Lower Bounds for (Batch) PIR with Private Preprocessing

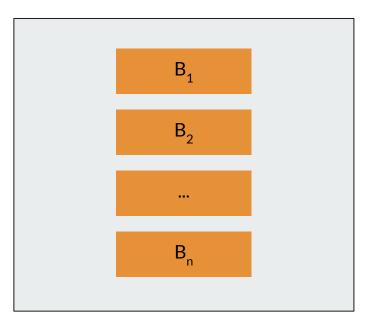
Kevin Yeo

Outline

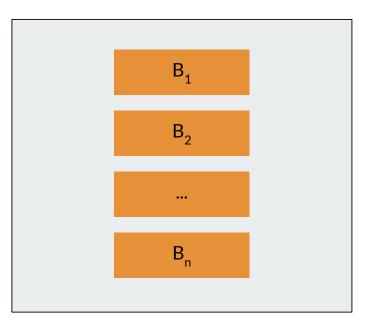
(Batch) PIR with Private Preprocessing

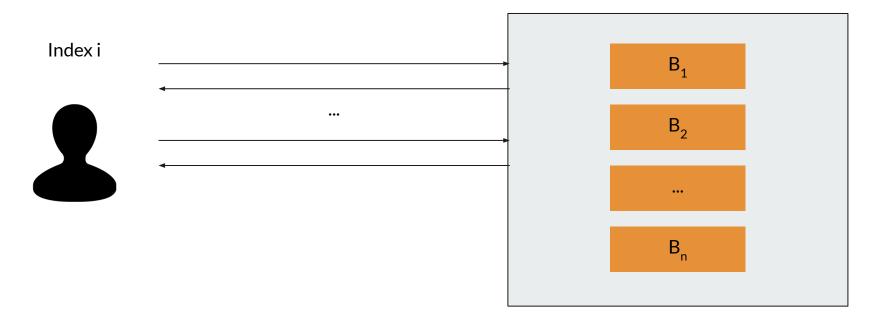
Our Contributions

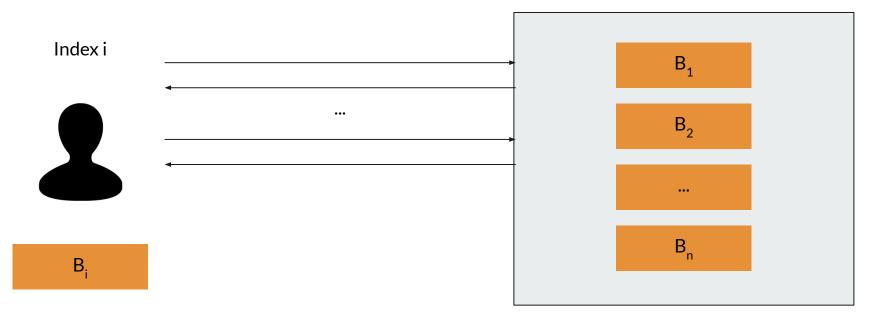
Lower Bound Proof

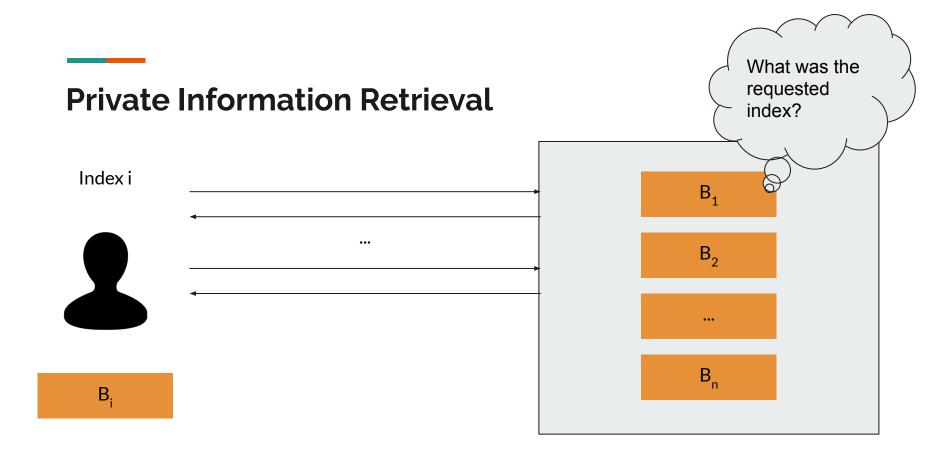


Index i

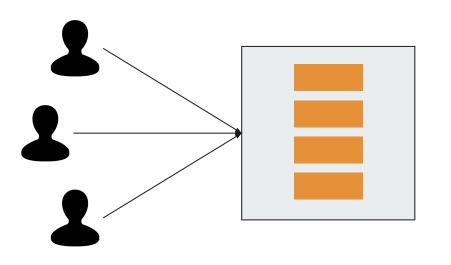


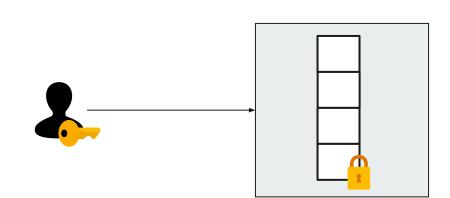




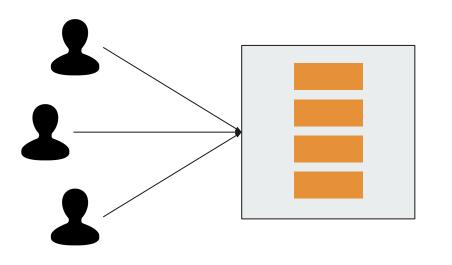


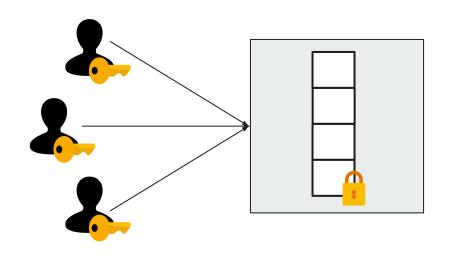
Comparison between PIR and ORAM





Comparison between PIR and ORAM





Linear Server Time Lower Bound

Thm. [Beimel, Ishai and Malkin '00]. In the standard PIR model, the server computation must be linear.

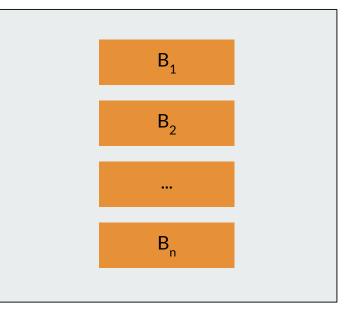
Linear Server Time Lower Bound

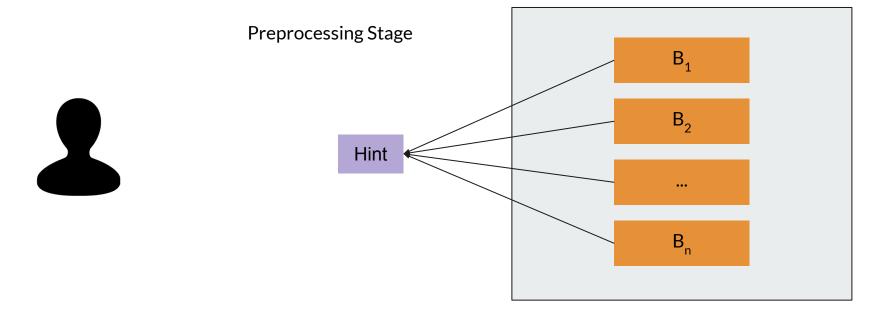
Thm. [Beimel, Ishai and Malkin '00]. In the standard PIR model, the server computation must be linear.

Two Ways to Circumvent Linear Lower Bound:

- 1. PIR with Preprocessing
- 2. Batch PIR

Preprocessing Stage





Preprocessing Stage

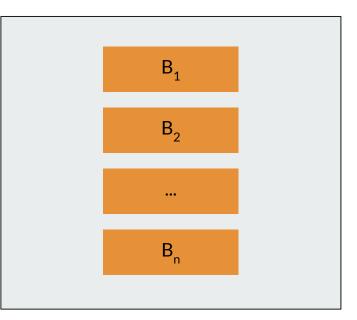
 B_1 B_2 ••• B_{n}

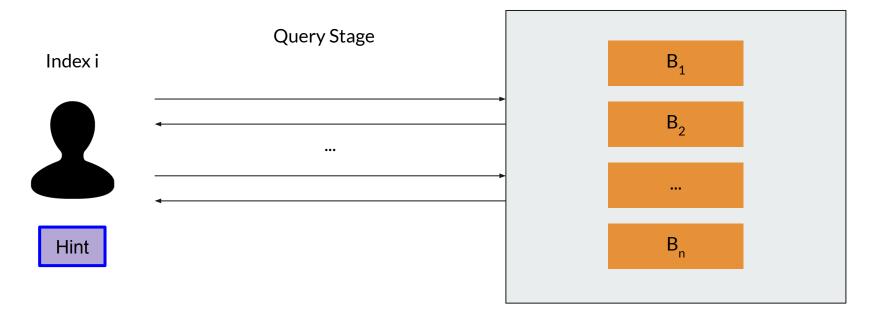
Hint

Query Stage

Index i

Hint





Complexity Measures

Hint Size: The size of the r-bit hint stored by client.

Computational Time: The number of entries, **t**, probed during queries.

- Doubly-Efficient PIR
 - [Boyle, Ishai, Pass, Wootters '17], [Canetti, Holmgren, Richelson '17]
- Private Stateful Information Retrieval
 - [Patel, Persiano, Y '18]
- Offline-Online PIR
 - [Corrigan-Gibbs, Kogan '20], [Shi, Aqeel, Chandrasekaran, Maggs '21], [Corrigan-Gibbs, Henzinger, Kogan '22] and many more...

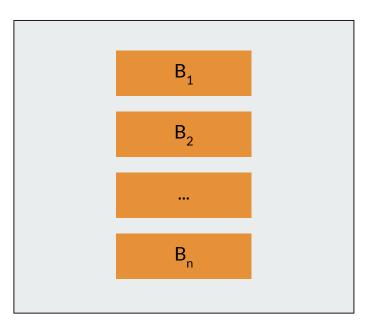
Thm. [Corrigan-Gibbs and Kogan '20]. There exists a construction with t * r = O(n).

Sublinear Server Time: $t + r = O(n^{1/2})$

Thm. [Corrigan-Gibbs and Kogan '20]. There exists a construction with t * r = Ω (n/polylog(n)).

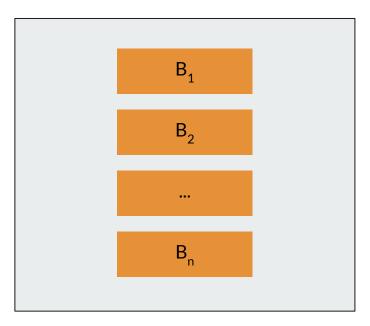
Batch PIR

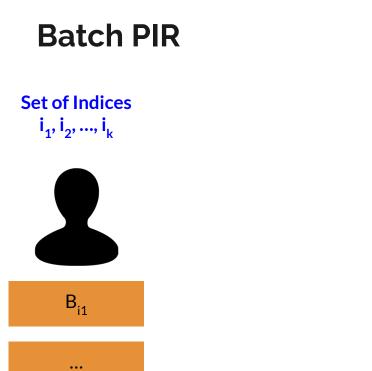
Index i

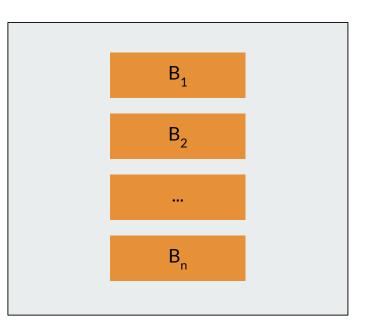


Batch PIR

Set of Indices $i_1, i_2, ..., i_k$







Batch PIR

Thm. [Ishai, Kushilevitz, Ostrovsky and Sahai '04]. There exists a construction for k-query batch PIR requiring t = O(n polylog(n)).

Amortized Server Time per Query: ~O(n/k)

PIR with Private Preprocessing: t * r = O(n)

Batch PIR: $t = \sim O(n/k)$

Can we combine private preprocessing and batch queries to obtain even faster server times?

Dream Batch PIR with Private Preprocessing

	Single-Query	k-Query
No Preprocessing	t = O(n)	
Private Preprocessing	t * r = O(n)	

Dream Batch PIR with Private Preprocessing

	Single-Query	k-Query
No Preprocessing	t = O(n)	t = ~O(n)
Private Preprocessing	t * r = O(n)	

Dream Batch PIR with Private Preprocessing

	Single-Query	k-Query
No Preprocessing	t = O(n)	t = ~O(n)
Private Preprocessing	t * r = O(n)	t * r = ~O(n)???

Our Contributions: Lower Bound

Thm. For any computationally-secure, L-server, k-query PIR with private preprocessing where L = O(1), it must be

- If $r \ge k$, then $t * r = \Omega(n * k)$.
- If r < k, then $t = \Omega(n)$.

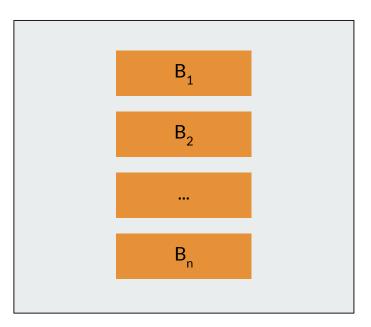
This holds when the PIR scheme errs with probability at most **1/15**.

Our Contributions: Lower Bound

Thm. For any computationally-secure, L-server, **single-query** PIR with private preprocessing where L = O(1), it must be

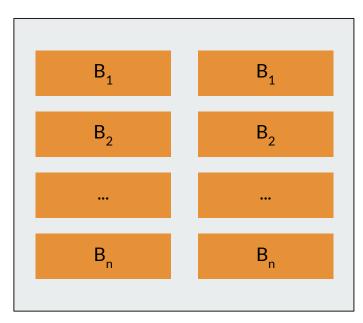
t * r = Ω(n).

Improves upon prior single-query lower bound of $\mathbf{t} * \mathbf{r} = \Omega(\mathbf{n} / \text{polylog}(\mathbf{n}))$ [Corrigan-Gibbs, Kogan '20]



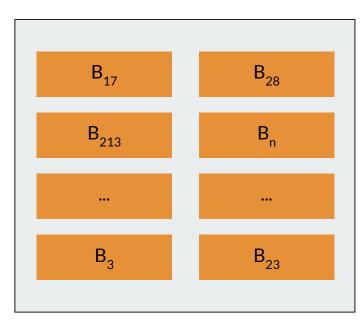
Hint

Replicate



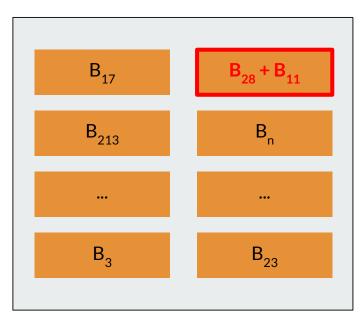
Hint

Permute



Hint

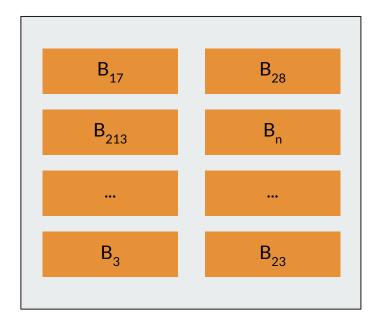
No Encoding



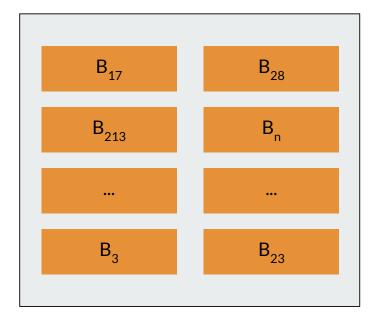
2

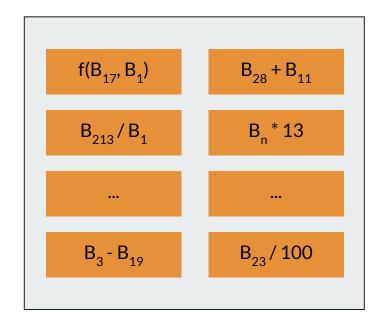
Hint

Arbitrary Encoding



Standard PIR Model vs. Cell Probe Model





Our Contributions: Lower Bound Barrier

Thm. If for every single-query, 2-server PIR with private preprocessing, it is holds that $t * r = \Omega(n)$ in the cell probe model, then the online matrix-vector (OMV) conjecture is true.

Barrier: OMV is a core conjecture in fine-grained complexity.

Our Contributions: Upper Bound

Thm. Given any single-query PIR with private preprocessing with t * r = f(n), there exists a k-query PIR with private preprocessing satisfying

t * r = ~O(k * f(n)).

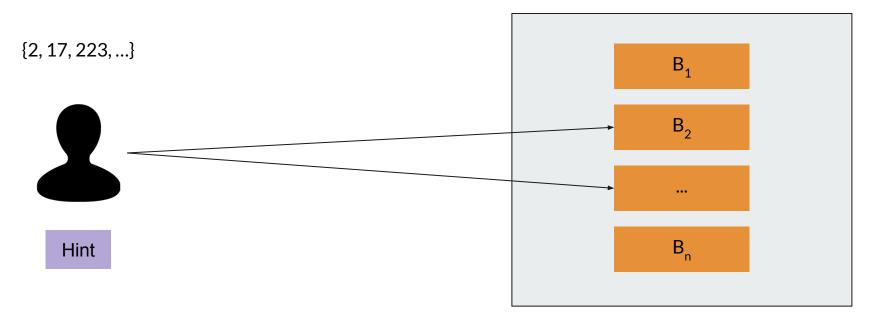
Prior reductions required either multiple rounds or certain assumptions on single-query scheme.

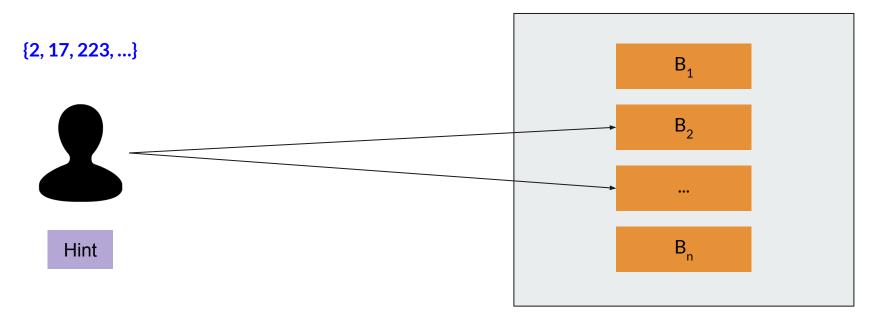
Lower Bound Proof Techniques

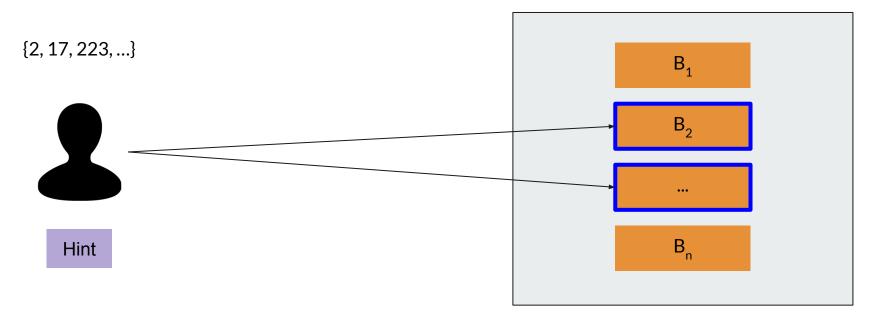
- 1. Relationship between Queried and Probed Entries
- 2. Discovering Good Batch Queries
- 3. Impossible Encoding of Database

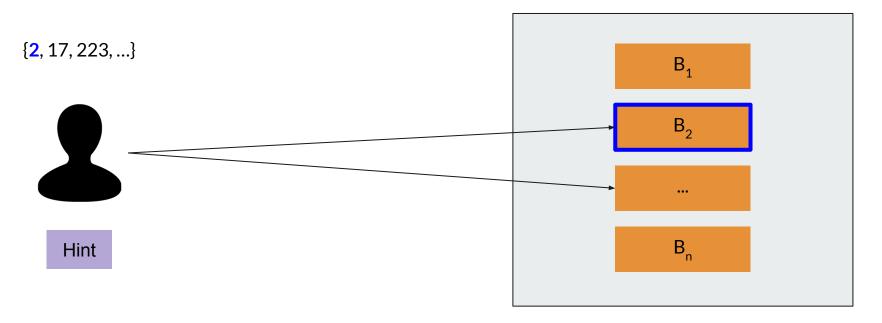
Lower Bound Proof Techniques

- 1. Relationship between Queried and Probed Entries
- 2. Discovering Good Batch Queries
- 3. Impossible Encoding of Database



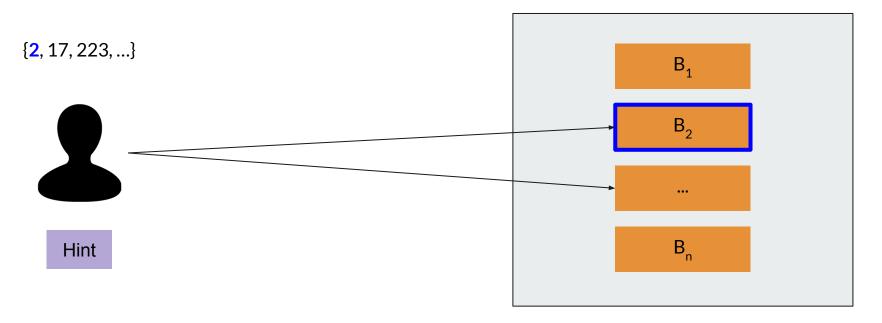


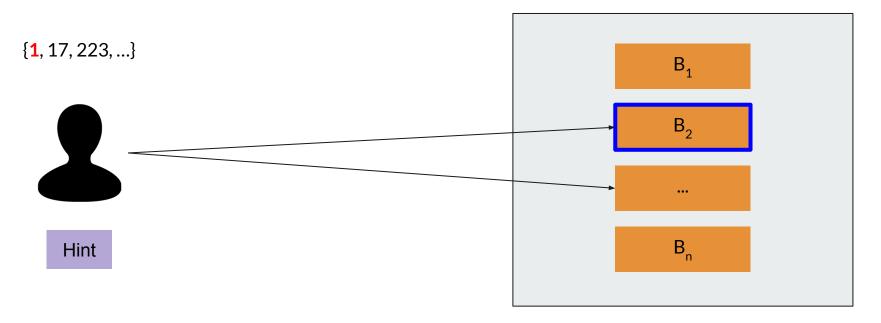




Assumption. Suppose at most half (n/2) entries are probed.

Question: If index i is queried, what is probability the i-th entry is probed?





Assumption. Suppose at most half (n/2) entries are probed.

Question: If index i is queried, what is probability the i-th entry is probed?

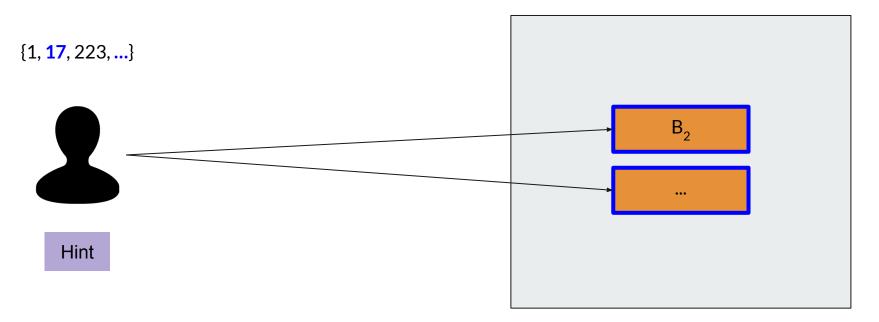
Pr[index i is probed | index i is queried] [∞] Pr[index i is probed | index i is not queried]

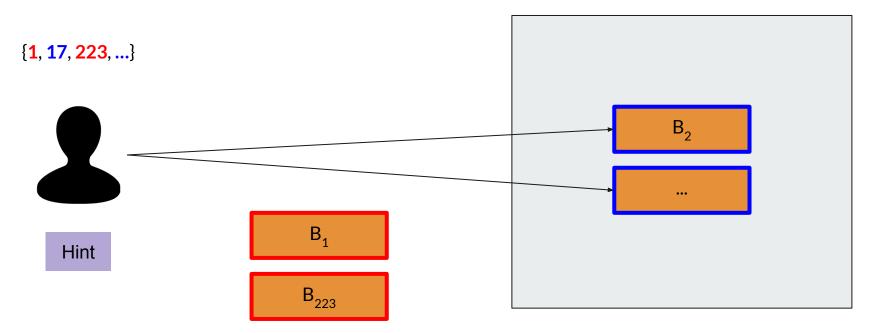
Assumption. Suppose at most half (n/2) entries are probed.

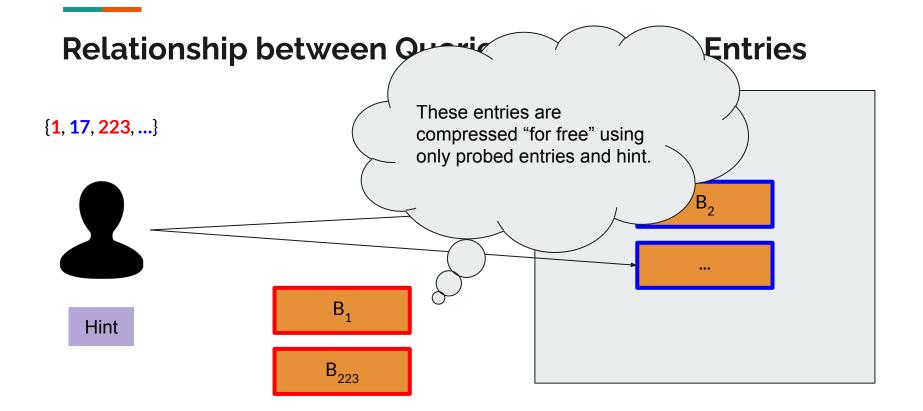
Question: If index i is queried, what is probability the i-th entry is probed?

Pr[index i is probed | index i is queried] ≈ Pr[index i is probed | index i is **not** queried]

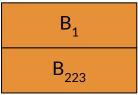
 $E[\# of queried indices that are probed] \le k/2$

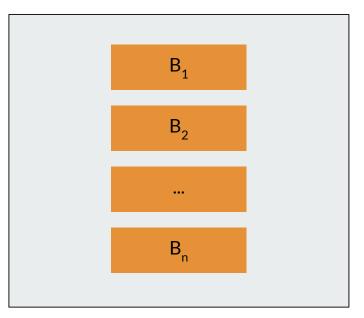






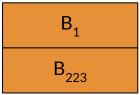
Hint

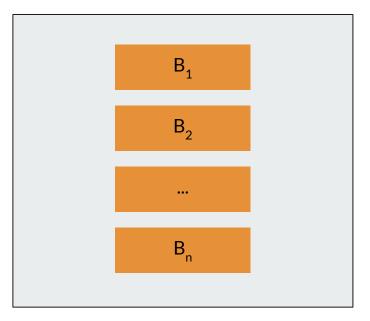


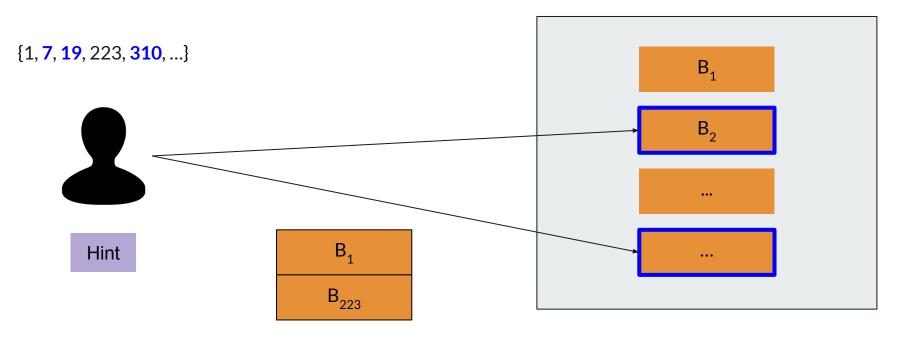


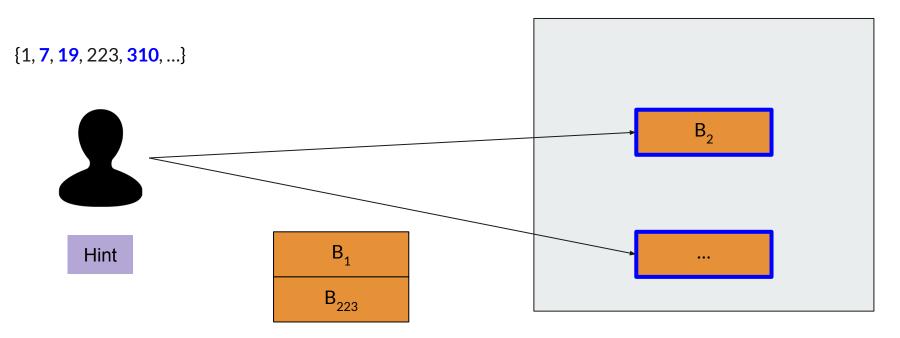
{1, 7, 19, 223, 310, ...}

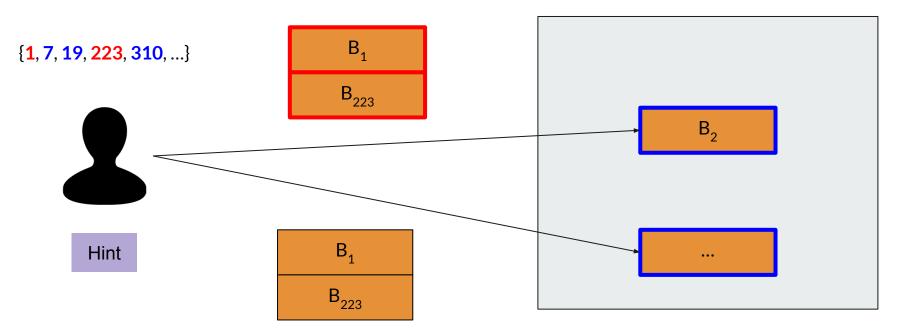
Hint



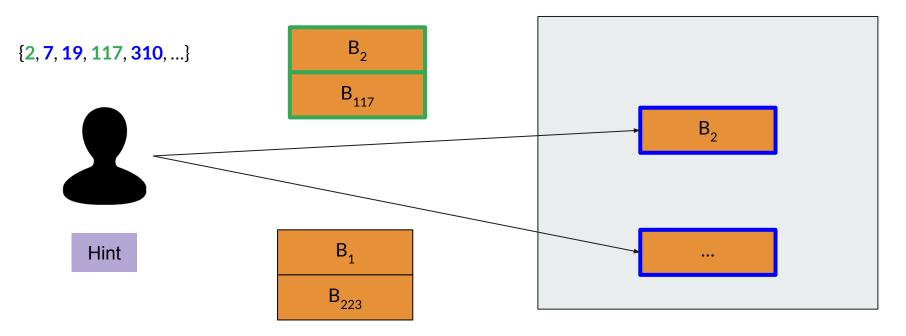








Goal: Find sequence of batch queries such that "free" entries are minimally overlapping.



Goal: Find sequence of batch queries such that "free" entries are minimally overlapping.

Lemma: Random batch queries satisfy this with high probability.

Lower Bound Proof Techniques

- 1. Relationship between Queried and Probed Entries
- 2. Discovering Good Batch Queries
- 3. Impossible Encoding of Database

Email: <u>kwlyeo@cs.columbia.edu</u>