵ, the more honest parties, the less n needed to outperform Turbospeedz.

The larger n, the less honest parties needed to outperform Turbospeedz.

Compare with Turbospeedz - Online

Requirements on parameters (n, ϵ) in order to outperform Turbospeedz*

The larger ϵ, the more honest parties, the less n needed to outperform Turbospeedz.

The larger n, the less honest parties needed to outperform Turbospeedz.

Compare with Turbospeedz-Online

Requirements on parameters (n, ϵ) in order to outperform Turbospeedz*

The larger ϵ, the more honest parties, the less n needed to outperform Turbospeedz.

The larger n, the less honest parties needed to outperform Turbospeedz.

Compare with Turbospeedz-Online

Requirements on parameters (n, ϵ) in order to outperform Turbospeedz*

The larger ϵ, the more honest parties, the less n needed to outperform Turbospeedz.

The larger n, the less honest parties needed to outperform Turbospeedz.

Compare with Turbospeedz - Preprocessing

Communication complexity based on choice of (n, ϵ)

SuperPack has advantage for small ϵ and large n.
The ratio of Turbospeedz / SuperPack is between 0.83 and 1.6.
The cost is reasonable considering the performance gain during online phase.

Implementation and Evaluation

Performance evaluation of online protocols - running time factor of $\frac{\text { Turbospeedz }}{\text { SuperPack }}$

Communication ratio.

Bandwidth	\# Parties	Percentage of Honest Parties		
		$\mathbf{2 0 \%}$	$\mathbf{3 0} \%$	$\mathbf{4 0} \%$
$\mathbf{5 0 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	0.68	0.68	0.72
	$\mathbf{8 0}$	1.27	1.57	1.4
$\mathbf{1 0 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	1.67	1.88	1.95
	$\mathbf{8 0}$	3.88	4.57	4.56
$\mathbf{1 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	2	2.53	2.68
	$\mathbf{8 0}$	4.56	5.73	6.22
Comm. Factor	$\mathbf{3 2}$	1.71	2.24	2.56
	$\mathbf{8 0}$	4.27	5.6	6.4

Implementation and Evaluation

Performance evaluation of online protocols - running time factor of $\frac{\text { Turbospeedz }}{\text { SuperPack }}$
Under high-
bandwidth network,
the computation is
the bottleneck.
Our implementation
can be further
improved with e.g.
FFT.

Bandwidth	\# Parties	Percentage of Honest Parties		
		$\mathbf{2 0 \%}$	$\mathbf{3 0} \%$	$\mathbf{4 0} \%$
$\mathbf{5 0 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	0.68	0.68	0.72
	$\mathbf{8 0}$	1.27	1.57	1.4
$\mathbf{1 0 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	1.67	1.88	1.95
	$\mathbf{8 0}$	3.88	4.57	4.56
$\mathbf{1 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	2	2.53	2.68
	$\mathbf{8 0}$	4.56	5.73	6.22
Comm. Factor	$\mathbf{3 2}$	1.71	2.24	2.56
	$\mathbf{8 0}$	4.27	5.6	6.4

Implementation and Evaluation

Performance evaluation of online protocols - running time factor of $\frac{\text { Turbospeedz }}{\text { SuperPack }}$

Bandwidth	\# Parties	Percentage of Honest Parties		
		$\mathbf{2 0} \%$	$\mathbf{3 0} \%$	$\mathbf{4 0} \%$
$\mathbf{5 0 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	0.68	0.68	0.72
	$\mathbf{8 0}$	1.27	1.57	1.4
$\mathbf{1 0 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	1.67	1.88	1.95
	$\mathbf{8 0}$	3.88	4.57	4.56
$\mathbf{1 0} \mathbf{~ m b p s}$	$\mathbf{3 2}$	2	2.53	2.68
	$\mathbf{8 0}$	4.56	5.73	6.22
Comm. Factor	$\mathbf{3 2}$	1.71	2.24	2.56
	$\mathbf{8 0}$	4.27	5.6	6.4

Under lowbandwidth network, the communication is the bottleneck.

The comparison of the performance aligns with analysis.

SuperPack Protocol

Background

- Parameters n, k, d. Number of parties, packing parameter, degree.
- Packed Shamir secret sharing: $[\mathbf{v}]_{d}$ for $\mathbf{v} \in \mathbb{F}^{k}$.
- $k+n$ distinct values $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{F}$.
- Define a degree- d polynomial satisfying
- $f\left(\alpha_{i}\right)=v_{i}, i \in[k]$.
- For $i \in[n]$, party P_{i} learns $f\left(\beta_{i}\right)$.

SuperPack Protocol

Background

- Parameters n, k, d.
- Packed Shamir secret sharing: $[\mathbf{v}]_{d}$ for $\mathbf{v} \in \mathbb{F}^{k}$.
- $k+n$ distinct values $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{F}$.
- Define a degree- d polynomial satisfying
- $f\left(\alpha_{i}\right)=v_{i}, i \in[k]$.
- For $i \in[n]$, party P_{i} learns $f\left(\beta_{i}\right)$.

SuperPack Protocol

Background

- Parameters n, k, d.
- Packed Shamir secret sharing: $[\mathbf{v}]_{d}$ for $\mathbf{v} \in \mathbb{F}^{k}$.
- $k+n$ distinct values $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{F}$.
- Define a degree- d polynomial satisfying
- $f\left(\alpha_{i}\right)=v_{i}, i \in[k]$.
\mathbf{v} evaluated at $\alpha_{1}, \ldots, \alpha_{k}$.
- For $i \in[n]$, party P_{i} learns $f\left(\beta_{i}\right)$.

SuperPack Protocol

Background

- Parameters n, k, d.
- Packed Shamir secret sharing: $[\mathbf{v}]_{d}$ for $\mathbf{v} \in \mathbb{F}^{k}$.
- $k+n$ distinct values $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{F}$.
- Define a degree- d polynomial satisfying
- $f\left(\alpha_{i}\right)=v_{i}, i \in[k]$.
- For $i \in[n]$, party P_{i} learns $f\left(\beta_{i}\right)$.

Each party P_{i} gets a secret share $f\left(\beta_{i}\right)$.

SuperPack: Main Invariant

- For each wire indexed by α with value $v_{\alpha} \in \mathbb{F}$, sample random $\lambda_{\alpha} \in \mathbb{F}$
- λ_{α} is secret-shared
- P_{1} knows $\mu_{\alpha}=v_{\alpha}-\lambda_{\alpha}$
- Note: $\mu_{\alpha}, \lambda_{\alpha}$ determines v_{α}

From SIMD to Arbitrary Circuit

- Problem: k wires in each packed share may come from different packed shares from previous layers.

$$
\text { E.g. for batched gate input wires } \vec{\alpha} \text {, needs }\left[\vec{\mu}_{\alpha}\right]_{k-1},\left[\overrightarrow{\lambda_{\alpha}}\right]_{n-k}
$$

From SIMD to Arbitrary Circuit

- Problem: k wires in each packed share may come from different packed shares from previous layers.
- Idea: Follow the framework of TurboPack to maintain wiring consistency.

From SIMD to Arbitrary Circuit

- During the circuit-dependent preprocessing:
- Prepare shares of $\lambda_{\alpha} \in \mathbb{F}$ for each wire α

Communication cost comes from degree reduction.

- Prepare packed shares of $\vec{\lambda}_{\alpha} \in \mathbb{F}^{k}$ for each batch of k wires $\vec{\alpha}$

From SIMD to Arbitrary Circuit

- During the circuit-dependent preprocessing,
- Prepare shares of $\lambda_{\alpha} \in \mathbb{F}$ for each wire α.
- Prepare packed shares of $\vec{\lambda}_{\alpha} \in \mathbb{F}^{k}$ for each batch of k wires $\vec{\alpha}$
- During the online phase, for any batch of k wires $\vec{\alpha}$ whose wire values has already been computed:
- P_{1} knows μ_{α} for any wire α, thus it constructs correct $\overrightarrow{\mu_{\alpha}}$ for this batch

Online Protocol (Simplified)

For each batch of k multiplication gates. Given gate inputs

$$
\mathbf{v}_{\alpha}=\overrightarrow{\mu_{\alpha}}+\overrightarrow{\lambda_{\alpha}}, \mathbf{v}_{\beta}=\overrightarrow{\mu_{\beta}}+\overrightarrow{\lambda_{\beta}}
$$

compute gate output

$$
\mathbf{v}_{\gamma}=\overrightarrow{\mu_{\gamma}}+\overrightarrow{\lambda_{\gamma}}
$$

Online Protocol (Simplified)

Known from previous gates
P_{1} knows

$$
\overrightarrow{\mu_{\alpha}}, \overrightarrow{\mu_{\beta}}
$$

All parties knows / shares

$$
\begin{gathered}
{\left[\overrightarrow{\mu_{\alpha}}\right]_{k-1},\left[\overrightarrow{\mu_{\beta}}\right]_{k-1}} \\
{\left[\overrightarrow{\lambda_{\alpha}}\right]_{n-k},\left[\overrightarrow{\lambda_{\beta}}\right]_{n-k},\left[\overrightarrow{\lambda_{\gamma}}\right]_{n-1}} \\
{\left[\boldsymbol{\Gamma}_{\gamma}\right]_{n-1}=\left[\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}-\overrightarrow{\lambda_{\gamma}}\right]_{n-1}}
\end{gathered}
$$

Online Protocol (Simplified)

$$
\begin{aligned}
& \overrightarrow{\mu_{\alpha}},\left[\overrightarrow{\lambda_{\alpha}}\right]_{n-k} \\
& \overrightarrow{\mu_{\beta}},\left[\overrightarrow{\lambda_{\beta}}\right]_{n-k}
\end{aligned} \quad \text { MULT } \quad \overrightarrow{\mu_{\gamma}},\left[\overrightarrow{\lambda_{\gamma}}\right]_{n-1}
$$

$$
\begin{gathered}
P_{1} \text { knows } \\
\overrightarrow{\mu_{\alpha}}, \overrightarrow{\mu_{\beta}}
\end{gathered}
$$

Online Protocol (Simplified)

$$
\begin{gathered}
P_{1} \text { knows } \\
\overrightarrow{\mu_{\alpha}}, \overrightarrow{\mu_{\beta}}
\end{gathered}
$$

Online Protocol (Simplified)

Goal: compute $\overrightarrow{\mu_{\gamma}}$ and reveal it to P_{1}.

- Parties compute

$$
\begin{aligned}
{\left[\vec{\mu}_{\gamma}\right]_{n-1} } & =\left[\vec{\mu}_{\alpha}\right]_{k-1} *\left[\vec{\mu}_{\beta}\right]_{k-1}+\left[\vec{\mu}_{\alpha}\right]_{k-1} *\left[\overrightarrow{\lambda_{\beta}}\right]_{n-k} \\
& +\left[\vec{\mu}_{\beta}\right]_{k-1} *\left[\vec{\lambda}_{\alpha}\right]_{n-k}+\left[\boldsymbol{\Gamma}_{\gamma}\right]_{n-1}
\end{aligned}
$$

- Parties reveal $\overrightarrow{\mu_{\gamma}}$ to P_{1}

$$
\begin{gathered}
P_{1} \text { knows } \\
\overrightarrow{\mu_{\alpha}}, \overrightarrow{\mu_{\beta}}
\end{gathered}
$$

All parties knows / shares

$$
\left[\vec{\mu}_{\alpha}\right]_{k-1},\left[\vec{\mu}_{\beta}\right]_{k-1}
$$

$$
\left[\overrightarrow{\lambda_{\alpha}}\right]_{n-k},\left[\overrightarrow{\lambda_{\beta}}\right]_{n-k},\left[\overrightarrow{\lambda_{\gamma}}\right]_{n-1}
$$

$$
\left[\boldsymbol{\Gamma}_{\gamma}\right]_{n-1}=\left[\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}-\overrightarrow{\lambda_{\gamma}}\right]_{n-1}
$$

Online Protocol

$$
\begin{gathered}
P_{1} \text { knows } \\
\overrightarrow{\mu_{\alpha}}, \overrightarrow{\mu_{\beta}}
\end{gathered}
$$

$\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}$ is computed by a packed Beaver triple during preprocessing.
The actual online phase of SuperPack combines:

1. The computing of $\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}$ via packed Beaver triple
2. The computation of $\overrightarrow{\mu_{\gamma}}$

Thus reduces communication overhead

All parties knows / shares

$$
\left[\vec{\mu}_{\alpha}\right]_{k-1},\left[\vec{\mu}_{\beta}\right]_{k-1}
$$

$$
\begin{gathered}
{\left[\overrightarrow{\lambda_{\alpha}}\right]_{n-k},\left[\overrightarrow{\lambda_{\beta}}\right]_{n-k},\left[\overrightarrow{\lambda_{\gamma}}\right]_{n-1}} \\
{\left[\boldsymbol{\Gamma}_{\gamma}\right]_{n-1}=\left[\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}-\overrightarrow{\lambda_{\gamma}}\right]_{n-1}}
\end{gathered}
$$

Achieving Active Security

- Idea: use message authentication codes (MACs).
- Notations.
- Shamir secret sharing \& value shared at $\alpha_{i}:\left[\left.v\right|_{i}\right]_{d}$
- Additive secret share: $\langle v\rangle$

Achieving Active Security
With message authentication codes

- Secret global key $\Delta \in \mathbb{F}$ shared in the form $\left(\left[\left.\Delta\right|_{1}\right]_{t}, \ldots,\left[\left.\Delta\right|_{k}\right]_{t}\right)$.
- Authenticated wire values:

$$
\begin{array}{cc}
\mu_{\alpha} & \left(\left\langle\Delta \cdot \mu_{\alpha_{1}}\right\rangle, \ldots,\left\langle\Delta \cdot \mu_{\alpha_{k}}\right\rangle\right) \\
{\left[\lambda_{\alpha}\right]_{n-k}} & \left(\left\langle\Delta \cdot \lambda_{\alpha_{1}}\right\rangle, \ldots,\left\langle\Delta \cdot \lambda_{\alpha_{k}}\right\rangle\right) \\
& \left(\left\langle\Delta \cdot \mu_{\beta_{1}}\right\rangle, \ldots,\left\langle\Delta \cdot \mu_{\beta_{k}}\right\rangle\right) \\
\mu_{\beta} & \text { MULT } \\
{\left[\lambda_{\beta}\right]_{n-k}} & \left(\left\langle\Delta \cdot \lambda_{\beta_{1}}\right\rangle, \ldots,\left\langle\Delta \cdot \lambda_{\beta_{k}}\right\rangle\right)
\end{array} \quad \begin{array}{cc}
\mu_{\gamma} & \left(\left\langle\Delta \cdot \mu_{\gamma_{1}}\right\rangle, \ldots,\left\langle\Delta \cdot \mu_{\gamma_{k}}\right\rangle\right) \\
{\left[\lambda_{\gamma}\right]_{n-1}} & \left(\left\langle\Delta \cdot \lambda_{\gamma_{1}}\right\rangle, \ldots,\left\langle\Delta \cdot \lambda_{\gamma_{k}}\right\rangle\right)
\end{array}
$$

Ways to Obtain Authenticated Shares

- Authenticated additive shares from VOLE.
- Obtain $\langle v\rangle,\langle\Delta \cdot v\rangle$ via VOLE.
- Random authenticated packed Shamir shares from VOLE.
- Obtain $\langle\Delta \cdot v\rangle$ via VOLE and locally convert to $[\Delta \cdot \vec{r}]_{n-1}$.
- Authenticated additive shares from authenticated packed Shamir shares.
- Compute $[\Delta \cdot \mathbf{v}]_{d}$ and convert to $\left\langle\Delta \cdot v_{1}\right\rangle, \ldots,\left\langle\Delta \cdot v_{k}\right\rangle$ locally.

Compute Authenticated Value Online (Simplified)

With message authentication codes

All parties knows / shares

$$
\begin{gathered}
{\left[\vec{\mu}_{\alpha}\right]_{k-1},\left[\vec{\mu}_{\beta}\right]_{k-1}} \\
{\left[\Delta \cdot \vec{\lambda}_{\alpha}\right]_{n-k},\left[\Delta \cdot \vec{\lambda}_{\beta}\right]_{n-k}} \\
\left\langle\Delta \cdot\left(\lambda_{\alpha_{\mathrm{i}}} * \lambda_{\beta_{\mathrm{i}}}-\lambda_{\gamma_{\mathrm{i}}}\right)\right\rangle, i \in[k]
\end{gathered}
$$

Compute Authenticated Value Online (Simplified)

With message authentication codes

Compute Authenticated Value Online (Simplified)

With message authentication codes

$$
\begin{gathered}
P_{1} \text { knows } \\
\overrightarrow{\mu_{\alpha}}, \overrightarrow{\mu_{\beta}}
\end{gathered}
$$

All parties knows / shares

$$
\begin{gathered}
{\left[\vec{\mu}_{\alpha}\right]_{k-1},\left[\vec{\mu}_{\beta}\right]_{k-1}} \\
{\left[\Delta \cdot \overrightarrow{\lambda_{\alpha}}\right]_{n-k},\left[\Delta \cdot \overrightarrow{\lambda_{\beta}}\right]_{n-k}} \\
\left\langle\Delta \cdot\left(\lambda_{\alpha_{i}} * \lambda_{\beta_{i}}-\lambda_{p_{i}}\right)\right\rangle, i \in[k]
\end{gathered}
$$

Compute Authenticated Value Online (Simplified)
With no extra communication overhead for online phase

Compute Authenticated Value Online (Simplified)
With no extra communication overhead for online phase

- Compute authenticated $\mu_{\gamma_{i}}$.

$$
\begin{aligned}
\left\langle\Delta \cdot \mu_{\gamma_{\mathrm{i}}}\right\rangle= & \left\langle\Delta \cdot \mu_{\alpha_{\mathrm{i}}} \cdot \mu_{\beta_{\mathrm{i}}}\right\rangle \\
& +\left\langle\Delta \cdot \mu_{\alpha_{\mathrm{i}}} \cdot \lambda_{\beta_{\mathrm{i}}}\right\rangle \\
& +\left\langle\Delta \cdot \mu_{\beta_{\mathrm{i}}} \cdot \lambda_{\alpha_{\mathrm{i}}}\right\rangle \\
& +\left\langle\Delta \cdot\left(\lambda_{\alpha_{\mathrm{i}}} \lambda_{\beta_{\mathrm{i}}}-\lambda_{\gamma_{\mathrm{i}}}\right)\right\rangle
\end{aligned}
$$

All parties knows / shares

$$
\begin{gathered}
{\left[\vec{\mu}_{\alpha}\right]_{k-1},\left[\vec{\mu}_{\beta}\right]_{k-1}} \\
{\left[\Delta \cdot \vec{\lambda}_{\alpha}\right]_{n-k},\left[\Delta \cdot \overrightarrow{\lambda_{\beta}}\right]_{n-k}} \\
\left\langle\Delta \cdot\left(\lambda_{\alpha_{\mathrm{i}}} * \lambda_{\beta_{\mathrm{i}}}-\lambda_{\gamma_{\mathrm{i}}}\right)\right\rangle, i \in[k]
\end{gathered}
$$

Questions

Full version of the paper available at https://eprint.iacr.org/2023/307
Open sourced benchmark available at https://github.com/ckweng/SuperPack

