
Privately Puncturing PRFs from Lattices:
Adaptive Security and Collusion
Resistant Pseudorandomness

Rupeng Yang

University of Wollongong

Constrained Pseudorandom Function

Constrain

K K𝙲

Correctness: if 𝙲(x) = 1, 𝖥K(x) = FK𝙲
(x)

Constrained Pseudorandom Function

Constrain

K K𝙲

Correctness:

Pseudorandomness: if , is hidden given

 if 𝙲(x) = 1, 𝖥K(x) = FK𝙲
(x)

𝙲(x) = 0 𝖥K(x) K𝙲

Constrained Pseudorandom Function

Constrain

K K𝙲

Correctness:

Pseudorandomness: if , is hidden given

Privacy: is hidden given
(Required by private constrained PRF)

 if 𝙲(x) = 1, 𝖥K(x) = FK𝙲
(x)

𝙲(x) = 0 𝖥K(x) K𝙲

𝙲 K𝙲

Security of Constrained PRF

 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

x*, 𝙲

K𝙲 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, 𝙲)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 K𝙲, y*b

x

The adversary wins if:

1.

2.

3. for all queried

b = b′

𝙲(x*) = 0
x* ≠ x x

y = 𝖥K(x)

b′

Pseudorandomness

Security of Constrained PRF
(Sel,1-key)-Pseudorandomness

 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

x*, 𝙲

K𝙲 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, 𝙲)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 K𝙲, y*b

x

The adversary wins if:

1.

2.

3. for all queried

b = b′

𝙲(x*) = 0
x* ≠ x x

y = 𝖥K(x)

b′

Key Query+Challenge Query

Evaluation Queries

Selective Security: Queries are in some predefined order.

1-Key Security: Only 1 key query is allowed.

Security of Constrained PRF
(Sel,1-key)-Pseudorandomness

 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

𝙲*0 , 𝙲*1

K𝙲*b ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, 𝙲*b)
K𝙲*b

x

The adversary wins if:

1.

2. for all queried

b = b′

𝙲*0 (x) = 𝙲*1 (x) x

y = 𝖥K(x)

b′

(Sel,1-key)-Privacy

 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

x*, 𝙲

K𝙲 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, 𝙲)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 K𝙲, y*b

x

The adversary wins if:

1.

2.

3. for all queried

b = b′

𝙲(x*) = 0
x* ≠ x x

y = 𝖥K(x)

b′

Adaptive Security
• Adaptive Security: The adversary can make queries in an arbitrary order.

• Constructions of adaptively secure constrained PRFs are available:

• from obfuscation [HKW15,AMN+19,DKN+20];

• for constraints that can be implemented by an inner-product predicate
[DKN+20];

• Q1: Adaptive security from standard lattice assumptions for beyond
inner-product predicates.

* Here, we do not consider constructions using complexity leveraging or in the random oracle model.

Collusion Resistance
• Collusion Resistance: The adversary can make more than 1 key queries.

• Constructions of collusion resistant constrained PRFs are available:

• from obfuscation [BW13, BLW17, …];

• for constraints that can be implemented by an inner-product predicate
[BW13,KPTZ13,BGI14,BFP+15,DKN+20];

• Q2: Collusion Resistance from standard lattice assumptions for beyond
inner-product predicates.

Our Results
• A private puncturable PRF from standard lattice assumptions that has

• adaptive collusion resistant pseudorandomness

• and adaptive 1-key privacy

• In a puncturable PRF, the constraint

• 1-puncturable PRF:

• -puncturable PRF:

𝙲𝒫(x) = 1 iff x ∉ 𝒫

|𝒫 | = 1

τ |𝒫 | = τ

Our Results
• A private puncturable PRF from standard lattice assumptions that has

• adaptive collusion resistant pseudorandomness

• and adaptive 1-key privacy

• Why puncturable PRF?

• The puncturing constraint cannot be implemented by the inner-
product predicate [PTW20].

• Puncturable PRFs are useful in applications like watermarking,
searchable encryption, etc.

Our Approach
(Sel,1-key) private 1-puncturable PRF

(Ada,1-key) private 1-puncturable PRF

Puncturable PRF with
(Ada,CR)-Pseudorandomness and

(Ada,1-key)-Privacy

Generic Transform

Semi-Generic Transform

From Selective Security to Adaptive Security

• The construction needs a new primitive called explainable hash.

• An explainable hash is an injective function with explainability:

• The experiments above may abort with a non-negligible probability if the
queries from the adversary are not “good”.

• Explainable hash can be constructed from standard lattice assumptions.

𝖧
K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ) x

y = 𝖧K(x)

x*

y = 𝖧K(x)

(K, y*)y* = 𝖧K(x*)

y* ← 𝒴 x

y = 𝖲𝖨𝖬(x)

x*

(K, y*)K = 𝖲𝖨𝖬(x*, y*)

≈

From Selective Security to Adaptive Security
 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)

b ← {0,1}
x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴

Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

x

y = 𝖥K(x)

From Selective Security to Adaptive Security
 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)

b ← {0,1}
x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

• is a 1-puncturable PRF with selective 1-
key pseudorandomness

• is an explainable hash

𝖥

𝖧

 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)
b ← {0,1}

x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴

Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

x

y = 𝖥K(x)

•

•

K′ = (K, K𝖧) K′ x = (Kx, K𝖧)
𝖥K′

(x) = 𝖥K(𝖧K𝖧
(x))

From Selective Security to Adaptive Security
 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)

b ← {0,1}
x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

• is a 1-puncturable PRF with selective 1-
key pseudorandomness

• is an explainable hash

𝖥

𝖧

x*

K𝖧 = 𝖲𝖨𝖬(x*, y*) (Ku*, K𝖧), y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

b′

x
y = 𝖥Ku*

(𝖲𝖨𝖬(x))

y = 𝖥Ku*
(𝖧K𝖧

(x))

•

•

K′ = (K, K𝖧) K′ x = (Kx, K𝖧)
𝖥K′

(x) = 𝖥K(𝖧K𝖧
(x))

u*

Ku*, y*b

From Selective Security to Adaptive Security
 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)

b ← {0,1}
x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

• is a 1-puncturable PRF with selective 1-
key pseudorandomness

• is an explainable hash

𝖥

𝖧

x*

K𝖧 = 𝖲𝖨𝖬(x*, y*) (Ku*, K𝖧), y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

b′

x
y = 𝖥Ku*

(𝖲𝖨𝖬(x))

y = 𝖥Ku*
(𝖧K𝖧

(x))

•

•

K′ = (K, K𝖧) K′ x = (Kx, K𝖧)
𝖥K′

(x) = 𝖥K(𝖧K𝖧
(x))

u*

Ku*, y*b

From Selective Security to Adaptive Security
 K ← 𝙺𝚎𝚢𝙶𝚎𝚗(1λ)

b ← {0,1}
x*

Kx* ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚊𝚒𝚗(K, x*)
y*0 = 𝖥K(x*)
y*1 ← 𝒴 Kx*, y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

y = 𝖥K(x)

b′

• is a 1-puncturable PRF with selective 1-
key pseudorandomness

• is an explainable hash

𝖥

𝖧

x*

K𝖧 = 𝖲𝖨𝖬(x*, y*) (Ku*, K𝖧), y*b

x

The adversary wins if:

1.

2. for all queried

b = b′

x* ≠ x x

b′

x
y = 𝖥Ku*

(𝖲𝖨𝖬(x))

y = 𝖥Ku*
(𝖧K𝖧

(x))

•

•

K′ = (K, K𝖧) K′ x = (Kx, K𝖧)
𝖥K′

(x) = 𝖥K(𝖧K𝖧
(x))

u*

Ku*, y*b

Adaptive privacy of the construction can be shown in a similar way.

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

PRF Key: 𝒦
ℱ𝒦(x) = 𝖥𝒦(x)

𝒦

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1) K(x1)
x1

K(x2) K(x2)
x2

K(xn) K(xn)
xn

K(0)

.

.

.

PRF Key: 𝒦
ℱ𝒦(x) = 𝖥𝒦(x)

Constrained Key 𝒦{x1,…,xn} = (K(x1)
x1

, K(x2)
x2

, …, K(xn)
xn

)

ℱ𝒦x1,…,xn
(x) = 𝖥K(0)(x) +

n

∑
i=1

𝖥K(xi)
xi

(x)

𝒦

For i from 1 to n:

, where is

a PRF and s is the key.

K(xi) = 𝖦s(xi) 𝖦

K(0) = 𝒦 −
n

∑
i=1

K(xi)

Correctness holds if is key-homomorphic𝖥

Given a set{x1, …, xn}

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1) K(x1)
x1

K(x2) K(x2)
x2

K(xn) K(xn)
xn

K(0)

.

.

.

PRF Key: 𝒦
ℱ𝒦(x) = 𝖥𝒦(x)

Constrained Key 𝒦{x1,…,xn} = (K(0), K(x1)
x1

, K(x2)
x2

, …, K(xn)
xn

)

ℱ𝒦x1,…,xn
(x) = 𝖥K(0)(x) +

n

∑
i=1

𝖥K(xi)
xi

(x)

𝒦

For i from 1 to n:

, where is

a PRF and s is the key.

K(xi) = 𝖦s(xi) 𝖦

K(0) = 𝒦 −
n

∑
i=1

K(xi)

Given a set{x1, …, xn}

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1) K(x1)
x1

K(x2) K(x2)
x2

K(xn) K(xn)
xn

K(0)

.

.

.

PRF Key: 𝒦
ℱ𝒦(x) = 𝖥𝒦(x)

Constrained Key 𝒦{x1,…,xn} = (K(0), K(x1)
x1

, K(x2)
x2

, …, K(xn)
xn

)

ℱ𝒦x1,…,xn
(x) = 𝖥K(0)(x) +

n

∑
i=1

𝖥K(xi)
xi

(x)

𝒦

For i from 1 to n:

, where is

a PRF and s is the key.

K(xi) = 𝖦s(xi) 𝖦

K(0) = 𝒦 −
n

∑
i=1

K(xi)

Correctness holds if is key-homomorphic, i.e., 𝖥
𝖥K1

(x) + 𝖥K2
(x) = 𝖥K1+K2

(x)

Given a set{x1, …, xn}

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1)
x1

K(x2)
x2

K(x3)
x3

𝒦{x1,x2,x3} = (K(0), K(x1)
x1

, K(x2)
x2

, K(x3)
x3

)

K(x′ 2)
x′ 2

K(x′ 3)
x′ 3

K(x′ 1)
x′ 1

𝒦

K(0)

𝒦{x′ 1,x′ 2,x′ 3} = (K(0)′ , K(x′ 1)
x′ 1

, K(x′ 2)
x′ 2

, K(x′ 3)
x′ 3

)

K(0)′

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1)
x1

K(x2)
x2

K(x3)
x3

𝒦{x1,x2,x3} = (K(0), K(x1)
x1

, K(x2)
x2

, K(x3)
x3

)

K(x′ 2)
x′ 2

K(x′ 3)
x′ 3

K(x′ 1)
x′ 1

𝒦

K(0)

𝒦{x′ 1,x′ 2,x′ 3} = (K(0)′ , K(x′ 1)
x′ 1

, K(x′ 2)
x′ 2

, K(x′ 3)
x′ 3

)

K(0)′

If , : (and thus) will be hidden given .x1 = x′ 1 K(x1)
x1

= K(x′ 1)
x′ 1

𝖥K(x1)(x1) ℱ𝒦(x1) K(x1)
x1

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1)
x1

K(x2)
x2

K(x3)
x3

𝒦{x1,x2,x3} = (K(0), K(x1)
x1

, K(x2)
x2

, K(x3)
x3

)

K(x′ 2)
x′ 2

K(x′ 3)
x′ 3

K(x′ 1)
x′ 1

𝒦

K(0)

𝒦{x′ 1,x′ 2,x′ 3} = (K(0)′ , K(x′ 1)
x′ 1

, K(x′ 2)
x′ 2

, K(x′ 3)
x′ 3

)

K(0)′

If , : (and thus) will be hidden given .

The remaining parts of the constrained keys can be generated given ,
which will not leak information about if the PRF keys are uniform.

x1 = x′ 1 K(x1)
x1

= K(x′ 1)
x′ 1

𝖥K(x1)(x1) ℱ𝒦(x1) K(x1)
x1

𝒦 − K(x1)

K(x1)

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1)
x1

K(x2)
x2

K(x3)
x3

𝒦{x1,x2,x3} = (K(0), K(x1)
x1

, K(x2)
x2

, K(x3)
x3

)

K(x′ 2)
x′ 2

K(x′ 3)
x′ 3

K(x′ 1)
x′ 1

𝒦

K(0)

𝒦{x′ 1,x′ 2,x′ 3} = (K(0)′ , K(x′ 1)
x′ 1

, K(x′ 2)
x′ 2

, K(x′ 3)
x′ 3

)

K(0)′

If , : (and thus) will be hidden given .

The remaining parts of the constrained keys can be generated given ,
which will not leak information about if the PRF keys are uniform.

x1 = x′ 1 K(x1)
x1

= K(x′ 1)
x′ 1

𝖥K(x1)(x1) ℱ𝒦(x1) K(x1)
x1

𝒦 − K(x1)

K(x1)

Collusion Resistant
Pseudorandomnes
s follows! }

From 1-key 1-Puncturable PRF to Collusion
Resistant Puncturable PRF

K(x1) K(x1)
x1

K(x2) K(x2)
x2

K(xn) K(xn)
xn

K(0)

.

.

.

PRF Key: 𝒦
ℱ𝒦(x) = 𝖥𝒦(x)

Constrained Key 𝒦{x1,…,xn} = (K(0), K(x1)
x1

, K(x2)
x2

, …, K(xn)
xn

)

𝒦

For i from 1 to n:

, where is

a PRF and s is the key.

K(xi) = 𝖦s(xi) 𝖦

K(0) = 𝒦 −
n

∑
i=1

K(xi)

Given a set{x1, …, xn}

The construction does not have collusion resistant
privacy, but it can keep the 1-key privacy.

Putting it All Together
(Sel,1-key) private 1-puncturable PRF

(Ada,1-key) private 1-puncturable PRF

Puncturable PRF with
(Ada,CR)-Pseudorandomness and

(Ada,1-key)-Privacy

Generic Transform

Semi-Generic Transform from puncturable PRFs
with (1) key-homomorphism and (2) uniform keys.

Putting it All Together
(Sel,1-key) private 1-puncturable PRF

(Ada,1-key) private 1-puncturable PRF

Puncturable PRF with
(Ada,CR)-Pseudorandomness and

(Ada,1-key)-Privacy

Generic Transform

Semi-Generic Transform from puncturable PRFs
with (1) key-homomorphism and (2) uniform keys.

Puncturable PRF from [PS20] with

(1) almost key-homomorphism

(2) almost uniform keys

Puncturable PRF with

(1) almost key-homomorphism

(2) almost uniform keys

(3) adaptive security

Puncturable PRF with

(1) adaptive security

(2) collusion resistant PR

(3) 1-key privacy

Conclusion
• A private puncturable PRF from standard lattice assumptions that has

• adaptive collusion resistant pseudorandomness

• and adaptive 1-key privacy

• Open Problems

• How to construct Private Puncturable PRF with collusion resistant privacy

• How to construct adaptively secure and/or collusion resistant (private)
contained PRFs for general constraints.

Conclusion
• A private puncturable PRF from standard lattice assumptions that has

• adaptive collusion resistant pseudorandomness

• and adaptive 1-key privacy

• Open Problems

• How to construct Private Puncturable PRF with collusion resistant privacy

• How to construct adaptively secure and/or collusion resistant (private)
contained PRFs for general constraints.

Thanks for your Attention!

