Lower Bounds for (Batch) PIR with Private Preprocessing

Kevin Yeo

Google

Outline

(Batch) PIR with Private Preprocessing
Our Contributions

Lower Bound Proof

Private Information Retrieval

Private Information Retrieval

Index i

Private Information Retrieval

Private Information Retrieval

Private Information Retrieval

Comparison between PIR and ORAM

Comparison between PIR and ORAM

Linear Server Time Lower Bound

Thm. [Beimel, Ishai and Malkin '00]. In the standard PIR model, the server computation must be linear.

Linear Server Time Lower Bound

Thm. [Beimel, Ishai and Malkin '00]. In the standard PIR model, the server computation must be linear.

Two Ways to Circumvent Linear Lower Bound:

1. PIR with Preprocessing
2. Batch PIR

PIR with Private Preprocessing

Preprocessing Stage

PIR with Private Preprocessing

Preprocessing Stage

PIR with Private Preprocessing

Preprocessing Stage

PIR with Private Preprocessing

Query Stage
Index i

Hint

PIR with Private Preprocessing

Complexity Measures

Hint Size: The size of the r-bit hint stored by client.
Computational Time: The number of entries, \mathbf{t}, probed during queries.

PIR with Private Preprocessing

- Doubly-Efficient PIR
- [Boyle, Ishai, Pass, Wootters '17], [Canetti, Holmgren, Richelson '17]
- Private Stateful Information Retrieval
- [Patel, Persiano, Y'18]
- Offline-Online PIR
- [Corrigan-Gibbs, Kogan '20], [Shi, Aqeel, Chandrasekaran, Maggs '21], [Corrigan-Gibbs, Henzinger, Kogan '22] and many more...

PIR with Private Preprocessing

Thm. [Corrigan-Gibbs and Kogan '20]. There exists a construction with t * $\mathrm{r}=\mathrm{O}(\mathrm{n})$.
Sublinear Server Time: $\mathrm{t}+\mathrm{r}=\mathrm{O}\left(\mathbf{n}^{1 / 2}\right)$
Thm. [Corrigan-Gibbs and Kogan '20]. There exists a construction with t ${ }^{*} r=\Omega(n / p o l y \log (n))$.

Batch PIR

Index i

Batch PIR

Set of Indices
$i_{1}, i_{2}, \ldots, i_{k}$

Batch PIR

Set of Indices
$i_{1}, i_{2}, \ldots, i_{k}$
$\mathrm{B}_{i 1}$

Batch PIR

Thm. [Ishai, Kushilevitz, Ostrovsky and Sahai '04]. There exists a construction for k-query batch PIR requiring $t=O(n$ polylog(n)).

Amortized Server Time per Query: ~O(n/k)

Batch PIR with Private Preprocessing

PIR with Private Preprocessing: $\mathrm{t}^{*} \mathrm{r}=\mathrm{O}(\mathrm{n})$
Batch PIR: $t=\sim O(n / k)$

Can we combine private preprocessing and batch queries to obtain even faster server times?

Dream Batch PIR with Private Preprocessing

Dream Batch PIR with Private Preprocessing

Single-Query	k-Query	
No Preprocessing Private Preprocessing	$t=O(n)$	$t=\sim O(n)$
	$t * r=O(n)$	

Dream Batch PIR with Private Preprocessing

Single-Query	k-Query	
No Preprocessing Private Preprocessing	$t=O(n)$	$t=\sim O(n)$
	$t * r=O(n)$	$t * r=\sim O(n) ? ? ?$

Our Contributions: Lower Bound

Thm. For any computationally-secure,
L-server, k-query PIR with private
preprocessing where $L=O(1)$, it must be

- If $r \geq k$, then $t^{*} r=\Omega\left(n^{*} k\right)$.
- If $r<k$, then $t=\Omega(n)$.

This holds when the PIR scheme errs with probability at most $1 / 15$.

Our Contributions: Lower Bound

Thm. For any computationally-secure, L-server, single-query PIR with private preprocessing where $L=O(1)$, it must be

$$
\mathrm{t}^{*} \mathrm{r}=\Omega(\mathrm{n}) .
$$

Improves upon prior single-query lower bound of $\mathrm{t}^{*} \mathrm{r}=\Omega(\mathrm{n} /$ polylog(n))
[Corrigan-Gibbs, Kogan '20]

Standard PIR Model

Standard PIR Model

Replicate

Standard PIR Model

Permute

Standard PIR Model
No Encoding

Standard PIR Model

Arbitrary Encoding

Standard PIR Model vs. Cell Probe Model

Our Contributions: Lower Bound Barrier

Thm. If for every single-query, 2-server PIR with private preprocessing, it is holds that $t^{*} r=\Omega(n)$ in the cell probe model, then the online matrix-vector (OMV) conjecture is true.

Barrier: OMV is a core conjecture in fine-grained complexity.

Our Contributions: Upper Bound

Thm. Given any single-query PIR with
private preprocessing with $t^{*} r=f(n)$, there exists a k-query PIR with private
preprocessing satisfying

$$
t^{*} r=\sim O\left(k^{*} f(n)\right)
$$

Prior reductions required either multiple rounds or certain assumptions on single-query scheme.

Lower Bound Proof Techniques

1. Relationship between Queried and Probed Entries
2. Discovering Good Batch Queries
3. Impossible Encoding of Database

Lower Bound Proof Techniques

1. Relationship between Queried and Probed Entries
2. Discovering Good Batch Queries
3. Impossible Encoding of Database

Relationship between Queried and Probed Entries

$\{2,17,223, \ldots\}$

Hint

Relationship between Queried and Probed Entries

Relationship between Queried and Probed Entries

$\{2,17,223, \ldots\}$ Hint

Relationship between Queried and Probed Entries

$\{2,17,223, \ldots\}$

Hint

Relationship between Queried and Probed Entries

Assumption. Suppose at most half ($\mathrm{n} / 2$) entries are probed.
Question: If index i is queried, what is probability the i-th entry is probed?

Relationship between Queried and Probed Entries

$\{2,17,223, \ldots\}$

Hint

Relationship between Queried and Probed Entries

Relationship between Queried and Probed Entries

Assumption. Suppose at most half ($\mathrm{n} / 2$) entries are probed.
Question: If index i is queried, what is probability the i -th entry is probed?
$\operatorname{Pr}[$ index i is probed |index i is queried] $\approx \operatorname{Pr}[$ index i is probed |index i is not queried]

Relationship between Queried and Probed Entries

Assumption. Suppose at most half ($\mathrm{n} / 2$) entries are probed.
Question: If index i is queried, what is probability the i-th entry is probed?
$\operatorname{Pr}[$ index i is probed|index i is queried $] \approx \operatorname{Pr}[$ index i is probed | index i is not queried]
$\mathrm{E}[\#$ of queried indices that are probed $] \leq \mathrm{k} / 2$

Relationship between Queried and Probed Entries

$\{1,17,223, \ldots\}$

Relationship between Queried and Probed Entries

Discovering Good Batch Queries

Discovering Good Batch Queries
$\{1,7,19,223,310, \ldots\}$

Hint

Discovering Good Batch Queries

Discovering Good Batch Queries

Discovering Good Batch Queries

Discovering Good Batch Queries

Goal: Find sequence of batch queries such that "free" entries are minimally overlapping.

Discovering Good Batch Queries

Discovering Good Batch Queries

Goal: Find sequence of batch queries such that "free" entries are minimally overlapping.
Lemma: Random batch queries satisfy this with high probability.

Lower Bound Proof Techniques

1. Relationship between Queried and Probed Entries
2. Discovering Good Batch Queries
3. Impossible Encoding of Database

Questions?

Email: kwlyeo@cs.columbia.edu

