OBUOUSTRANSFER WITH CONSTANT COMPUTATIONAL OVERHEAD

Elette Boyle Geoffroy Couteau IDC Herzliya, IRIF **NTT Research** Lisa Kohl

CWI

Niv Gilboa **Ben-Gurion** University

Yuval Ishai Technion

Nicolas Resch Peter Scholl UvA **Aarhus University**

COMPUTATIONAL OVERHEAD

Computational task with cost N

COMPUTATIONAL OVERHEAD

e.g. evaluate size N circuit

Computational task with cost N

New cost: typically $\geq C_{\lambda}N$, where C_{λ} grows with security parameter λ

GUMPUTATIONAL OVERHEAD e.g. evaluate size N circuit cryptographic compiler Computational task with cost N

New cost: typically $\geq C_{\lambda}N$, where C_{λ} grows with security parameter λ

Dream: cost independent of security level?

GUMPUTATIONAL OVERHEAD e.g. evaluate size N circuit cryptographic compiler Computational task with cost N

New cost: typically $\geq C_{\lambda}N$, where C_{λ} grows with security parameter λ

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for

Dream: cost independent of security level?

COMPUTATIONAL OVERHEAD e.g. evaluate size N circuit Computational task with cost N

New cost: typically $\geq C_{\lambda}N$, where C_{λ} grows with security parameter λ

Dream: cost independent of security level?

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for

encryption

the descent of the second of the second of the second second

GUMPUTATIONAL OVERHEAD e.g. evaluate size N circuit cryptographic compiler Computational task with cost N

New cost: typically $\geq C_{\lambda}N$, where C_{λ} grows with security parameter λ

Dream: cost independent of security level?

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for

encryption

signatures

GUMPUTATIONAL OVERHEAD e.g. evaluate size N circuit cryptographic compiler Computational task with cost N

New cost: typically $\geq C_{\lambda}N$, where C_{λ} grows with security parameter λ

Dream: cost independent of security level?

encryption

signatures

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for

semi-honest 2PC

SECURE (2-PARTY) COMPUTATION (2PC)

y

SECURE (2-PARTY) COMPUTATION (2PC)

y

y

Goal: jointly compute f(x, y), without revealing anything more about private inputs *x* and *y*

Semi-honest security: assume parties follow protocol

y

Goal: jointly compute f(x, y), without revealing anything more about private inputs *x* and *y*

Semi-honest security: assume parties follow protocol

y

Goal: jointly compute f(x, y), without revealing anything more about private inputs *x* and *y*

Malicious security: parties may deviate from protocol

HISTORY FOR CONSTANT-OVERHEAD 2PC

HISTORY FOR CONSTANT-OVERHEAD 2PC

Semi-honestBoolean vs.vs. malicious?large field?

Computation Communication

HISTORY FOR CONSTANT-OVERHEAD 2PC						
		Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communicatio	
	[IKOS'08]	S	B	O(N)	<i>O</i> (<i>N</i>)	

HISTORY FOR CONSTANT-OVERHEAD 2PC						
		Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communicatio	
	[KOS'08]	S	B	<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)	
-	[ADINZ'17, BCCGHJ'17]			<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)	

HISTORY FOR CONSTANT-OVERHEAD 2PC					
	Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communicatio	
[IKOS'08]	S	B	O(N)	<i>O</i> (<i>N</i>)	
[ADINZ'17, BCCGHJ'17]	Ν		<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)	
[DIK'10, dCHIVV'21]		B	O(NpolylogN)	O(N)	

	HISTORY FOR CONSTANT-OVERHEAD 2PC					
		Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communicatio	
	[IKOS'08]	S	B	<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)	
-	[ADINZ'17, BCCGHJ'17]	Ν		<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)	
_	[DIK'10, dCHIVV'21]	Μ	B	O(NpolylogN)	<i>O</i> (<i>N</i>)	
_	[BCGIKS'19A, BCGIKS'19B, YWLZW'20, CRR'21, CGIK R S'22]	Ι	B	$N^{1+\Omega(1)}$	<i>o</i> (<i>N</i>)	

HISTORY FOR CONSTANT-OVERHEAD 2PC					
		Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communicatio
	[IKOS'08]	S	B	<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)
_	[ADINZ'17, BCCGHJ'17]	pseudorandom		<i>O</i> (<i>N</i>)	<i>O</i> (<i>N</i>)
_	[DIK'10, dCHIVV'21	correlation generators	B	O(NpolylogN)	<i>O</i> (<i>N</i>)
_	[BCGIKS'19 A, BCGIKS'19B, YWLZW'20, CRR'21, CGIK R S'22]	Ν	B	$N^{1+\Omega(1)}$	<i>o</i> (<i>N</i>)

Complete for semi-honest 2PC

Complete for semi-honest 2PC

Partially extends to malicious setting

Complete for semi-honest 2PC

Partially extends to malicious setting

relaxed security guarantees

Complete for semi-honest 2PC

Partially extends to malicious setting

relaxed security guarantees results for "finite" functionalities

Complete for semi-honest 2PC

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities
- reductions for open questions

Complete for semi-honest 2PC

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities
- reductions for open questions

Good benchmark for techniques

Complete for semi-honest 2PC

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities
- reductions for open questions

Good benchmark for techniques

Many past research efforts (often called "batch-OT/OTextension") [ACPS'09, IKOPSW'11, BCGIKS'19, **OSY'21, BBDP'22] minimizing** computation/communication costs

b is choice bit

b is choice bit

b is choice bit

b is choice bit

BIT OBLIVIOUS TRANSFER

b is choice bit

BIT OBLIVIOUS TRANSFER

b is choice bit Alice learns one (and only one!) of Bob's messages

BIT OBLIVIOUS TRANSFER

b is choice bit

Alice learns one (and only one!) of Bob's messages Bob doesn't learn which message Alice received

b, m_0 and m_1 are independent uniformly random bits

There exists a standard **OT protocol (necessary)**

There exists a standard **OT protocol (necessary)**

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a standard **OT protocol (necessary)**

Learning Parity with Noise (LPN) for a sparse matrix is hard

Assume:

There exists a correlation-robust local PRG

There exists a standard **OT protocol (necessary)**

Then there exists:

Assume:

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

There exists a standard **OT protocol (necessary)**

Then there exists:

2-party protocol with malicious security realizing N instances of bit-OT with

Assume:

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

There exists a standard **OT protocol (necessary)**

2-party protocol with malicious security realizing N instances of bit-OT with

Computation costs: $O(N) + o(N) \cdot \text{poly}(\lambda)$

Assume:

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

Then there exists:

There exists a standard **OT protocol (necessary)**

Computation costs: $O(N) + o(N) \cdot \text{poly}(\lambda)$

Assume:

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

Then there exists:

2-party protocol with malicious security realizing N instances of bit-OT with

Communication costs:

 $o(N) \cdot \mathsf{poly}(\lambda)$

Pseudorandomness: Expand (s_A) , Expand (s_B) pseudorand.

- Pseudorandomness:
 - **Expand** (s_A) , Expand (s_B) pseudorand.
- **–** Correctness:
 - (Expand(s_A), Expand(s_B)) $\in C^N$

Pseudorandomness: Expand (s_A) , Expand (s_B) pseudorand. Nindep. OT's **–** Correctness: - (Expand(s_A), Expand(s_B)) $\in C^N$

- Pseudorandomness:
 - **Expand** (s_A) , Expand (s_B) pseudorand.
- **–** Correctness: Nindep. OT's
 - (Expand(s_A), Expand(s_R)) ∈ C^N
- **–** Security:
 - Other party's output looks pseudorandom up to correlation

- Pseudorandomness:
 - **Expand** (s_A) , Expand (s_B) pseudorand.
- Nindep. OT's **–** Correctness:
 - (Expand(s_A), Expand(s_R)) ∈ C^N
- **–** Security:
 - Other party's output looks pseudorandom up to correlation

MAN RESULT

MAN RESULT

MAN RESULT

Learning Parity with Noise (LPN) for a sparse matrix is hard

Learning Parity with Noise (LPN) for a There exists a correlation-robust local sparse matrix is hard PRG

Learning Parity with Noise (LPN) for a There exists a correlation-robust local sparse matrix is hard PRG

Then there exists:

Learning Parity with Noise (LPN) for a There exists a correlation-robust local sparse matrix is hard PRG

Then there exists:

PCG realizing *N* instances of bit-OT with

Learning Parity with Noise (LPN) for a There exists a correlation-robust local sparse matrix is hard PRG

Then there exists:

PCG realizing *N* instances of bit-OT with

Expansion phase computation costs: $O(N) + o(N) \cdot \text{poly}(\lambda)$

Learning Parity with Noise (LPN) for a There exists a correlation-robust local sparse matrix is hard PRG

Then there exists:

PCG realizing *N* instances of bit-OT with

Expansion phase computation costs: $O(N) + o(N) \cdot \text{poly}(\lambda)$

Assume:

Seed size: $o(N) \cdot \text{poly}(\lambda)$

PCG for "non-independent OT-like" correlation C

PCG for "non-independent OT-like" correlation C

PCG for "non-independent OT-like" correlation C

Pushes techniques of [BCGI'18]

PCG for "non-independent OT-like" correlation C

Pushes techniques of [BCGI'18]

PRG from sparse-LPN

PCG for "non-independent OT-like" correlation C

$\leftarrow C \rightarrow$

Pushes techniques of [BCGI'18]

+

PRG from sparse-LPN succinct additive sharings of "structured" vectors

INGREDIENTS

PCG for "non-independent OT-like" correlation C

$\leftarrow C \rightarrow$

Pushes techniques of [BCGI'18]

+

PRG from sparse-LPN succinct additive sharings of "structured" vectors

Break correlations with local PRG

We'll focus on this step

Inspired by [IKOS'08]

K

[IKNP'03]: Break correlations w/ correlation-robust hash function $H: \{0,1\}^{\kappa} \to \{0,1\}$

[IKNP'03]: Break correlations w/ correlation-robust hash function $H: \{0,1\}^{\kappa} \to \{0,1\}$

Nindependent bit-OTs!

[IKNP'03]: Break correlations w/ correlation-robust hash function $H: \{0,1\}^{\kappa} \to \{0,1\}$

Nindependent bit-OTs!

[IKNP'03]: Break correlations w/ correlation-robust hash function $H: \{0,1\}^{\kappa} \to \{0,1\}$

Problem: $\kappa \geq \lambda$ overhead per bit-OT

Predicate $P: \{0,1\}^{\mathscr{C}} \to \{0,1\}$

Predicate $P: \{0,1\}^{\mathscr{C}} \to \{0,1\}$

$\ell = O(1)$ (small)

Replace *i*-th application of *H* with $P \circ \pi_i!$

 π_N

Replace *i*-th application of *H* with $P \circ \pi_i!$

[Goldreich'00]

Predicate $P: \{0,1\}^{\mathscr{C}} \to \{0,1\}$

Need new sharing schemes for "projections" of structured vectors

K \downarrow apply $P \circ \pi_i$ l per column! apply P

Primal Construction

Primal Construction

< 300 ops. per OT

Primal Construction

Dual Construction

< 300 ops. per OT

Primal Construction

Dual Construction

< 300 ops. per OT

< 100 ops. per OT

