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Oblivious RAM Security
Definition. For any sequence of equal-length operations O

1
 and O

2
, the adversary’s view ObvDS(O

1
) and 

ObvDS(O
2

) from a construction ODS 
 
must be indistinguishable to a computational adversary A:

Pr[A( ObvDS(O
1

) ) = 1] ≅Pr[A( ObvDS(O
2

) ) = 1]
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Differentially Private RAM
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Differentially Private RAM Security
Definition. For any sequence of equal-length operations O

1
 and O

2
 that differ in at most one operation, 

the adversary’s view DPDS(O
1

) and DPDS(O
2

) from an (ε, 𝛅)-Differentially Private data structure 

construction DPDS 
 
must satisfy the following for any computational adversary A:

Pr[A( DPDS(O
1

) ) = 1] ≤ eε Pr[A( DPDS(O
2

) ) = 1] + 𝛅



Other Data Structures
● RAMs (Arrays)

● Sets
○ Enable checking membership of entries

● Predecessor and Successor
○ Return largest element smaller than a query input

● Disjoint Sets (Union-Find)
○ Maintain sets of sets enabling merging and querying



Parameters
● w: Size of memory cells in the system

● b: Size of query outputs
○ RAMs (Arrays): b = array entry size
○ Sets: b = 1
○ Predecessor and Successor: b = O(log |U|)
○ Disjoint Sets (Union-Find): b = O(log n)
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Cell Probe Model
● Only cost is probing (read/write) a server cell of w bits



Cell Probe Model



Cell Probe Model
● Computation is free

● Generating randomness (or accessing a random oracle) is free

● Accessing client storage is free

● Very weak cost model → Very strong lower bounds



ORAM Lower Bound (b ≥ w)
Theorem [Larsen, Nielsen ‘18]. In the cell probe model, oblivious RAMs require 𝛀(b/w * log N) overhead.



ORAM Lower Bound (b < w)
Theorem [Komargodski, Lin ‘21]. In the cell probe model, oblivious RAMs require 𝛀(log N/log(w/b)) 

overhead.



DPRAM Lower Bound (b ≥ w)
Theorem [Persiano, Y ‘19]. In the cell probe model, for any ε = O(1) and 𝛅 ≤ 1/3, Differentially Private 

RAMs must use Ω(b/w * log n) overhead.



DPRAM Lower Bound (b < w)
Open Problem [Komargodski and Lin ‘21]: Can we prove logarithmic lower bounds for DPRAMs for the 

setting of b < w?



DPRAM Lower 
Bounds

Theorem. In the cell probe model, for any  ε 

= O(1) and 𝛅 = O(1), DPRAMs must use 

overhead Ω(log n/log(w/b)).

- First DPRAM logarithmic lower 

bound when b < w

- Resolves open problem of 

Komargodski and Lin [Crypto‘21]

- First DPRAM lower bounds in 

multi-server setting (for any b, w)



Rich Line of Prior Works
Oblivious RAMs: [Larsen, Nielsen ‘18], [HKKS ‘19], [Komargodski, Lin’ 21]

Differentially Private RAMs: [Persiano, Y ‘19]

Weaker Privacy Notions:
- Encrypted Search Leakage [PPY‘20]
- Multi-Server [LSY ‘20]

Other Data Structures:
- Stacks, Queues, Heaps, Search Trees [JLN ‘19]

- Near-Neighbor Search [LMWY‘20]



Lower Bound 
Framework

Theorem. Any data structure problem P 

satisfying the following two conditions 

requires overhead ~Ω(log n) in the cell probe 

model.

1. [Large Information Retrieval]: 
Queries are sufficiently complex to 

enable retrieving information

2. [Event Transfer Probability]: Certain 

events that are adversarially 

observable must transfer across 

operational sequences.



New Lower Bounds from Framework
● RAMs (Arrays)

○ Plaintext: O(1) -> Differential Privacy: ~𝛀(log n)

● Sets
○ Plaintext: O(1) -> Differential Privacy: ~𝛀(log n)

● Predecessor and Successor
○ Plaintext: O(log log n) -> Differential Privacy: ~𝛀(log n)

● Disjoint Sets (Union-Find)
○ Plaintext: ~O(1) -> Differential Privacy: ~𝛀(log n)
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New Lower Bounds from Framework
● RAMs (Arrays)

○ Plaintext: O(1) -> Differential Privacy: ~𝛀(log n)

● Sets
○ Plaintext: O(1) -> Differential Privacy: ~𝛀(log n)

● Predecessor and Successor
○ Plaintext: O(log log n) -> Differential Privacy: ~𝛀(log n)

● Disjoint Sets (Union-Find)
○ Plaintext: ~O(1) -> Differential Privacy: ~𝛀(log n)



Lower Bound for DP Sets
Theorem. In the cell probe model, for any  ε = O(1) and 𝛅 = O(1), DP set data structures must use 

overhead ~Ω(log n).



Large Information Retrieval
Definition. A data structure problem P has large information retrieval if there exists a random update 

sequence U = (u
1

, u
2

, …, u
n
) such that for any consecutive subset of L updates u

a
, …, u

a+L-1
, there exists a 

query set Q of size O(L) whose answers have high entropy with respect to u
a
, …, u

a+L-1
.

Formally, let A(U, Q) be the answers of all queries in Q immediately executed after U. Then,

H(A(U, Q) | u
1

, …, u
a-1

, u
a+L

, …, u
n
) / L = Ω(v)

for some v >= 0.



Large Information Retrieval

1 2 3 4 5 6 … n



Large Information Retrieval

1 2 3 4 5 6 … n

op
1



Large Information Retrieval

1 2 3 4 5 6 … n

op
1

op
2

… op
n/2



Large Information Retrieval

1 2 3 4 5 6 … n

c
1

op
1

op
2

… op
n/2



Large Information Retrieval

1 2 3 4 5 6 … n

c
1

insert(2) op
2

… op
n/2



Large Information Retrieval

1 2 3 4 5 6 … n

c
1

c
1

… c
n/2

insert(2) op
2

… op
n/2



Large Information Retrieval

1 2 3 4 5 6 … n

c
1

c
2

… c
n/2

insert(2) insert(3) … insert(n)



Large Information Retrieval

1 2 3 4 5 6 … n

c
1

c
2

… c
n/2

insert(2) insert(3) … insert(n)



Large Information Retrieval

2 4 5 6 … n

c
1

c
2

… c
n/2

insert(2)

query(1)

insert(3)

query(3)

… insert(n)

1 3



Large Information Retrieval

2 4 5 6 … n

c
1

c
2

… c
n/2

insert(2)

query(1)

insert(3)

query(3)

… insert(n)

1 3



Lower Bound for DP Sets
Proof.

Step 1: Large Information Retrieval

- U = (insert(1 + c
1

), insert(3 + c
2

), …, insert(n - 1 + c
(n-1)/2

) where each c
i
 is a random coin flip (bit)

- For any consecutive L updates: insert(2a + c
a
), insert(2a + 2 + c

a+1
), …, insert(2a + 2(L-1) + c

a+L-1
), 

construct query set Q = {2a, 2a + 2, …, 2a + 2(L-1)} of L queries.

- Answers to Q enable retrieving all coin flips c
a
, c

a + 1
, …, c

a+L-1
. 

- H(A(U, Q) | u
1

, …, u
a-1

, u
a+L

, …, u
n
) = L



Event Transfer Probability
Definition. For any update sequence U and query q, let E(U, q) be an event observable by an adversary. 

Furthermore, suppose that Pr[E(U, q)] = Ω(1). Then, for any query q’, it must be that

Pr[E(U, q’)] = Ω(Pr[E(U, q)]).



Lower Bound for DP Sets
Proof.

Step 2: Event Transfer Probability

- By DP, for events E(U, q) and E(U, q’) for update sequence U and queries q and q’, it must satisfy

Pr[E(U, q)= 1] ≤ eε Pr[E(U, q’)] + 𝛅

- In other words,

(Pr[E(U, q)= 1] /eε) - 𝛅 ≤ Pr[E(U, q’)]



Lower Bound for DP Sets
Proof.

Step 2: Event Transfer Probability

- By DP, for events E(U, q) and E(U, q’) for update sequence U and queries q and q’, it must satisfy

Pr[E(U, q)= 1] ≤ eε Pr[E(U, q’)] + 𝛅

- In other words,

(Pr[E(U, q)= 1] /eε) - 𝛅 ≤ Pr[E(U, q’)]

Generic lemmas for:
- Oblivious
- Differential Privacy
- Multi-Server
- Encrypted Search



Lower Bound for DP Sets
Theorem. In the cell probe model, for any  ε = O(1) and 𝛅 = O(1), DP set data structures must use 

overhead ~Ω(log n).

For sets, we showed that one can extract v = 1 bit for each of the L updates on average.



Lower Bound for DP Sets
Theorem. In the cell probe model, for any  ε = O(1) and 𝛅 = O(1), DP set data structures must use 

overhead ~Ω(log n).

For sets, we showed that one can extract v = 1 bit for each of the L updates on average.

General Theorem. Any data structure problem P with b-bit query outputs satisfying the two conditions 

requires overhead ~Ω(v/b * log n) in the cell probe model.



Is this framework tight?
Question. Are there any data structures that would have logarithmic lower bounds for all choices of b 

and w that do not fit into the framework?



Stacks and Queues
- Cannot satisfy Large Information Retrieval property of our framework.



Stacks and Queues
- Cannot satisfy Large Information Retrieval property of our framework.

- Theorem [JLN ‘20]: Oblivious stacks and queues require Ω(log n) overhead when b >= w

- Theorem [Komargodski and Shi ‘21]: DP stacks and queues require O(b/w * loglog n) overhead.



Stacks and Queues
- Cannot satisfy Large Information Retrieval property of our framework.

- Theorem [JLN ‘20]: Oblivious stacks and queues require Ω(b/w * log n) overhead.

- Theorem [Komargodski and Shi ‘21]: DP stacks and queues require O(b/w * loglog n) overhead.

- Open Problem: What is the right overhead for oblivious stacks and queues when b < w?



Oblivious Stacks 
and Queues

Theorem. Oblivious stacks and queues have 

O(b/w * log n) overhead.

- Inherent that it cannot satisfy our 

framework’s conditions.

- Sub-constant overhead possible when 

b/w = o(1/log n)

- First separation result for online 

oblivious data structures between 

settings of b = w and b < w



New Proof Techniques
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Chronogram
● Leveraged to prove Ω(b/w * log n) lower bound for DPRAMs [Persiano, Y ‘20]

● Used for super-logarithmic lower bounds for (statistically) oblivious near-neighbor search

[LMWY ‘20]



New Proof Techniques
1. Improved encoding of data structure answers when queries and updates are too-efficient

2. Showed that majority of answers can be encoded for “free” as they are unchanged by a 

too-efficient-to-be-true data structure.
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Random Query



New Proof Techniques
1. Improved encoding of data structure answers when queries and updates are too-efficient

2. Showed that majority of answers can be encoded for “free” as they are unchanged by a 

too-efficient-to-be-true data structure.



Questions?

Email: kwlyeo@cs.columbia.edu or giuper@gmail.com 
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