
One-Hot Conversion:
Towards Faster Table-based A2B
Conversion

Jan-Pieter D’Anvers
April 24, 2023



Outline

1 Side-Channel protection

2 One-hot conversion

3 Scaling up

4 One-bit-output functions

5 Results

1



2



Masking

s

⊕ B1
0

B(0) n = 2

∑
mod qA(0)

2



Masking

s

⊕ B1
0

B(0)

∑
mod qA(0)

2



Masking

s

⊕ B1
0

B(0)

∑
mod qA(0)

2



Masking Kyber

−

×

s

D

D

c1

c2

u

v

CC Gm′

H(pk)

K ′

XOFr′ CBDµCBDµ

×

U

seedA

s′

A

×

s′

b

+

+

D

e′
2

e′
1

CC

CC

v′

u′ c′
1

c′
2

=

K = H(K ′, c) K = H(z, c)

yes no

3



Conversions needed

▶ Need conversions from arithmetic domain to Boolean domain (A2B)

▶ First-order vs. Higher-order

4



Conversions needed

▶ Need conversions from arithmetic domain to Boolean domain (A2B)

▶ First-order vs. Higher-order

4



Existing conversion techniques

Circuit based [Gou01, CGV14]

▶ Write down circuit
▶ Replace gates w/ masked equivalent

▶ Scales relatively well to higher-order
masking

Table-based [CT03, CGMZ21]

▶ Make (masked) table
▶ Shuffle table for each input shares
▶ Final lookup with last share

▶ Efficient in first-order
▶ Very inefficient in higher-order

5



Existing conversion techniques

Circuit based [Gou01, CGV14]

▶ Write down circuit
▶ Replace gates w/ masked equivalent

▶ Scales relatively well to higher-order
masking

Table-based [CT03, CGMZ21]

▶ Make (masked) table
▶ Shuffle table for each input shares
▶ Final lookup with last share

▶ Efficient in first-order
▶ Very inefficient in higher-order

5



Outline

1 Side-Channel protection

2 One-hot conversion

3 Scaling up

4 One-bit-output functions

5 Results

6



One-hot intermediate representation

▶ Improvement of table-based methods

▶ One-hot encoding (instead of table)

0001000000000000 represents 3

▶ Boolean masked

0001000000000000

7



One-hot intermediate representation

▶ Improvement of table-based methods

▶ One-hot encoding (instead of table)

0001000000000000 represents 3

▶ Boolean masked

0001000000000000

7



One-hot to Boolean

▶ Convert from one-hot encoding to Boolean domain

0001000000000000

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

⊕

Sharewise operations

▶ All operations are sharewise!
▶ The paper describes how to implement this operation more efficiently

8



One-hot to Boolean

▶ We can even apply any function f()

0001000000000000

f(0)f(1)f(2)f(3)f(4)f(5)f(6)f(7)f(8)f(9)f(10)f(11)f(12)f(13)f(14)f(15)

⊕

Sharewise operations

9



Arithmetic to one-hot
▶ Use 1-bit table-based method [CGMZ21]
▶ Adding an arithmetic share = rotating the encoding
▶ Example s = 3, arithmetically shared in A(0) = 10, A(1) = 9, q = 16

1000000000000000

0000000001000000

0001000000000000

Rotate with A(0) + remasking

Rotate with A(1) + remasking

10



Arithmetic to Boolean

1000000000000000

0001000000000000

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

⊕

Rotate with
∑

k D(k) (includes remasking)

Sharewise operations

▶ Does not scale well

11



Arithmetic to Boolean

1000000000000000

0001000000000000

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

⊕

Rotate with
∑

k D(k) (includes remasking)

Sharewise operations

▶ Does not scale well

11



Outline

1 Side-Channel protection

2 One-hot conversion

3 Scaling up

4 One-bit-output functions

5 Results

12



Scaling up

▶ Divide the input arithmetic share into chuncks of n bits
▶ Process each chunk iteratively

▶ Need to take care of carries

13



Carry propagation

1000000000000000

0010

0000000001000000

0010000000000000

Shift with
∑

k D̂
(k)
j

Compute output

Compute carry

Carry = 0Carry = 1Carry = 2Carry = 3

▶ This takes into account the carry

14



Scaling A2B

▶ Three building blocks:
• Arithmetic to one-hot
• One-hot to Boolean
• Carry propagation

15



Outline

1 Side-Channel protection

2 One-hot conversion

3 Scaling up

4 One-bit-output functions

5 Results

16



One-bit output

▶ One-hot to Boolean part can be ignored for specific one-bit functions
▶ Notably possible for typical PQ functions:

• MSB extraction
• Ciphertext validation

17



Check if masked value is zero

1000000000000000

0010

0000000001000000

0000000000000000

Shift with
∑

k D̂
(k)
j

Compute output

Compute carry

Carry = 0Carry = 1Carry = 2Carry = 3

▶ This takes into account the carry

18



Outline

1 Side-Channel protection

2 One-hot conversion

3 Scaling up

4 One-bit-output functions

5 Results

19



20



21



22



Comparison

▶ Table-based
• 16x faster
• 14x less randomness needed
• Note that both are proof of concept implementations and not optimized

▶ Circuit-based
• We are up to 35% faster when disregarding randomness sampling
• We are up to 50% slower when including randomness sampling
• We have 4x higher randomness cost

23



Comparison

▶ Table-based
• 16x faster
• 14x less randomness needed
• Note that both are proof of concept implementations and not optimized

▶ Circuit-based
• We are up to 35% faster when disregarding randomness sampling
• We are up to 50% slower when including randomness sampling
• We have 4x higher randomness cost

23



Comparison

▶ Table-based
• 16x faster
• 14x less randomness needed
• Note that both are proof of concept implementations and not optimized

▶ Circuit-based
• We are up to 35% faster when disregarding randomness sampling
• We are up to 50% slower when including randomness sampling
• We have 4x higher randomness cost

23



Is circuit-based better?

▶ Not necessarily

▶ Higher-order circuit-based methods are quite mature [CGV14]
• Optimized implementations available

▶ Higher-order table-based methods are newer [CGMZ21]
• No optimized implementation available yet

▶ Already caught up in speed, maybe speedup possible?
▶ Focus point: randomness reduction

24



Is circuit-based better?

▶ Not necessarily

▶ Higher-order circuit-based methods are quite mature [CGV14]
• Optimized implementations available

▶ Higher-order table-based methods are newer [CGMZ21]
• No optimized implementation available yet

▶ Already caught up in speed, maybe speedup possible?
▶ Focus point: randomness reduction

24



Is circuit-based better?

▶ Not necessarily

▶ Higher-order circuit-based methods are quite mature [CGV14]
• Optimized implementations available

▶ Higher-order table-based methods are newer [CGMZ21]
• No optimized implementation available yet

▶ Already caught up in speed, maybe speedup possible?
▶ Focus point: randomness reduction

24



Conclusion & Future work

▶ Compared to table-based A2B:
• We are 16x faster and need 14x less randomness

▶ Compared to circuit-based methods
• We are 1.35x faster if randomness cost is not counted
• We are 1.5x slower if randomness needs to be sampled on Cortex-M4
• We need 4x more randomness

▶ Future work:
• Randomness reduction
• Optimized implementation
• First-order optimized version
• Constant hamming-weight intermediate representation useful?

25



Conclusion & Future work

▶ Compared to table-based A2B:
• We are 16x faster and need 14x less randomness

▶ Compared to circuit-based methods
• We are 1.35x faster if randomness cost is not counted
• We are 1.5x slower if randomness needs to be sampled on Cortex-M4
• We need 4x more randomness

▶ Future work:
• Randomness reduction
• Optimized implementation
• First-order optimized version
• Constant hamming-weight intermediate representation useful?

25



Bibliography I

Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order table-based conversion algorithms and masking lattice-based encryption.
Cryptology ePrint Archive, Paper 2021/1314, 2021.
https://eprint.iacr.org/2021/1314.

Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order.
In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS,
pages 188–205. Springer, Heidelberg, September 2014.

Jean-Sébastien Coron and Alexei Tchulkine.
A new algorithm for switching from arithmetic to Boolean masking.
In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, CHES 2003, volume
2779 of LNCS, pages 89–97. Springer, Heidelberg, September 2003.

26

https://eprint.iacr.org/2021/1314


Bibliography II

Jan-Pieter D’Anvers, Michiel Van Beirendonck, and Ingrid Verbauwhede.
Revisiting higher-order masked comparison for lattice-based cryptography: Algorithms
and bit-sliced implementations.
Cryptology ePrint Archive, Report 2022/110, 2022.
https://eprint.iacr.org/2022/110.

Louis Goubin.
A sound method for switching between Boolean and arithmetic masking.
In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001, volume
2162 of LNCS, pages 3–15. Springer, Heidelberg, May 2001.

27

https://eprint.iacr.org/2022/110


bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3

Bool. circ. [CGV14] 228.7 402.4 442.6 767.1 862.5 1484.7
Bool. circ. (opt. bitsl.) [DBV22] 37.3 55.1 72.3 108.2 142.6 214.6
Table-based [CGMZ21] 427.2 916.2 847.2 1806.6 1647.8 3514,8
One-hot [ours] 27.3 51.2 54.3 109.6 103.3 206.4

When sampling the randomness from the on-chip TRNG generator:
Bool. circ. [CGV14] 294.1 532.9 560.2 1002.0 1084.5 1928.6
Bool. circ. (opt. bitsliced) [DBV22] 43.2 67.1 84.8 133.3 168.2 265.9
Table-based [CGMZ21] 767.8 1617.4 1524.1 3213.0 3005,8 6338.3
One-hot [ours] 47.0 90.4 103.3 207.5 201.3 408.2

Table: Cost to perform 32 A2B conversions on Cortex M4 in 1000 cycles. The top results ignore
randomness sampling using the on-chip TRNG generator, the bottom results include the
randomness sampling.

28



bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3

Bool. circ. 5,120 10,240 9,216 18,432 17,408 34,816
Bool. circ. (opt. bitsliced) 464 928 976 1,952 2,000 4,000
Table-based 26,624 55,296 53,248 110,592 106,496 221,184
One-hot [ours] 1,536 3,072 3,840 7,680 7,680 15,360

Table: Randomness cost to perform 32 A2B conversions in bytes.

29



Cycles Cycles Randomness
w/o TRNG with TRNG

Order 2 3 2 3 2 3

simple optimized Kyber 2.5M 4.1M 3.1M 5.3M 48K 100K
streamlined hybrid Kyber 2.4M 3.4M 3.3M 4.4M 80K 95K
one-hot (ours) Kyber 2.3M 4.3M 4.6M 8.9M 184K 369K

simple optimized Saber 1.3M 2.0M 1.6M 2.6M 26K 53K
one-hot (ours) Saber 1.0M 2.0M 2.2M 4.2M 92K 184K

Table: Cycle and randomness cost of the state-of-the-art higher-order comparison methods

30


	Side-Channel protection
	One-hot conversion
	Scaling up
	One-bit-output functions
	Results

