Generic attack on Duplex-Based AEAD Modes using Random Function Statistics

Henri Gilbert, Rachelle Heim Boissier, Louiza Khati, Yann Rotella

ANSSI, UVSQ

Eurocrypt 2023, Lyon, France

A generic attack against duplex-based AEAD modes

• A forgery attack

in most cases, the key is recovered as well

• Based on random function statistics

Previous works: average behaviour (see for example [BGW18]) Our work: average and exceptional behaviour

Our contribution

- Improving knowledge of the security of duplex-based modes
- Breaking a security claim of XOODYAK [DHPVAVK20] (XOODYAK still meets the security requirement of NIST's LWC competition)

Authenticated Encryption with Associated Data

- Either **block-cipher based**: (tweakable) block cipher + mode
- Or permutation-based: public permutation + keyed mode Ex: XOODYAK = XOODOO[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

- Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van Assche [BDPVA11]
- An adaptation to the AEAD context of the **Sponge construction** [BDPVA07]
 - Ex: SPONGEWRAP [BDPVA11], MonkeyWrap (KETJE) [BDPVAVK14], etc.

Duplex-based AEAD modes [BDPVA11]

- Permutation *P* operates on a state of length *b* = *r* + *c* bits, where *r* is the **rate** and *c* the **capacity**
- First *r* bits : the **outer state**
- Next c bits : the inner state

Duplex-based AEAD modes [BDPVA11]

- Permutation *P* operates on a state of length b = r + c bits, where *r* is the **rate** and *c* the **capacity**
- First *r* bits : the **outer state**
- Next c bits : the inner state

 $\frac{\text{Ex:}}{r = 192}$ c = 192

- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (*N*, *A*, *C*, *T*) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

Encryption

- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is **nonce-respecting** - there is **no release of unverified plaintext**
- Forgery attack: find a decryption query (*N*, *A*, *C*, *T*) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

Decryption/verification

- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (*N*, *A*, *C*, *T*) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

Decryption/verification

5 / 19

- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (*N*, *A*, *C*, *T*) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

Total time complexity of an attack

$$\mathscr{T} = \sigma_e + \sigma_d + q_P + t_{extra-op}$$

where

 σ_e is the number of online calls to *P* caused by encryption queries σ_d is the number of online calls to *P* caused by forgery attempts q_P is the number of offline queries to *P* or P^{-1}

Our motivation

Assuming a sufficiently large key/tag length:

 σ_d is the number of online calls to P caused by forgery attempts α is a small constant

Our motivation

Assuming a sufficiently large key/tag length:

 σ_d is the number of online calls to P caused by forgery attempts α is a small constant

Decrypting the ciphertext/tag pair ($C = C_0 \parallel \cdots \parallel C_{l-1}; T$)

7 / 19

Decrypting the ciphertext/tag pair ($C = C_0 \parallel \cdots \parallel C_{l-1}; T$)

Decrypting the long ciphertext/tag pair ($\beta_{\ell} = \underbrace{\beta || \cdots || \beta}_{\ell}$; T)

Decrypting the long ciphertext/tag pair ($\beta_{\ell} = \underbrace{\beta || \cdots || \beta}_{\ell}$; T)

The tag verification iterates the function $F_{\beta}: \mathbb{F}_2^c \to \mathbb{F}_2^c$

Decrypting the long ciphertext/tag pair ($\beta_{\ell} = \beta || \cdots || \beta; T$)

The tag verification iterates the function $F_{\beta}: \mathbb{F}_2^c \to \mathbb{F}_2^c$

- For a random β, we expect F_β to behave as a random function drawn in F_{2^c}.
- For each nonce, we expect x₀ to behave as a random point drawn in the graph of F_β.

Average...

- Size of the largest component: $2^c \times 0.76$.
- Cycle/tail length of a random point: $2^{\frac{c}{2}}\sqrt{\pi/8}$

[FO89]

The probability that a random function has a component

- of cycle length at most $\leq 2^{\frac{c}{2}-\nu} \rightarrow$ its cycle is **exceptionally small**:
- of size at least $\geq 2^c \times s \rightarrow$ this component is reasonably large;

$$p_{s,\nu} pprox \sqrt{rac{2(1-s)}{\pi s}} 2^{c-
u}$$
 [DeLaurentis87]

Ex: proba for s = 65% and $\nu = \frac{c}{4}$ (cycle of length $\leq 2^{\frac{c}{4}}$): $0.6 \times 2^{-\frac{c}{4}}$

Generic attack on Duplex-Based AEAD Modes using Random Function Statistics

Generic attack on Duplex-Based AEAD Modes using Random Function Statistics

If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)

If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x₀ belongs to it with good probability (≈ 0.65)

 \rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability

If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)

 \to If so, if ℓ is 'large enough' (say $\ell\approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability

 \rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ *i.e.* at most $2^{\frac{c}{4}}$ possible tags

If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)

 \to If so, if ℓ is 'large enough' (say $\ell\approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability

 \rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ *i.e.* at most $2^{\frac{c}{4}}$ possible tags

Resulting forgery attack: try the $\leq 2^{\frac{c}{4}}$ possible values for T.

Precomputation phase

Find β s.t. F_{β} has a large component ($\geq 0.65 \times 2^c$) with an exceptionnally small cycle ($\leq 2^{\frac{c}{4}}$), recover this cycle independent

Online phase

Submit $(N, A, C = \beta || \cdots || \beta, T)$ queries to the decryption oracle where:

- N is randomly sampled
- A is set to the empty string
- ℓ is 'big enough' ($\approx 2^{\frac{c}{2}}$)
- $T = P_{final}(\beta || x)$, for x in the small cycle

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find β s.t. F_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle

Complexity analysis:

- Drawing about $1/p_{s,\nu} \approx 2^{\frac{c}{4}}$ random β 's
- For each β , investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Precomputation phase: Find β s.t. F_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle

Complexity analysis:

- Drawing about $1/p_{s,\nu} \approx 2^{\frac{c}{4}}$ random β 's
- For each β , investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Note: the algorithm includes a test that the component is likely to be large enough.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \beta || \cdots || \beta, T)$ queries to the decryption

oracle where $T = P_{final} (\beta || x)$, x in the cycle.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta || \cdots || \beta}_{\ell}, T)$ queries to the decryption oracle where $T = P_{final}(\beta || x)$, x in the cycle.

Complexity analysis:

- x_0 belongs to the desired component with probability s = 65%
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell = 3 \times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta || \cdots || \beta}_{\ell}, T)$ queries to the decryption oracle where $T = P_{final}(\beta || x)$, x in the cycle.

Complexity analysis:

- x_0 belongs to the desired component with probability s = 65%
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell = 3 \times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Note: At the cost of a more expensive prec. phase, the complexity of this step can be brought close(r) to $2^{\frac{c}{2}}$.

• Our attack is somewhat heuristic based.

 \rightarrow Ex: corroborate that the F_{β} behave as random functions in practice.

• We implemented experiments with X00D00[12] as P.

• All our practical results match our heuristic-based results. \rightarrow Ex: the average tail length for a random F_{β} matches the average tail length for a random permutation.

• We also implemented the precomputation algorithm.

 \rightarrow We found some **valid** β **values** for *c* up to 40.

Our attack

- has total time complexity $\leq 21 \times 2^{\frac{3c}{4}}$;
- a probability of success $\ge 95\%$;
- can be transformed into a key recovery at a negligible extra cost if P_{init} is reversible (how: using the plaintext);
- is applicable to the modes of Norx v2, KETJE, KNOT and KEYAK
- breaks the 184-bit security claim made by the designers of XOODYAK with an attack of complexity 2¹⁴⁸.

Two main features frustrate our cryptanalysis:

- Key-dependent final phase. (ASCON, NORX v3)
- \rightarrow a correct guess on $x_{\ell-1}$ cannot be transformed into a forgery

• No outer state overwriting. (Beetle, SPARKLE, Subterranean) \rightarrow the decryption of $\underbrace{\beta || \cdots || \beta}_{\ell}$ does not correspond to the iteration of a function

Thank you for your attention :)

Any questions?