

Almost Tight Multi-User Security under Adaptive Corruptions & Leakages in the Standard Model

Shuai Han, Shengli Liu, Dawu Gu Shanghai Jiao Tong University Eurocrypt 2023, Lyon, France

Almost Tight Security

JA ZSJTU NL

Security of a cryptographic Scheme based on a hard Problem.

Almost Tight Security

Security of a cryptographic Scheme based on a hard Problem.

solving Problem in time t_B with advantage ϵ_B

attacking **Scheme** in time $t_{\mathcal{A}}$ with advantage $\epsilon_{\mathcal{A}}$

$$\left| rac{t_{\mathcal{B}}}{\epsilon_{\mathcal{B}}}
ight| \leq \left| rac{t_{\mathcal{A}}}{\epsilon_{\mathcal{A}}}
ight| \cdot \ell$$

Almost Tight Security

Security of a cryptographic Scheme based on a hard Problem.

solving Problem in time t_B with advantage ϵ_B

attacking **Scheme** in time $t_{\mathcal{A}}$ with advantage $\epsilon_{\mathcal{A}}$

$$\left| rac{t_{\mathcal{B}}}{\epsilon_{\mathcal{B}}} \right| \leq \left| rac{t_{\mathcal{A}}}{\epsilon_{\mathcal{A}}} \right| \cdot \ell$$

(Almost) Tight Security: $\ell = O(1)$ or $O(\lambda)$,

where λ = security parameter

Multi-User Security under Adaptive Corruptions (MU^c Security)

MU^c security: protect the uncorrupted users

Users	Corrupted	Uncorrupted
\mathcal{A} 's knowledge	0-ш	0-ш
about <mark>SK</mark>	All	Nothing
MU ^c security	_	protected

On Achieving Tight MU^c Security

Single-user security

PKE	IND-CPA/CCA security
(Public-Key	(Indistinguishability under Chosen-
Encryption)	Plaintexts/Ciphertexts Attacks)
SIG	(Strong) EUF-CMA security
SIG (Digital	(Strong) EUF-CMA security ((Strong) Existential Unforgeability under

On Achieving Tight MU^c Security

PKE	IND-CPA/CCA security
(Public-Key	(Indistinguishability under Chosen-
Encryption)	Plaintexts/Ciphertexts Attacks)
SIG	(Strong) EUF-CMA security
(Digital	((Strong) Existential Unforgeability under

MU^c security

MUMC^c-CPA/CCA security

(Multi-User and Multi-Challenge IND-CPA/CCA security under adaptive corruptions)

(Strong) MU^c–CMA security

(Multi-User (Strong) EUF-CMA security under adaptive corruptions)

On Achieving Tight MU^c Security

PKE

(Public-Key

Encryption)

SIG

(Digital Signature)

IND-CPA/CCA security

(Indistinguishability under Chosen– Plaintexts/Ciphertexts Attacks)

(Strong) EUF-CMA security

((Strong) Existential Unforgeability under Chosen–Message Attacks)

non-tight

non-tight

MUMC^c-CPA/CCA security

(Multi-User and Multi-Challenge IND-CPA/CCA security under adaptive corruptions)

(Strong) MU^c–CMA security

(Multi-User (Strong) EUF-CMA security under adaptive corruptions)

Non-tight reduction!

ℓ ≥ #users, #ciphertexts, or #signatures

On Achieving Tight MU^c Security: Impossibility Results

PKE

(Public-Key

Encryption)

Tight MUMC°-CPA/CCA security

SIG

(Digital Signature)

Tight (Strong) MU^c–CMA security

[Bader-Jager-Li-Schäge, EC16]
 Impossible if the relation (pk, sk) is "unique" or "re-randomizable"

[Morgan-Pass-Shi, AC20]
 Impossible if the signing algorithm is deterministic

[Bader-Jager-Li-Schäge, EC16]
 Impossible if the relation (vk, sk) is "unique" or "re-randomizable"

On Achieving Tight MU^c Security: Possibility Results

PKE	Std/RO model?	MU ^c Security?	Security Loss	Assumption
[LLP20, DCC]	RO	√	O(1)	CDH

Only one PKE scheme is proved to be **tightly MUMC**^c–CCA secure, but in the **RO** model.

SIG	Std/RO model?	Strong Security?	MU ^c Security?	Security Loss	Assumption
[BHJKL15, TCC]	Std	-	✓	O(1)	MDDH
[GJ18, C]	RO	_	✓	O(1)	DDH
[DGJL21, PKC]	RO	✓	✓	O(1)	DDH/Φ– hiding
[HJKLPRS21, C]	Std	×	✓	Ο(λ)	MDDH
[PW22, PKC]	RO	-	✓	O(1)	LWE

Only 5 SIG schemes are proved to be tightly MU^c–CMA secure.

Only one of them is proved to be **tightly strong MU**^c-CMA secure, but in the **RO** model.

On Achieving Tight MU^c Security: Possibility Results

PKE	Std/RO model?	MU° Security?	Security Loss	Assumption
[LLP20, DCC]	RO	✓	O(1)	CDH

Only one PKE scheme is proved to be **tightly MUMC**°-CCA secure, but in the **RO** model.

SIG	Std/RO model?	Strong Security?	MU ^c Security?	Security Loss	Assumption
[BHJKL15, TCC]	Std	-	✓	O(1)	MDDH
[GJ18, C]	RO	_	✓	O(1)	DDH
[DGJL21, PKC]	RO	✓	✓	O(1)	DDH/Φ– hiding
[HJKLPRS21, C]	Std	×	✓	Ο(λ)	MDDH
[PW22, PKC]	RO	-	✓	O(1)	LWE

Only 5 SIG schemes are proved to be **tightly MU**^c–CMA secure.

Only one of them is proved to be **tightly strong MU**^c–CMA secure, but in the **RO** model.

Can we achieve (almost) tight MU^c security in the standard model?

Contribution I: Almost Tight MU^c Security in the Standard Model

PKE	Std/RO model?	MU° Security?	Security Loss	Assumption
[LLP20, DCC]	RO	√	O(1)	CDH
Ours	Std	√	O(log λ)	MDDH (SXDH, k-LIN)

 The first PKE scheme with almost tight MUMC^c-CCA security in the standard model

SIG	Std/RO model?	Strong Security?	MU ^c Security?	Security Loss	Assumption
[BHJKL15, TCC]	Std	-	✓	O(1)	MDDH
[GJ18, C]	RO	-	✓	O(1)	DDH
[DGJL21, PKC]	RO	√	✓	O(1)	DDH/Φ– hiding
[HJKLPRS21, C]	Std	×	✓	Ο(λ)	MDDH
[PW22, PKC]	RO	-	✓	O(1)	LWE
Ours	Std	✓	✓	O(log λ)	MDDH (SXDH, k-LIN)

 The first SIG scheme with almost tight strong MU^c-CMA security in the standard model

Multi-User Security under Adaptive Corruptions & Leakages

(MU^{c&l} Security)

MU^c security: protect the uncorrupted users

Users	Corrupted	Leaked	Uncorrupt ed
${\cal A}$'s knowledge	0—4	0-4	P
about <mark>SK</mark>	All	Part	Nothing
MU ^c security	-	unprotected	protected
MU ^{c&l} security	-	protected	protected

MU^{c&l} security: protect the uncorrupted users

& the users whose SKs are partially leaked.

Contribution II: Almost Tight MUc&l Security

SIG	Std/RO model?	Strong Security?	MU ^c Security?	MU ^{c&l} Security?	Security Loss	Assumption
[BHJKL15, TCC]	Std	-	✓	-	O(1)	MDDH
[GJ18, C]	RO	_	✓	-	O(1)	DDH
[DGJL21, PKC]	RO	✓	✓	-	O(1)	DDH/Φ– hiding
[HJKLPRS21, C]	Std	×	✓	-	Ο(λ)	MDDH
[PW22, PKC]	RO	-	✓	-	O(1)	LWE
Ours	Std	✓	✓	√ (1/6 – o(1))	O(log λ)	MDDH (SXDH, k-LIN)

The first PKE scheme
with almost tight
MUMC^{c&l}-CCA security
(no matter in the standard
model or in the RO model)

The first SIG scheme
with almost tight
strong MU^{c&l}-CMA
security (no matter in the
standard or RO model)

Contribution II: Almost Tight MUc&l Security & Full Compactness

PKE	Std/RO model?	MU ^c Security?	MU ^{c&l} Security?	Security Loss	Assumption	Fully compact?
[LLP20, DCC]	RO	✓	-	O(1)	CDH	✓
Ours	Std	✓	√ (1/3 – o(1))	O(log λ)	MDDH (SXDH, k-LIN)	✓

SIG	Std/RO model?	Strong Security?	MU ^c Security?	MU ^{c&l} Security?	Security Loss	Assumption	Fully compact?
[BHJKL15, TCC]	Std	-	✓	-	O(1)	MDDH	×
[GJ18, C]	RO	-	✓	-	O(1)	DDH	✓
[DGJL21, PKC]	RO	✓	✓	-	O(1)	DDH/Φ– hiding	✓
[HJKLPRS21, C]	Std	×	✓	-	Ο(λ)	MDDH	×
[PW22, PKC]	RO	_	✓	-	O(1)	LWE	×
Ours	Std	✓	✓	√ (1/6 – o(1))	O(log λ)	MDDH (SXDH, k-LIN)	✓

All our schemes are fully compact!

(Namely, all the parameters, keys, signatures, ciphertexts consist of only a constant number of group elements.)

Contents

- Almost Tight MU^{c&l} Security & Our Contributions
- Technical Tool: Publicly–Verifiable Hash Proof System
- Our SIG and PKE Constructions
- Instantiations from Matrix DDH and More

Recap: Hash Proof System [Cramer-Shoup, EC02]

Recap: Quasi-Adaptive HPS [Han-Liu-Lyu-Gu, C19]

Our New Tool: Publicly-Verifiable QA-HPS

Properties of PV-QA-HPS (I)

Verification Completeness:

For $x \in X$ and honestly generated $hv = \Lambda_{sk}(x)$, it holds $Vrfy_{HPS}(vk, x, hv) = 1$. (Honestly computed hash values always pass the verification.)

Verification Soundness:

Given sk and vk = v(sk), it is computationally hard to find $x \in X$ and hv, such that $hv \neq \Lambda_{sk}(x)$ but $Vrfy_{HPS}(vk, x, hv) = 1$. (Hard to find an incorrect hash value to pass the verification.)

Properties of PV-QA-HPS (II)

Leakage–Resilient (LR)

<L₀, L>–One–Time (OT)–Extracting:

Conditioned on

$$> pk_0 = a_{L0}(sk),$$

$$> vk = v(sk),$$

> bounded leakage information I(sk),

for any $x \in L$, $\Lambda_{sk}(x)$ has high min-entropy.

Recap: Quasi-Adaptive NIZK [Jutla-Roy, AC13]

 $QA-NIZK = (Prove, Vrfy_{NIZK}, Sim): tag-based$

Perfect Zero-Knowledge (ZK):

Prove ≡ Sim over L.

Unbounded Simulation-Soundness (USS):

Hard to prove a false $x \notin L$, even given many simulated proofs.

Contents

- Almost Tight MU^{c&l} Security & Our Contributions
- Technical Tool: Publicly–Verifiable Hash Proof System
- Our SIG and PKE Constructions
- Instantiations from Matrix DDH and More

Our SIG from PV-QA-HPS and QA-NIZK

/ STUNI

Gen \rightarrow (vk = v(sk), sk) : Verification key and Hashing key of PV-QA-HPS

Tight Strong MU^{c&l}–CMA Security Proof of Our SIG

$$\{ vk_i = v(sk_i) \}_{i \in [n]}$$

Corruption Queries (i):

$$\{ sk_i \}_{i \in Q_{cor}}$$

Leakage Queries (i, I):

$$\{ I(sk_i) \}_{i \in [n]}$$

Step 1: Switch Language from L to L₀ for Signing Queries

$$\{ vk_i = v(sk_i) \}_{i \in [n]}$$

Corruption Queries (i):

$$\{ sk_i \}_{i \in Q_{cor}}$$

Leakage Queries (i, I): $\{ I(sk_i) \}_{i \in [n]}$

Step 1: Switch Language from L to L₀ for Signing Queries

Step 2: Restrict Language from X to L for Forgery

Corruption Queries (i): $\{ sk_i \}_{i \in Q_{cor}}$

Step 2: Restrict Language from X to L for Forgery

All reductions have all signing keys to handle adaptive Corruption & Leakage queries.

Now A's forgery hardly succeeds

Verification Keys:

$$\{ vk_i = v(sk_i) \}_{i \in [n]}$$

Corruption Queries (i):

$$\{ sk_i \}_{i \in Q_{cor}}$$

Leakage Queries (i, I):

$$\{ I(sk_i) \}_{i \in [n]}$$

Signing Queries (i, m):

Forgery (i*, m*,
$$\sigma$$
* = (x*, hv*, π *)): i* \notin Q_{cor}

Reject if x* ∉ L

output 1 iff

$$\frac{hv^* = \Lambda_{ski^*}(x^*)}{hv^* = \Lambda_{ski^*}(x^*)}$$
 and $\frac{Vrfy_{NIZK}(crs, tag=m^*, x^*, \pi^*)}{hv^* = 1}$

A's knowledge about sk_{i*} in its forgery

- \triangleright $vk_{i*} = v(sk_{i*})$ in the verification key,
- ➤ I(sk_{i*}) from leakage queries,
- $ightharpoonup pk_{0,i*} = \alpha_{L_0}(sk_{i*})$ from signing queries.

LR-<L₀, L>-OT-Extracting of PV-QA-HPS

A's forgery fails since

For any $x^* \in L$,

 $\Lambda_{ski*}(x^*)$ has high min-entropy.

Our PKE from QA-HPS with New Properties and QA-NIZK

Gen \rightarrow (pk = $\alpha_L(sk)$, sk): Projection key on L and Hashing key of QA-HPS

A similar design with our SIG, but quite different tight proofs (see ePrint: ia.cr/2023/153/).

Contents

- Almost Tight MU^{c&l} Security & Our Contributions
- Technical Tool: Publicly–Verifiable Hash Proof System
- Our SIG and PKE Constructions
- Instantiations from Matrix DDH and More

Overview and Instantiations

Contribution III: More Primitives with Almost Tight MUc&l Security

PKE

with Almost Tight MUMC^{c&l}–CCA Security

SIG

with Almost Tight
Strong MU^{c&l}–CMA Security

Optimized

MAC

with Almost Tight
Strong MU^{c&l}–CMVA Security

SignCryption

with Almost Tight MU^{c&l}–Privacy & Authenticity

Authenticated Encryption

with Almost Tight
MU^{c&l}-Privacy & Authenticity

Conclusion

- The first SIG, PKE, SC, MAC and AE schemes
 - ✓ with almost tight MU^c security in the standard model,
 - ✓ with almost tight MU^{c&l} security.
- Generic constructions of SIG and PKE by using
 - New technical tool: Publicly-Verifiable QA-HPS.
- Fully compact instantiations from MDDH over pairing groups.

Thanks! Questions?

ePrint: ia.cr/2023/153