SuperPack: **Dishonest Majority MPC with Constant Online Communication**

Daniel Escudero Vipul Goyal Antigoni Polychroniadou Yifan Song **Chenkai Weng**

Presented by: Peter Scholl

- J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE
- NTT Research
- J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE
- **Tsinghua University**
- Northwestern University
- **Aarhus University**

Secure Multi-Party Computation

A set of *n* parties P_1, \ldots, P_n securely compute a function

$$y \leftarrow f(x_1, \dots, x_n)$$

on their private inputs $(x_1, ..., x_n)$ while leaking only the output *y*.

Our MPC Protocol - Setting

- *n* parties P_1, \ldots, P_n
- $y \leftarrow f(x_1, ..., x_n)$ is represented by an **arithmetic circuit**
- Dishonest majority
 - $t = n(1 \epsilon)$ corrupted parties
 - For constant $\epsilon \in (0, 1/2)$
- Malicious adversary (secure with abort)

- O(1) online communication per multiplication gate (among all parties)
- Any constant fraction of corruptions (for $0 < \epsilon < 1/2$)
- Communication decreases as the number of honest parties ϵn increases

Online	Circuit-dependent Preprocessing	Circuit-independent Preprocessing	
$6/\epsilon$	$4/\epsilon$	$6n + 35/\epsilon$	

Communication overhead (number of field elements) per multiplication gate among all parties.

Our Results

[Escudero Goyal Polychroniadou Song Weng 23]

Previous Work

- BeDOZa, SPDZ: all-but-one corruptions
 - Hard to benefit with $\epsilon n > 1$ honest parties. Best: remove n t 1 parties?
- GPS22: $58/\epsilon + 96/\epsilon^2$ total communication per multiplication gate
 - Benefits from increased ϵn but with large constants
- TinyKeys: MPC for Boolean circuits
 - $n(1 \epsilon)$ corruptions; still O(n) communication

TurboPack: O(1) online communication; honest-majority

[BDOZ11] Semi-homomorphic encryption and multiparty computation. Bundling et al. Eurocrypt 2011. [DPSZ12] Multiparty computation from somewhat homomorphic encryption. Damgård et al. CRYPTO 2012. [GPS22] Sharing transformation and dishonest majority MPC with packed secret sharing. Goyal et al. CRYPTO 2022. [HOSS18a] Concretely efficient large-scale MPC with active security (or, TinyKeys for TinyOT). Hazay et al. Asiacrypt 2018. [HOSS18b] TinyKeys: A new approach to efficient multi-party computation. Hazay et al. CRYPTO 2018. [EGPS22] TURBOPACK: Honest Majority MPC with Constant Online Communication. Escudero et al. CCS 2022.

Compare with Turbospeedz *n*: number of parties. *c*: percentage of honest parties

	Online	Circuit-dependent Preprocessing	Circuit-independent Preprocessing
SuperPack	6/ <i>e</i>	$4/\epsilon$	6 n + 35/ <i>e</i>
Turbospeedz	$2(1-\epsilon)\mathbf{n}$	$4(1-\epsilon)\mathbf{n}$	$6(1-\epsilon)\mathbf{n}$

Communication overhead (number of field elements) per multiplication gate among all parties. We assume that the preprocessing phase of Turbospeedz is instantiated by Le Mans. The cost of VOLE/OLE is ignored.

300 250 When $\epsilon = 0.1$, *u* unuuu 200 150 100 SuperPack has less communication 150 when $n \ge 34$ 50 $\mathbf{0}$ 0.0 0.3 0.1 0.2 0.4 ${\cal E}$

> The larger ϵ , the more honest parties, the less *n* needed to outperform Turbospeedz.

The larger *n*, the less honest parties dz. needed to outperform Turbospeedz.

The larger ϵ , the more honest parties, the less *n* needed to outperform Turbospeedz.

The larger *n*, the less honest parties dz. needed to outperform Turbospeedz.

The larger ϵ , the more honest parties, the less *n* needed to outperform Turbospeedz.

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019. Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

The larger *n*, the less honest parties needed to outperform Turbospeedz.

The larger ϵ , the more honest parties, the less *n* needed to outperform Turbospeedz.

Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. Ben-Efraim et al. ACNS 2019. Le mans: Dynamic and fluid MPC for dishonest majority. Rachuri et al. CRYPTO 2022.

The larger *n*, the less honest parties needed to outperform Turbospeedz.

Compare with Turbospeedz - Preprocessing Communication complexity based on choice of (n, ϵ)

SuperPack has advantage for small ϵ and large n. The ratio of Turbospeedz / SuperPack is between 0.83 and 1.6. The cost is reasonable considering the performance gain during online phase.

Implementation and Evaluation

Performance evaluation of online protocols - running time factor of

Bandwidth	# Parties	Percentage of Honest Parties			
		20%	30%	40%	
500 mbps	32	0.68	0.68	0.72	
	80	1.27	1.57	1.4	
100 mbps	32	1.67	1.88	1.95	
	80	3.88	4.57	4.56	
10 mbps	32	2	2.53	2.68	
	80	4.56	5.73	6.22	
Comm. Factor	32	1.71	2.24	2.56	
	80	4.27	5.6	6.4	

Communication ratio.

Turbospeedz

SuperPack

Implementation and Evaluation

Performance evaluation of online protocols - running time factor of

Under high-		Denduciate	# Doution	Percentage of Honest Parties		
bandwidth network, the computation is		Bandwidth	# Parties	20%	30%	40%
the bottleneck.		500 mbps	32	0.68	0.68	0.72
Our implementation can be further improved with e.g.			80	1.27	1.57	1.4
		32	1.67	1.88	1.95	
FFT.		100 mbps	80	3.88	4.57	4.56
		10 mbps	32	2	2.53	2.68
			80	4.56	5.73	6.22
		Comm.	32	1.71	2.24	2.56
		Factor	80	4.27	5.6	6.4

Turbospeedz SuperPack

Implementation and Evaluation

Performance evaluation of online protocols - running time factor of

Bandwidth	# Parties	Percentage of Honest Parties			
		20%	30%	40%	
500 mbps	32	0.68	0.68	0.72	
	80	1.27	1.57	1.4	
100 mbps	32	1.67	1.88	1.95	
	80	3.88	4.57	4.56	
10 mbps	32	2	2.53	2.68	
	80	4.56	5.73	6.22	
Comm. Factor	32	1.71	2.24	2.56	
	80	4.27	5.6	6.4	

Turbospeedz SuperPack

> Under lowbandwidth network, the communication is the bottleneck.

> The comparison of the performance aligns with analysis.

• Parameters *n*, *k*, *d*.

Number of parties, packing parameter, degree.

- Packed Shamir secret sharing: $[\mathbf{v}]_d$ for $\mathbf{v} \in \mathbb{F}^k$.
 - k + n distinct values $\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_n \in \mathbb{F}$.
 - Define a degree-*d* polynomial satisfying
 - $f(\alpha_i) = v_i, i \in [k].$
 - For $i \in [n]$, party P_i learns $f(\beta_i)$.

- Parameters *n*, *k*, *d*.
- Packed Shamir secret sharing: $[\mathbf{v}]_d$ for $\mathbf{v} \in \mathbb{F}^k$.
 - k + n distinct values $\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_n \in \mathbb{F}$.
 - Define a degree-*d* polynomial satisfying
 - $f(\alpha_i) = v_i, i \in [k].$
 - For $i \in [n]$, party P_i learns $f(\beta_i)$.

- Parameters n, k, d.
- Packed Shamir secret sharing: $[\mathbf{v}]_d$ for $\mathbf{v} \in \mathbb{F}^k$.
 - k + n distinct values $\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_n \in \mathbb{F}$.
 - Define a degree-*d* polynomial satisfying
 - $f(\alpha_i) = v_i, i \in [k]$. **v** evaluated at $\alpha_1, \dots, \alpha_k$.
 - For $i \in [n]$, party P_i learns $f(\beta_i)$.

- Parameters n, k, d.
- Packed Shamir secret sharing: $[\mathbf{v}]_d$ for $\mathbf{v} \in \mathbb{F}^k$.
 - k + n distinct values $\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_n \in \mathbb{F}$.
 - Define a degree-*d* polynomial satisfying
 - $f(\alpha_i) = v_i, i \in [k].$
 - For $i \in [n]$, party P_i learns $f(\beta_i)$.

Each party P_i gets a secret share $f(\beta_i)$.

SuperPack: Main Invariant

- For each wire indexed by α with value $v_{\alpha} \in \mathbb{F}$, sample random $\lambda_{\alpha} \in \mathbb{F}$
 - λ_{α} is secret-shared
 - P_1 knows $\mu_{\alpha} = v_{\alpha} \lambda_{\alpha}$
 - Note: μ_{α} , λ_{α} determines v_{α}

Problem: k wires in each packed share previous layers.

E.g. for batched gate input wires $\vec{\alpha}$, needs $[\vec{\mu}_{\alpha}]_{k-1}, [\vec{\lambda}_{\alpha}]_{n-k}$

• Problem: k wires in each packed share may come from different packed shares from

- previous layers.
- Idea: Follow the framework of TurboPack to maintain wiring consistency.

• Problem: k wires in each packed share may come from different packed shares from

- During the circuit-dependent preprocessing:
 - Prepare shares of $\lambda_{\alpha} \in \mathbb{F}$ for each wire α
 - Prepare packed shares of $\vec{\lambda}_{\alpha} \in \mathbb{F}^k$ for each batch of k wires $\vec{\alpha}$

Communication cost comes from degree reduction.

- During the circuit-dependent preprocessing,
 - Prepare shares of $\lambda_{\alpha} \in \mathbb{F}$ for each wire α .
 - Prepare packed shares of $\vec{\lambda}_{\alpha} \in \mathbb{F}^k$ for each batch of k wires $\vec{\alpha}$
- During the online phase, for any batch of k wires $\overrightarrow{\alpha}$ whose wire values has already been computed:
 - P_1 knows μ_{α} for any wire α , thus it constructs correct $\overrightarrow{\mu_{\alpha}}$ for this batch

No extra cost for network routing.

 $\overrightarrow{\mu_{\alpha}}, [\overrightarrow{\lambda_{\alpha}}]_{n-k}$ $\overrightarrow{\mu_{\beta}}, [\overrightarrow{\lambda_{\beta}}]_{n-k}$ $\overrightarrow{\mu_{\gamma}}, [\overrightarrow{\lambda_{\gamma}}]_{n-1}$ MULT

For each batch of k multiplication gates. Given gate inputs

$$\mathbf{v}_{\alpha} = \overrightarrow{\mu_{\alpha}} + \overrightarrow{\lambda_{\alpha}}, \mathbf{v}_{\beta} = \overrightarrow{\mu_{\beta}} + \overrightarrow{\lambda_{\beta}}$$

compute gate output

$$\mathbf{v}_{\gamma} = \overrightarrow{\mu_{\gamma}} + \lambda_{\gamma}$$

 $\overrightarrow{\mu_{\alpha}}, [\overrightarrow{\lambda_{\alpha}}]_{n-k} =$ $\overrightarrow{\mu_{\beta}}, [\overrightarrow{\lambda_{\beta}}]_{n-k} =$ $\overrightarrow{\mu_{\gamma}}, [\overrightarrow{\lambda_{\gamma}}]_{n-1}$ MULT

All parties knows / shares

$$[\overrightarrow{\mu_{\alpha}}]_{k-1}, [\overrightarrow{\mu_{\beta}}]_{k-1}$$

$$[\overrightarrow{\lambda_{\alpha}}]_{n-k}, [\overrightarrow{\lambda_{\beta}}]_{n-k}, [\overrightarrow{\lambda_{\gamma}}]_{n-1}$$

$$[\Gamma_{\gamma}]_{n-1} = [\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}} - \overrightarrow{\lambda_{\gamma}}]_{n-1}$$

 $\overrightarrow{\mu_{\alpha}}, [\overrightarrow{\lambda_{\alpha}}]_{n-k}$ $\overrightarrow{\mu_{\beta}}, [\overrightarrow{\lambda_{\beta}}]_{n-k}$ $\overrightarrow{\mu_{\gamma}}, [\overrightarrow{\lambda_{\gamma}}]_{n-1}$ MULT

Distributed by P_1

 $\overrightarrow{\mu_{\alpha}}, [\overrightarrow{\lambda_{\alpha}}]_{n-k}$ $\overrightarrow{\mu_{\beta}}, [\overrightarrow{\lambda_{\beta}}]_{n-k}$ $\overrightarrow{\mu_{\gamma}}, [\overrightarrow{\lambda_{\gamma}}]_{n-1}$ MULT

From preprocessing

- Goal: compute $\overrightarrow{\mu_{\gamma}}$ and reveal it to P_1 .
- Parties compute

$$[\overrightarrow{\mu_{\gamma}}]_{n-1} = [\overrightarrow{\mu_{\alpha}}]_{k-1} * [\overrightarrow{\mu_{\beta}}]_{k-1} + [\overrightarrow{\mu_{\alpha}}]_{k-1} * [\overrightarrow{\lambda_{\beta}}]_{n-k} + [\overrightarrow{\mu_{\beta}}]_{k-1} * [\overrightarrow{\lambda_{\alpha}}]_{n-k} + [\mathbf{\Gamma_{\gamma}}]_{n-1}$$

• Parties reveal $\overrightarrow{\mu_{\gamma}}$ to P_1

All parties knows / shares

$$[\overrightarrow{\mu_{\alpha}}]_{k-1}, [\overrightarrow{\mu_{\beta}}]_{k-1}$$

$$[\overrightarrow{\lambda_{\alpha}}]_{n-k}, [\overrightarrow{\lambda_{\beta}}]_{n-k}, [\overrightarrow{\lambda_{\gamma}}]_{n-1}$$

$$[\mathbf{\Gamma}_{\gamma}]_{n-1} = [\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}} - \overrightarrow{\lambda_{\gamma}}]_{n-1}$$

Online Protocol

$\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}$ is computed by a packed Beaver triple during preprocessing.

The actual online phase of SuperPack combines:

- 1. The computing of $\overrightarrow{\lambda_{\alpha}} * \overrightarrow{\lambda_{\beta}}$ via packed Beaver triple
- 2. The computation of $\overrightarrow{\mu_{\gamma}}$ Thus <u>reduces communication overhead</u>

Achieving Active Security

- Idea: use message authentication codes (MACs).
- Notations.
 - Shamir secret sharing & value shared at $\alpha_i : [v]_i]_d$
 - Additive secret share: $\langle v \rangle$

- Secret global key $\Delta \in \mathbb{F}$ shared in the form $([\Delta|_1]_t, ..., [\Delta|_k]_t)$.
- Authenticated wire values:

$$\mu_{\alpha} \qquad (\langle \Delta \cdot \mu_{\alpha_{1}} \rangle, ..., \langle \Delta \cdot \mu_{\alpha_{k}} \rangle)$$

$$[\lambda_{\alpha}]_{n-k} \qquad (\langle \Delta \cdot \lambda_{\alpha_{1}} \rangle, ..., \langle \Delta \cdot \lambda_{\alpha_{k}} \rangle)$$

$$\mu_{\beta} \qquad (\langle \Delta \cdot \mu_{\beta_{1}} \rangle, ..., \langle \Delta \cdot \mu_{\beta_{k}} \rangle)$$

$$[\lambda_{\beta}]_{n-k} \qquad (\langle \Delta \cdot \lambda_{\beta_{1}} \rangle, ..., \langle \Delta \cdot \lambda_{\beta_{k}} \rangle)$$

Achieving Active Security

With message authentication codes

 $\mu_{\gamma} \qquad (\langle \Delta \cdot \mu_{\gamma_{1}} \rangle, \dots, \langle \Delta \cdot \mu_{\gamma_{k}} \rangle)$ $[\lambda_{\gamma}]_{n-1} \qquad (\langle \Delta \cdot \lambda_{\gamma_{1}} \rangle, \dots, \langle \Delta \cdot \lambda_{\gamma_{k}} \rangle)$ MULT

Ways to Obtain Authenticated Shares

- Authenticated additive shares from VOLE.
 - Obtain $\langle v \rangle$, $\langle \Delta \cdot v \rangle$ via VOLE.
- Random authenticated packed Shamir shares from VOLE.
 - Obtain $\langle \Delta \cdot v \rangle$ via VOLE and locally convert to $[\Delta \cdot \vec{r}]_{n-1}$.
- Authenticated additive shares from authenticated packed Shamir shares.
 - Compute $[\Delta \cdot \mathbf{v}]_d$ and convert to $\langle \Delta \cdot v_1 \rangle, ..., \langle \Delta \cdot v_k \rangle$ locally.

Compute Authenticated Value Online (Simplified)

With message authentication codes

Compute Authenticated Value Online (Simplified)

Distributed by P_1 .

With message authentication codes

Compute Authenticated Value Online (Simplified)

With message authentication codes

From preprocessing.

Compute Authenticated Value Online (Simplified) With no extra communication overhead for online phase

• Compute authenticated μ_{γ} . $\left\langle \Delta \cdot \mu_{\gamma_{\mathbf{i}}} \right\rangle = \left\langle \Delta \cdot \mu_{\alpha_{\mathbf{i}}} \cdot \mu_{\beta_{\mathbf{i}}} \right\rangle$ $+\langle \Delta \cdot \mu_{\alpha_{\mathbf{i}}} \cdot \lambda_{\beta_{\mathbf{i}}} \rangle$ $+\langle \Delta \cdot \mu_{\beta_{\mathbf{i}}} \cdot \lambda_{\alpha_{\mathbf{i}}} \rangle$ $+\langle \Delta \cdot (\lambda_{\alpha_i} \lambda_{\beta_i} - \lambda_{\gamma_i}) \rangle$

All parties knows / shares $[\overrightarrow{\mu_{\alpha}}]_{k-1}, [\overrightarrow{\mu_{\beta}}]_{k-1}$ $[\Delta \cdot \overrightarrow{\lambda_{\alpha}}]_{n-k}, [\Delta \cdot \overrightarrow{\lambda_{\beta}}]_{n-k}$ $\langle \Delta \cdot (\lambda_{\alpha_{\mathbf{i}}} * \lambda_{\beta_{\mathbf{i}}} - \lambda_{\gamma_{\mathbf{i}}}) \rangle, i \in [k]$

Compute Authenticated Value Online (Simplified) With no extra communication overhead for online phase

• Compute authenticated μ_{γ} .

 $\left\langle \Delta \cdot \mu_{\gamma_{\mathbf{i}}} \right\rangle = \left\langle \Delta \cdot \mu_{\alpha_{\mathbf{i}}} \cdot \mu_{\beta_{\mathbf{i}}} \right\rangle$ $+\langle \Delta \cdot \mu_{\alpha_{\mathbf{i}}} \cdot \lambda_{\beta_{\mathbf{i}}} \rangle$ $+\langle \Delta \cdot \mu_{\beta_{\mathbf{i}}} \cdot \lambda_{\alpha_{\mathbf{i}}} \rangle$ $+\langle \Delta \cdot (\lambda_{\alpha_i} \lambda_{\beta_i} - \lambda_{\gamma_i}) \rangle$

Full version of the paper available at <u>https://eprint.iacr.org/2023/307</u> Open sourced benchmark available at <u>https://github.com/ckweng/SuperPack</u>

Questions