Lower Bound Framework for
Differentially Private and
Oblivious Data Structures

Giuseppe Persiano and Kevin Yeo

Ny,
N
»

OUtll ne Oblivious and Differentially Private Data Structures
Lower Bound Framework

New Proof Techniques

Oblivious and Differentially Private
Data Structures

EARIEIEY
=

Oblivious RAM

0 1

Oblivious RAM

>] %

Oblivious RAM

~ L]

2

17

41

22

Oblivious RAM

o D_

read(1)

2

17

41

22

Oblivious RAM

> [

read(1)

<

17

41

22

Oblivious RAM

> [

read(1)

<

Oblivious RAM

>~ (]

<

22

<

41

17

Oblivious RAM -
o~ o

read(1) 22

write(2, X) 41

17

Oblivious RAM Security

Definition. For any sequence of equal-length operations O, and O,, the adversary’s view OvaS(Ol) and
OvaS(OZ) from a construction ODS must be indistinguishable to a computational adversary A:

Pr[A(ObvDS(O,)) = 1] =Pr[A(ObvDS(0,)) = 1]

Adversary’s View

O-J:l

read(1)

<

Differentially Private RAM

Oblivious RAM Differentially Private RAM

read(10), write(17), read(2), read(3), write(54) read(10), write(17), read(2), read(3), write(54)

Differentially Private RAM

Oblivious RAM Differentially Private RAM

read(10), write(17), read(2), read(3), write(54) read(10), write(17), read(2), read(3), write(54)

write(13), write(923), read(9), read(7), read(62)

Differentially Private RAM

Oblivious RAM Differentially Private RAM

read(10), write(17), read(2), read(3), write(54) read(10), write(17), read(2), read(3), write(54)

write(13), write(923), read(9), read(7), read(62) read(10), write(17), read(2), write(18), write(54)

Differentially Private RAM Security

Definition. For any sequence of equal-length operations O, and O, that differ in at most one operation,
the adversary’s view DPDS(Ol) and DPDS(O,) from an (g, d)-Differentially Private data structure
construction DPDS must satisfy the following for any computational adversary A:

PrlA(DPDS(O,)) = 1] < e* Pr[A(DPDS(O,)) = 1] + 8

Other Data Structures

e RAMs (Arrays)
e Sets
o Enable checking membership of entries
e Predecessor and Successor
o Return largest element smaller than a query input
e Disjoint Sets (Union-Find)

o Maintain sets of sets enabling merging and querying

Parameters

e w:Size of memory cells in the system

e b:Size of query outputs

RAMs (Arrays): b = array entry size
Sets:b=1

Predecessor and Successor: b = O(log |U])
Disjoint Sets (Union-Find): b = O(log n)

O

o O O

Cell Probe Model

Cell Probe Model

d

Cell Probe Model

e Onlycostis probing (read/write) a server cell of w bits

Cell Probe Model

d

Cell Probe Model

Computation is free

Generating randomness (or accessing a random oracle) is free
Accessing client storage is free

Very weak cost model — Very strong lower bounds

ORAM Lower Bound (b 2 w)

Theorem [Larsen, Nielsen ‘18]. In the cell probe model, oblivious RAMs require €2(b/w * log N) overhead.

Yes, There is an Oblivious RAM Lower Bound!

Kasper Green Larsen* and Jesper Buus Nielsen**

1 Computer Science. Aarhus University
2 Computer Science & DIGIT, Aarhus University

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovsky [JACM’96] is a (possibly randomized) RAM, for which the
memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must
be accessed to hide the operatlon sequence In their semmal paper in-

. ° . O Y O TR ° e .

ORAM Lower Bound (b < w)

Theorem [Komargodski, Lin ‘21]. In the cell probe model, oblivious RAMs require €(log N/log(w/b))
overhead.

A Logarithmic Lower Bound for Oblivious RAM
(for all parameters)

Ilan Komargodski* Wei-Kai Linf
June 13, 2021

Abstract

An Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (J. ACM 1996), is a
(probabilistic) RAM that hides its access pattern, i.e., for every input the observed locations

DPRAM Lower Bound (b = w)

Theorem [Persiano, Y ‘19]. In the cell probe model, for any € = O(1) and & < 1/3, Differentially Private
RAMs must use Q(b/w * log n) overhead.

DPRAM Lower Bound (b < w)

Open Problem [Komargodski and Lin ‘21]: Can we prove logarithmic lower bounds for DPRAMs for the
setting of b < w?

Theorem. In the cell probe model, for any ¢
DPRAM Lower =0(1) and 6 = O(1), DPRAMSs must use
Bou nds overhead Q(log n/log(w/b)).

- First DPRAM logarithmic lower
bound whenb <w

- Resolves open problem of
Komargodski and Lin [Crypto'21]

- First DPRAM lower bounds in
multi-server setting (for any b, w)

Rich Line of Prior Works

Oblivious RAMs: [Larsen, Nielsen ‘18], [HKKS ‘19], [Komargodski, Lin’ 21]
Differentially Private RAMs: [Persiano, Y ‘19]

Weaker Privacy Notions:
- Encrypted Search Leakage [PPY‘20]
- Multi-Server [LSY ‘20]

Other Data Structures:
- Stacks, Queues, Heaps, Search Trees [JLN ‘19]
- Near-Neighbor Search [LMWY‘20]

Lower Bound
Framework

Theorem. Any data structure problem P
satisfying the following two conditions
requires overhead ~Q(log n) in the cell probe
model.

1. [Large Information Retrievall:
Queries are sufficiently complex to
enable retrieving information

2. [Event Transfer Probability]: Certain
events that are adversarially
observable must transfer across
operational sequences.

New Lower Bounds from Framework

e RAMs(Arrays)
o Plaintext: O(1) -> Differential Privacy: ~Q(log n)
e Sets
o Plaintext: O(1) -> Differential Privacy: ~Q(log n)
® Predecessor and Successor
o Plaintext: O(log log n) -> Differential Privacy: ~Q(log n)
e Disjoint Sets (Union-Find)
o Plaintext: ~O(1) -> Differential Privacy: ~Q(log n)

Lower Bound Framework

I i e 1
i ||| | it T \ "‘3“55"'1 l'; ||| Lig e "lm
7 i g B0

New Lower Bounds from Framework

e RAMs(Arrays)

o Plaintext: O(1) -> Differential Privacy: ~Q(log n)
‘ e Sets \
o Plaintext: O(1) -> Differential Privacy: ~Q(log n)
° redecessor and Successor
o Plaintext: O(log log n) -> Differential Privacy: ~Q(log n)
e Disjoint Sets (Union-Find)
o Plaintext: ~O(1) -> Differential Privacy: ~Q(log n)

Lower Bound for DP Sets

Theorem. In the cell probe model, for any £ = O(1) and & = O(1), DP set data structures must use
overhead ~Q(logn).

Large Information Retrieval

Definition. A data structure problem P has large information retrieval if there exists a random update
sequence U = (Ur Uy +eo un) such that for any consecutive subset of L updates Uy o Uy s there exists a
query set Q of size O(L) whose answers have high entropy with respect to Uy oy Uy

Formally, let A(U, Q) be the answers of all queries in Q immediately executed after U. Then,

H(AU, Q) [uy,...,u U Lu)/L=Q(v)

a-1’ Ta+l’ "

for somev >=0.

Large Information Retrieval

Large Information Retrieval

Op1

Large Information Retrieval

op, op, op,

Large Information Retrieval

¢

\

2

op,

O|Z)2

oP,/2

Large Information Retrieval

¢

\

2

insert(2)

O|Z)2

oP,/2

Large Information Retrieval

C

n/2

AN

4 4
2 3

4

n

insert(2)

O|Z)2

oP,/2

Large Information Retrieval

Cn/2

AN

4 <
2 3

4

n

insert(2)

insert(3)

insert(n)

Large Information Retrieval

Cn/2

AN

4 <
2 3

4

n

insert(2)

insert(3)

insert(n)

Large Information Retrieval

\

/

Cn/2

AN

1 2 3 5 n
insert(2) insert(3) insert(n)
query(1) query(3)

Large Information Retrieval

\

/

Cn/2

AN

1 2 3 5 n
insert(2) insert(3) insert(n)
query(1) query(3)

Lower Bound for DP Sets

Proof.

Step 1: Large Information Retrieval

- U= (insert(1+ cl), insert(3 + c2), .., insert(n-1+ C(n—l)/2) where each ¢, is a random coin flip (bit)

- For any consecutive L updates: insert(2a + ca), insert(2a+ 2+ ca+1), ..,insert(2a+2(L-1) + ca+L_1),
construct query set Q ={2a,2a+ 2, ...,2a+ 2(L-1)} of L queries.

- Answers to Q enable retrieving all coin flips CoCopqreon Corgr

,u)=L

PAERLY n

- HAU,Quy, ., U

Event Transfer Probability

Definition. For any update sequence U and query q, let E(U, q) be an event observable by an adversary.
Furthermore, suppose that Pr[E(U, q)] = Q(1). Then, for any query q’, it must be that

Pr[E(U, q')] = Q(Pr[E(U, q)]).

Lower Bound for DP Sets

Proof.

Step 2: Event Transfer Probability

- ByDP, forevents E(U, q) and E(U, ') for update sequence U and queries g and q’, it must satisfy
Pr[E(U,q)= 1] < e® Pr[E(U,q’)] + &
- Inother words,

(Pr[E(U, q)= 1] /e%) - & < Pr[E(U, q')]

Generic lemmas for:
- Oblivious
Differential Privacy
Multi-Server
Encrypted Search

Lower Bound for DP Sets

Proof. O

Step 2: Event Transfer Probability o O

- ByDP, forevents E(U, q) and E(U, ') for update sequence U and queries g and q’, it must satisfy
Pr[E(U,q)= 1] < e® Pr[E(U,q’)] + &
- Inother words,

(Pr[E(U, q)= 1] /e%) - & < Pr[E(U, q')]

Lower Bound for DP Sets

Theorem. In the cell probe model, for any £ = O(1) and & = O(1), DP set data structures must use
overhead ~Q(log n).

For sets, we showed that one can extract v = 1 bit for each of the L updates on average.

Lower Bound for DP Sets

Theorem. In the cell probe model, for any £ = O(1) and & = O(1), DP set data structures must use
overhead ~Q(log n).

For sets, we showed that one can extract v = 1 bit for each of the L updates on average.

General Theorem. Any data structure problem P with b-bit query outputs satisfying the two conditions
requires overhead ~Q(v/b * log n) in the cell probe model.

Is this framework tight?

Question. Are there any data structures that would have logarithmic lower bounds for all choices of b
and w that do not fit into the framework?

Stacks and Queues

- Cannot satisfy Large Information Retrieval property of our framework.

Stacks and Queues

- Cannot satisfy Large Information Retrieval property of our framework.
- Theorem [JLN ‘20]: Oblivious stacks and queues require Q(log n) overhead when b >=w

- Theorem [Komargodski and Shi ‘21]: DP stacks and queues require O(b/w * loglog n) overhead.

Stacks and Queues

- Cannot satisfy Large Information Retrieval property of our framework.
- Theorem [JLN ‘20]: Oblivious stacks and queues require Q(b/w * log n) overhead.
- Theorem [Komargodski and Shi ‘21]: DP stacks and queues require O(b/w * loglog n) overhead.

- Open Problem: What is the right overhead for oblivious stacks and queues when b < w?

Oblivious Stacks
and Queues

Theorem. Oblivious stacks and queues have
O(b/w * log n) overhead.

- Inherent that it cannot satisfy our
framework’s conditions.

- Sub-constant overhead possible when
b/w = o(1/log n)

- First separation result for online
oblivious data structures between
settingsof b=wandb<w

New Proof Techniques

Chronogram

The Cell Probe Complexity of Dynamic Data Structures

Michael L. Fredman '

Bellcore and
U.C. San Diego

1. Summary of Results

Dynamic data structure problems involve the representation of
data in memory in such a way as to permit certain types of
modifications of the data (updates) and certain types of questions
about the data (queries). This paradigm encompasses many
fundamental problems in computer science.

The purpose of this paper is to prove new lower and upper
bounds on the time per operation to implement solutions to some
familiar dynamic data structure problems including list
representation, subset ranking, partial sums, and the sct union
problem . The main features of our lower bounds are:

(1) They hold in the cell probe model of computation (A, Yao
(18]) in which the time complexity of a sequential
computation is defined to be the number of words of
memory that are accessed. (The number of bits b in a
single word of memory is a parameter of the model). All
other computations are free. This model is at least as
powerful as a random access machinc and allows for
unusual representation of data, indirect addressing etc. This
contrasts with most previous lower bounds which are

Michacl E. Saks 2

U.C. San Diego,
Bellcore and
Rutgers University

register size from logn to polylog(n) only reduces the time
complexity by a constant factor. On the other hand,
decreasing the register size from logn to 1 increases time
complexity by a logn factor for one of the problems we
consider and only a loglogn factor for some other
problems.

The first two specific data structure problems for which we
obtain bounds are:

List Representation. This problem concerns the represention of
an ordered list of at most n (not necessarily distinct) elements
from the universe U ={1,2,.,n}. The operations to be
supported are report(k), which returns the &* element of the list,
insert(k, u) which inserts clement u into the list between the
clements in positions k — 1 and k, delete(k), which deletes the k™
item.

Subset Rank. This problem concerns the representation of a
subset § of U ={1,2,.,n}. The operations that must be
supported are the updates ‘“‘insert item j into the set”’ and
““delete item j from the set”” and the queries rank(j), which
returns the number of elements in S that are less than or equal
o

Chronogram

e Leveraged to prove Q(b/w * log n) lower bound for DPRAMs [Persiano, Y ‘20]

e Used for super-logarithmic lower bounds for (statistically) oblivious near-neighbor search
[LMWY ‘20]

New Proof Techniques

1. Improved encoding of data structure answers when queries and updates are too-efficient

2. Showed that majority of answers can be encoded for “free” as they are unchanged by a
too-efficient-to-be-true data structure.

New Proof Techniques

Update

d

New Proof Techniques

d

Random Query

New Proof Techniques

1. Improved encoding of data structure answers when queries and updates are too-efficient

2. Showed that majority of answers can be encoded for “free” as they are unchanged by a
too-efficient-to-be-true data structure.

Questions?

Email:

or

mailto:kwlyeo@cs.columbia.edu
mailto:giuper@gmail.com

