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Conversions needed

▶ Need conversions from arithmetic domain to Boolean domain (A2B)

▶ First-order vs. Higher-order
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Existing conversion techniques

Circuit based [Gou01, CGV14]

▶ Write down circuit
▶ Replace gates w/ masked equivalent

▶ Scales relatively well to higher-order
masking

Table-based [CT03, CGMZ21]

▶ Make (masked) table
▶ Shuffle table for each input shares
▶ Final lookup with last share

▶ Efficient in first-order
▶ Very inefficient in higher-order
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One-hot intermediate representation

▶ Improvement of table-based methods

▶ One-hot encoding (instead of table)

0001000000000000 represents 3

▶ Boolean masked

0001000000000000
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One-hot to Boolean

▶ Convert from one-hot encoding to Boolean domain

0001000000000000

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

⊕

Sharewise operations

▶ All operations are sharewise!
▶ The paper describes how to implement this operation more efficiently
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One-hot to Boolean

▶ We can even apply any function f()

0001000000000000

f(0)f(1)f(2)f(3)f(4)f(5)f(6)f(7)f(8)f(9)f(10)f(11)f(12)f(13)f(14)f(15)

⊕

Sharewise operations
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Arithmetic to one-hot
▶ Use 1-bit table-based method [CGMZ21]
▶ Adding an arithmetic share = rotating the encoding
▶ Example s = 3, arithmetically shared in A(0) = 10, A(1) = 9, q = 16

1000000000000000

0000000001000000

0001000000000000

Rotate with A(0) + remasking

Rotate with A(1) + remasking
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Arithmetic to Boolean

1000000000000000

0001000000000000

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

⊕

Rotate with
∑

k D(k) (includes remasking)

Sharewise operations

▶ Does not scale well
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Scaling up

▶ Divide the input arithmetic share into chuncks of n bits
▶ Process each chunk iteratively

▶ Need to take care of carries
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Carry propagation

1000000000000000

0010

0000000001000000

0010000000000000

Shift with
∑

k D̂
(k)
j

Compute output

Compute carry

Carry = 0Carry = 1Carry = 2Carry = 3

▶ This takes into account the carry
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Scaling A2B

▶ Three building blocks:
• Arithmetic to one-hot
• One-hot to Boolean
• Carry propagation
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One-bit output

▶ One-hot to Boolean part can be ignored for specific one-bit functions
▶ Notably possible for typical PQ functions:

• MSB extraction
• Ciphertext validation
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Check if masked value is zero

1000000000000000
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0000000001000000
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Shift with
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j

Compute output

Compute carry

Carry = 0Carry = 1Carry = 2Carry = 3

▶ This takes into account the carry
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Comparison

▶ Table-based
• 16x faster
• 14x less randomness needed
• Note that both are proof of concept implementations and not optimized

▶ Circuit-based
• We are up to 35% faster when disregarding randomness sampling
• We are up to 50% slower when including randomness sampling
• We have 4x higher randomness cost
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Is circuit-based better?

▶ Not necessarily

▶ Higher-order circuit-based methods are quite mature [CGV14]
• Optimized implementations available

▶ Higher-order table-based methods are newer [CGMZ21]
• No optimized implementation available yet

▶ Already caught up in speed, maybe speedup possible?
▶ Focus point: randomness reduction
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Conclusion & Future work

▶ Compared to table-based A2B:
• We are 16x faster and need 14x less randomness

▶ Compared to circuit-based methods
• We are 1.35x faster if randomness cost is not counted
• We are 1.5x slower if randomness needs to be sampled on Cortex-M4
• We need 4x more randomness

▶ Future work:
• Randomness reduction
• Optimized implementation
• First-order optimized version
• Constant hamming-weight intermediate representation useful?
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bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3

Bool. circ. [CGV14] 228.7 402.4 442.6 767.1 862.5 1484.7
Bool. circ. (opt. bitsl.) [DBV22] 37.3 55.1 72.3 108.2 142.6 214.6
Table-based [CGMZ21] 427.2 916.2 847.2 1806.6 1647.8 3514,8
One-hot [ours] 27.3 51.2 54.3 109.6 103.3 206.4

When sampling the randomness from the on-chip TRNG generator:
Bool. circ. [CGV14] 294.1 532.9 560.2 1002.0 1084.5 1928.6
Bool. circ. (opt. bitsliced) [DBV22] 43.2 67.1 84.8 133.3 168.2 265.9
Table-based [CGMZ21] 767.8 1617.4 1524.1 3213.0 3005,8 6338.3
One-hot [ours] 47.0 90.4 103.3 207.5 201.3 408.2

Table: Cost to perform 32 A2B conversions on Cortex M4 in 1000 cycles. The top results ignore
randomness sampling using the on-chip TRNG generator, the bottom results include the
randomness sampling.
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bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3

Bool. circ. 5,120 10,240 9,216 18,432 17,408 34,816
Bool. circ. (opt. bitsliced) 464 928 976 1,952 2,000 4,000
Table-based 26,624 55,296 53,248 110,592 106,496 221,184
One-hot [ours] 1,536 3,072 3,840 7,680 7,680 15,360

Table: Randomness cost to perform 32 A2B conversions in bytes.
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Cycles Cycles Randomness
w/o TRNG with TRNG

Order 2 3 2 3 2 3

simple optimized Kyber 2.5M 4.1M 3.1M 5.3M 48K 100K
streamlined hybrid Kyber 2.4M 3.4M 3.3M 4.4M 80K 95K
one-hot (ours) Kyber 2.3M 4.3M 4.6M 8.9M 184K 369K

simple optimized Saber 1.3M 2.0M 1.6M 2.6M 26K 53K
one-hot (ours) Saber 1.0M 2.0M 2.2M 4.2M 92K 184K

Table: Cycle and randomness cost of the state-of-the-art higher-order comparison methods
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