

Elette Boyle Geoffroy Couteau Niv Gilboa Yuval Ishai IDC Herzliya, NTT Research IRIF Ben-Gurion Technion University

Lisa Kohl CWI

Nicolas Resch
UvA

Peter Scholl
Aarhus University

COMPUTATIONALOVEEHEAD

Computational task with cost N

COMPUTATIONALOVEEHEAD

COMPUTATIONALOVEEHEAD

Computational task with cost N

COMPUTATIONALOVEBHEAD

COMPUTATIONALOVEBHEAD

New cost: typically $\geq C_{\lambda} N$, where C_{λ} grows with security parameter λ

COMPUTATIONALOVEBHEAD

New cost: typically $\geq C_{\lambda} N$, where C_{λ} grows with security parameter λ

Dream: cost independent of security level?

COMPUTTATIONALOVEEHEEDD

New cost: typically $\geq C_{\lambda} N$, where C_{λ} grows with security parameter λ

> Dream: cost independent of security level?

COMPUTTATIONALOVEEHEEDD

New cost: typically $\geq C_{\lambda} N$, where C_{λ} grows with security parameter λ

> Dream: cost independent of security level?

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for

encryption

COMPUTTATIONALOVEEHEEDO

New cost: typically $\geq C_{\lambda} N$, where C_{λ} grows with security parameter λ

> Dream: cost independent of security level?

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for
encryption
signatures

COMPUTTATIONALOVEEHEEDD

New cost: typically $\geq C_{\lambda} N$, where C_{λ} grows with security parameter λ

Dream: cost independent of security level?

Ishai, Kushilevitz, Ostrovsky and Sahai '08: constant comp. overhead for
encryption
signatures
semi-honest
2PC

SECURE (2-PARTT) COMPUTATION (2PC)

x

y

SEEURE (2 -PARTY) COMPUTATION (2PC)

SECURE (2-PARTY) COMPUTATION (2PC)

SECURE (2-PARTY) COMPUTATION (2PC)

Semi-honest security: assume parties follow protocol

SECURE (2-PARTY) COMPUTATION (2PC)

Goal: jointly compute $f(x, y)$, without revealing anything more about private inputs x and y

Semi-honest security: assume parties follow protocol

Malicious security: parties may deviate from protocol

HISTORYFORCONSTANTOVEEHEAD2PC

HISTORYFOR CONSTANTOVERHEAD2PC

HISTORYFOR CONSTANTOVERHEAD2PC

	Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communication
[IKOS'08]	S	B	$O(N)$	$O(N)$

HISTORYFOR CONSTANTOVERHEAD2PC

	Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communication
$[$ [IKOS'08]	S	B	$O(N)$	$O(N)$
$\left[A D I N Z^{\prime} 17\right.$, $\left.B C C G H J^{\prime} 17\right]$	\mathbf{M}	\mathbf{L}	$O(N)$	$O(N)$

HISTORYFORCONSTANTOVERHEAD2PC

	Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communication
$\left[I K O S^{\prime} 08\right]$	\mathbf{S}	\mathbf{B}	$O(N)$	$O(N)$
$\left[A D I N Z^{\prime} 17\right.$, BCCGH'17]	\mathbf{M}	\mathbf{L}	$O(N)$	$O(N)$
$\left[D I K^{\prime} 10\right.$, dCHIVV'21]	\mathbf{M}	\mathbf{B}	$O(N$ polylog $N)$	$O(N)$

HISTORYFORCONSTANTOVERHEAD2PC

	Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communication
[IKOS'08]	S	B	$O(N)$	$O(N)$
[ADINZ'17, BCCGHJ'17]	M	L	$O(N)$	$O(N)$
[DIK'10, dCHIVV'21]	M	B	$O(N$ poly $\log N$)	$O(N)$
[BCGIKS'19A, BCGIKS'19B, YWLZW'20, CRR'21, CGIKRS'22]	M	B	$N^{1+\Omega(1)}$	$o(N)$

HISTORYFORCONSTANTOVERHEAD2PC

	Semi-honest vs. malicious?	Boolean vs. large field?	Computation	Communication
[IKOS'08]	S	B	$O(N)$	$O(N)$
[ADINZ'17, BCCGHJ'17	pseudorandom correlation generators	L	$O(N)$	$O(N)$
[DIK'10, dCHIVV'21		B	$O(N$ poly $\log N$)	$O(N)$
	M	B	$N^{1+\Omega(1)}$	$o(N)$

TODAY:GENERATING N BIT-OBLLIIIOUSTRANSFERS

TODAY:GENERATING N BIT-OBLIIIOUSTRANSFERS

Complete for semi-honest 2PC

TODAY:GENERATING N BIT-OBLIIIOUSTRANSFERS

Complete for semi-honest 2PC

Partially extends to malicious setting

TODAY:GENEERTING N BIT-OBLIVIOUSTRANSFERS

Complete for semi-honest 2PC

Partially extends to malicious setting

- relaxed security guarantees

TODAY:GENEBATING N BIT.OBLLIIOUSTRANSFERS

Complete for semi-honest 2PC

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities

TODAY:GENEBATING N BIT.OBLLIIOUSTRANSFERS

Complete for

semi-honest 2PC

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities
- reductions for open questions

TODAY:EENERATING N BIT-OBLLIIIOUSTRANSFERS

Complete for semi-honest 2PC

Good benchmark for techniques

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities
- reductions for open questions

TODAY:GENEERTING N BIT-OBLIVIOUSTRANSFERS

Complete for semi-honest 2PC

Good benchmark for techniques

Partially extends to malicious setting

- relaxed security guarantees
- results for "finite" functionalities
- reductions for open questions
- Many past research efforts (often called "batch-OT/OTextension") [ACPS'09, IKOPSW'11, BCGIKS'19, OSY'21, BBDP'22] minimizing computation/communication costs

BITOBLIMOUSTRANSFER

$\left(m_{0}, m_{1}\right)$

BITOBLIMOUSTRANSFER

$\left(m_{0}, m_{1}\right)$

- b is choice bit

BITOBLIMIOUSTRANSFER

$=b$ is choice bit

BITOBLIMIOUSTRANSFER

- b is choice bit

BITOBLIMOUSTRANSFER

- b is choice bit

BITOBLIMOUSTRANSFER

- b is choice bit

BITOBLIMOUSTRANSFER

- b is choice bit
- Alice learns one (and only one!) of Bob's messages

BITOBLIMOUSTRANSFER

- b is choice bit
- Alice learns one (and only one!) of Bob's messages
- Bob doesn't learn which message Alice received

(RANDOM) OBLLIIOUSTRANSFER
 $\left(b, m_{b}\right)$

 $\left(m_{0}, m_{1}\right)$

(RANDOM) OBLLIIOUSTRANSFER (b, m_{b})

b, m_{0} and m_{1} are independent uniformly random bits

OURCONTRIBUTION

OURCONTRIBUTION

OURCONTRIBUTION

OURCONTRBBUTON

Assume:

There exists a standard OT protocol (necessary)

Learning Parity with
Noise (LPN) for a sparse matrix is hard

OURCONTRBBUTON

Assume:

There exists a standard OT protocol (necessary)

Learning Parity with
Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

OURCONTRBBUTON

OURCONTRIBUTION

Assume:

There exists a standard OT protocol (necessary)

Learning Parity with
Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

Then there exists:

2-party protocol with malicious security realizing N instances of bit-OT with

Assume:

There exists a standard OT protocol (necessary)

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

Then there exists:

2-party protocol with malicious security realizing N instances of bit-OT with

Computation costs:
$O(N)+o(N) \cdot \operatorname{poly}(\lambda)$

Assume:

There exists a standard OT protocol (necessary)

Learning Parity with Noise (LPN) for a sparse matrix is hard

There exists a correlation-robust local PRG

Then there exists:

2-party protocol with malicious security realizing N instances of bit-OT with

Computation costs:
$O(N)+o(N) \cdot \operatorname{poly}(\lambda)$

Communication costs:
$o(N) \cdot \operatorname{poly}(\lambda)$

PSEUDORANDOM CORRELLTION GENERATOR (PCG)

PSEUDORANDOM CORRELLTIONGENERATOR (PCE)

\leftrightarrow PCG

PSEUDORANDOM CORRELLTIONGENERATOR (PCE)

$\square s_{A} \longleftarrow$ PCG $\rightarrow s_{B}$

PSEUDORANDOM CORRELLTIONGENERATOR (PCE)

$\operatorname{Expand}\left(s_{A}\right)$
$\operatorname{Expand}\left(s_{B}\right)$

PSEUDORANDOM CORRELLTIONGENERATOR (PCE)

- Pseudorandomness:
$=$ Expand $\left(s_{A}\right)$, Expand $\left(s_{B}\right)$ pseudorand.

$\operatorname{Expand}\left(s_{A}\right)$
$\operatorname{Expand}\left(s_{B}\right)$

PSEUDORANDOM CORRELLTIONGENERATOR (PCE)

- Pseudorandomness:
$=\operatorname{Expand}\left(s_{A}\right)$, Expand $\left(s_{B}\right)$ pseudorand.
- Correctness:
$=\left(\operatorname{Expand}\left(s_{A}\right), \operatorname{Expand}\left(s_{B}\right)\right) \in C^{N}$

$\operatorname{Expand}\left(s_{A}\right)$
$\operatorname{Expand}\left(s_{B}\right)$

PSEUDORANDOM CORRELLTIONGENERATOR (PCE)

- Pseudorandomness:
$=$ Expand $\left(s_{A}\right)$, Expand $\left(s_{B}\right)$ pseudorand.
- Correctness: $\quad N$ indep. OT's
$=\left(\operatorname{Expand}\left(s_{A}\right), \operatorname{Expand}\left(s_{B}\right)\right) \in C^{N}$

$\operatorname{Expand}\left(s_{A}\right)$
$\operatorname{Expand}\left(s_{B}\right)$

PSEIOORANOOM COORELLOTONGEEEEATOR (PCCG)

- Pseudorandomness:
$=$ Expand $\left(s_{A}\right)$, Expand $\left(s_{B}\right)$ pseudorand.
- Correctness:
N indep. OT's
$-\left(\operatorname{Expand}\left(s_{A}\right), \operatorname{Expand}\left(s_{B}\right)\right) \in C^{N}$
- Security:
- Other party's output looks pseudorandom up to correlation

PSEIOORANOOM COORELLOTONGEEEEATOR (PCCG)

- Pseudorandomness:
$=\operatorname{Expand}\left(s_{A}\right)$, Expand $\left(s_{B}\right)$ pseudorand.
- Correctness:
N indep. OT's
$-\left(\operatorname{Expand}\left(s_{A}\right), \operatorname{Expand}\left(s_{B}\right)\right) \in C^{N}$
- Security:
- Other party's output looks pseudorandom up to correlation

$\operatorname{Expand}\left(s_{A}\right)$
$\operatorname{Expand}\left(s_{B}\right)$

MANREESULT

MANRESULT

Expansion phase computation costs:
$O(N)+o(N) \cdot \operatorname{poly}(\lambda)$

Then there exists:

PCG realizing N instances of bit-OT with

Expansion phase computation costs: $O(N)+o(N) \cdot \operatorname{poly}(\lambda)$

Seed size:

$$
o(N) \cdot \operatorname{poly}(\lambda)
$$

NGGREDENTS

PCG for "non-independent OT-like" correlation C

Break correlations with local PRG

NGEREDEVIS

PCG for "non-independent OT-like" correlation C

Break correlations with local PRG

NGEREDEVIS

PCG for "non-independent OT-like" correlation C

Break correlations with local PRG

Pushes techniques of [BCG|'18]

NGEREDEVIS

PCG for "non-independent OT-like" correlation C

Pushes techniques of [BCG|'18]

PRG from

sparse-LPN

NGEREDEVIS

PCG for "non-independent OT-like" correlation C

Pushes techniques of [BCGI'18]
PRG from
sparse-LPN

succinct additive sharings of "structured" vectors

NGEREDEVIS

PCG for "non-independent OT-like" correlation C

Pushes techniques of [BCG|'18]

Break correlations

 with local PRG
We'll focus on this step

Inspired by [IKOS'08]

PRG from
sparse-LPN
succinct additive sharings of "structured" vectors

BREAKNGGCOBRELATIONS

BREAKNGGOBREELATIONS

BREAKNGGOBREELATIONS

BBEEANIGCOORFELATIONS

N

[IKNP'03]: Break correlations w/ correlation-robust hash function $H:\{0,1\}^{\kappa} \rightarrow\{0,1\}$

BBEEANIGCOORFELATIONS

N

BBEEANIGCOORFELATIONS

[IKNP'03]: Break correlations w/ correlation-robust hash function $H:\{0,1\}^{\kappa} \rightarrow\{0,1\}$

N independent bit-OTs!

BBEEANIGCOORFELATIONS

[IKNP'03]: Break correlations w/ correlation-robust hash
function $H:\{0,1\}^{\kappa} \rightarrow\{0,1\}$

N independent bit-OTs!

Problem: $\kappa \geq \lambda$ overhead per bit-OT

LOCALPRG

Replace i-th application of H with $P \circ \pi_{t}!$

LOCALPRG

[Goldreich'00]

Replace i-th application of H with $P \circ \pi_{i}$!

Need new sharing schemes for
"projections" of structured vectors

CONCRETEEFFIGIENCYESTIMATES

CONCBETEEFFICENCYESTIMATES

Primal
 Construction

CONCRETEEFFIGIENCYESTIMATES

Primal

Construction

$$
\text { < } 300 \text { ops. per OT }
$$

CONCRETEEFFICENCYESTIMATES

Primal

Construction

Dual

Construction

CONCRETEEFFICENCYESTIMATES

Primal

Construction
<300 ops. per OT

Dual
Construction
< 100 ops. per OT

RECAP

RECAP

RECAP

RECAP

RECAP

