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Outline (Batch) PIR with Private Preprocessing

Our Contributions

Lower Bound Proof
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Linear Server Time Lower Bound

Thm. [Beimel, Ishai and Malkin ‘00]. In the standard PIR model, the server computation must be linear.



Linear Server Time Lower Bound

Thm. [Beimel, Ishai and Malkin ‘00]. In the standard PIR model, the server computation must be linear.

Two Ways to Circumvent Linear Lower Bound:

1. PIR with Preprocessing

2. Batch PIR
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Complexity Measures

Hint Size: The size of the r-bit hint stored by client.

Computational Time: The number of entries, t, probed during queries.



PIR with Private Preprocessing

- Doubly-Efficient PIR

- [Boyle, Ishai, Pass, Wootters ‘17], [Canetti, Holmgren, Richelson ‘17]

- Private Stateful Information Retrieval

- [Patel, Persiano, Y ‘18]

- Offline-Online PIR

- [Corrigan-Gibbs, Kogan ‘20], [Shi, Aqeel, Chandrasekaran, Maggs ‘21], [Corrigan-Gibbs, 

Henzinger, Kogan ‘22] and many more…



PIR with Private Preprocessing

Thm. [Corrigan-Gibbs and Kogan ‘20]. There exists a construction with t * r = O(n).

Sublinear Server Time: t + r = O(n1/2)

Thm. [Corrigan-Gibbs and Kogan ‘20]. There exists a construction with t * r = Ω(n/polylog(n)).
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Batch PIR

Thm. [Ishai, Kushilevitz, Ostrovsky and Sahai ‘04]. There exists a construction for k-query batch PIR 

requiring t = O(n polylog(n)).

Amortized Server Time per Query: ~O(n/k)



Batch PIR with Private Preprocessing

PIR with Private Preprocessing:  t * r = O(n)

Batch PIR: t = ~O(n/k)

Can we combine private preprocessing and batch 
queries to obtain even faster server times?
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Dream Batch PIR with Private Preprocessing

t = O(n) t = ~O(n)

t * r = O(n) t * r = ~O(n)???

Single-Query k-Query

No Preprocessing

Private 
Preprocessing



Our Contributions: 
Lower Bound

Thm. For any computationally-secure, 

L-server, k-query PIR with private 

preprocessing where L = O(1), it must be

- If r ≥ k, then t * r = Ω(n * k). 
- If r < k, then t = Ω(n).

This holds when the PIR scheme errs with 

probability at most 1/15.



Our Contributions: 
Lower Bound

Thm. For any computationally-secure, 

L-server, single-query PIR with private 

preprocessing where L = O(1), it must be

t * r = Ω(n). 

Improves upon prior single-query lower 

bound of t * r = Ω(n / polylog(n)) 

[Corrigan-Gibbs, Kogan ‘20]
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Standard PIR Model vs. Cell Probe Model
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Our Contributions: 
Lower Bound 
Barrier

Thm. If for every single-query, 2-server PIR 

with private preprocessing, it is holds that     

t * r = Ω(n) in the cell probe model, then the 

online matrix-vector (OMV) conjecture is 

true.

Barrier: OMV is a core conjecture in 

fine-grained complexity.



Our Contributions: 
Upper Bound

Thm. Given any single-query PIR with 

private preprocessing with t * r  = f(n), there 

exists a k-query PIR with private 

preprocessing satisfying

t * r = ~O(k * f(n)). 

Prior reductions required either multiple 

rounds or certain assumptions on 

single-query scheme.
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Relationship between Queried and Probed Entries

Assumption. Suppose at most half (n/2) entries are probed.

Question: If index i is queried, what is probability the i-th entry is probed?
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Relationship between Queried and Probed Entries

Assumption. Suppose at most half (n/2) entries are probed.

Question: If index i is queried, what is probability the i-th entry is probed?

Pr[index i is probed | index i is queried] ≋ Pr[index i is probed | index i is not queried]



Relationship between Queried and Probed Entries

Assumption. Suppose at most half (n/2) entries are probed.

Question: If index i is queried, what is probability the i-th entry is probed?

Pr[index i is probed | index i is queried] ≋ Pr[index i is probed | index i is not queried]

E[# of queried indices that are probed] ≤ k/2
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Relationship between Queried and Probed Entries
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These entries are 
compressed “for free” using 
only probed entries and hint.
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Discovering Good Batch Queries

Goal: Find sequence of batch queries such that “free” entries are minimally overlapping.
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Discovering Good Batch Queries

Goal: Find sequence of batch queries such that “free” entries are minimally overlapping.

Lemma: Random batch queries satisfy this with high probability.



Lower Bound Proof Techniques

1. Relationship between Queried and Probed Entries

2. Discovering Good Batch Queries

3. Impossible Encoding of Database



Questions?

Email: kwlyeo@cs.columbia.edu

mailto:kwlyeo@cs.columbia.edu

