M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information

Isogeny-Based Cryptography

TB Fouotsa^a, **T Moriya**^b, C. Petit^{b,c}

Eurocrypt 2023, Lyon, France

^aEPFL, ^bUniversity of Birmingham, ^cUniversité Libre de Bruxelles

Outline

SIDH and the attacks

Countermeasures for SIDH attacks

Analysis of the countermeasures

Summary

SIDH and the attacks

Ambient field: \mathbb{F}_{p^2} , $p = 2^a 3^b - 1$. deg $\phi_A = 2^a$ deg $\phi_B = 3^b$ $E_0[2^a] = \langle P_A, Q_A \rangle$, $E_0[3^b] = \langle P_B, Q_B \rangle$ **SSI-T:** Given $E_0, P_A, Q_A, P_B, Q_B, E_B, \phi_B(P_A)$ and $\phi_B(Q_A)$, compute ϕ_B . Life was nice till 2016: year where a demon possessed the TP!

GPST 2016: adaptive attack on SIDH,

Petit 2017: torsion point attack on imbalanced SIDH, no impact on SIDH

dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.

FP 2022: new adaptive attack on SIDH using TPA, no impact on SIKE

SIDH attacks, final shot: SIDH/SIKE is broken in seconds...

All these attacks exploit torsion point information !!

Non exhaustive list: BdQL+ 2019, ...

SSI-T Problem: Given E_0 , $E[A] = \langle P, Q \rangle$, E, $\phi(P)$, $\phi(Q)$, compute ϕ .

Degree transformation: define a map Γ that can be used to transform ϕ to $\tau = \Gamma(\phi, input)$ such that:

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the A-torsion
- 3. τ can be recovered from its action on the A-torsion

The attack: Given a suitable description of Γ ,

- Use 2. and 3. to recover τ
- Use 1. to derive ϕ from τ

SIDH attacks (2022)

Assume $\phi : E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

where

- $\phi Id_4: E_0^4 \longrightarrow E_B^4 \text{ and } \hat{\phi} Id_4: E_B^4 \longrightarrow E_0^4$
- $\alpha_0 \in \operatorname{End}(E_0^4)$ and $\alpha_B \in \operatorname{End}(E_B^4)$ having the same matrix representation

$$M = \begin{bmatrix} a_1 & -a_2 & -a_3 & -a_4 \\ a_2 & a_1 & a_4 & -a_3 \\ a_3 & -a_4 & a_1 & a_2 \\ a_4 & a_3 & -a_2 & a_1 \end{bmatrix}$$

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the A-torsion
- 3. τ can be recovered from its action on the A-torsion

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B+a=A

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover $\phi \checkmark$
- 2. τ can be evaluated on the A-torsion
- 3. τ can be recovered from its action on the A-torsion

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ

2. τ can be evaluated on the A-torsion \checkmark

3. τ can be recovered from its action on the A-torsion

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ

2. τ can be evaluated on the A-torsion \checkmark

3. τ can be recovered from its action on the A-torsion \checkmark

SIDH attacks (2022)

Assume $\phi : E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover $\phi \checkmark$
- 2. τ can be evaluated on the A-torsion \checkmark
- 3. τ can be recovered from its action on the A-torsion \checkmark

Runs in polynomial time when $A^2 > B$

Countermeasures for SIDH attacks

SIDH attacks require:

- 1. degree of the secret isogeny;
- 2. torsion points information.

Two countermeasures:

- Masked-degree SIDH (MD-SIDH): the degree of the secret isogeny is secret;
- Masked torsion points SIDH (M-SIDH): the degree of the secret isogeny is fixed, but the torsion point images are scaled by a secret scalar.

Ambient field: \mathbb{F}_{p^2} , $p = \ell_1^{a_1} \cdots \ell_t^{a_t} q_1^{b_1} \cdots q_t^{b_t} f - 1$ $A := \prod_{i=1}^t \ell_i^{a_i} \qquad B := \prod_{i=1}^t q_i^{b_i}, \quad A \approx B.$ $\deg \phi_A = A', \quad A' | A, \qquad \deg \phi_B = B', \quad B' | B.$

$$\begin{split} \text{Ambient field: } \mathbb{F}_{p^2}, \, p &= \ell_1^{a_1} \cdots \ell_t^{a_t} q_1^{b_1} \cdots q_t^{b_t} f - 1 \\ A &:= \prod_{i=1}^t \ell_i^{a_i} \qquad B := \prod_{i=1}^t q_i^{b_i}, \quad A \approx B. \\ \deg \phi_A &= A', \quad A' | A, \qquad \deg \phi_B = B', \quad B' | B. \\ \text{Hide the degree from pairings: } \alpha \in (\mathbb{Z}/B\mathbb{Z})^{\times} \qquad \beta \in (\mathbb{Z}/A\mathbb{Z})^{\times} \end{split}$$

MD-SIDH

Ambient field: \mathbb{F}_{p^2} , $p = \ell_1^{a_1} \cdots \ell_t^{a_t} q_1^{b_1} \cdots q_t^{b_t} f - 1$ $A := \prod_{i=1}^t \ell_i^{a_i} \qquad B := \prod_{i=1}^t q_i^{b_i}, \quad A \approx B.$ $\deg \phi_A = A', \quad A' | A, \qquad \deg \phi_B = B', \quad B' | B.$ Hide the degree from pairings: $\alpha \in (\mathbb{Z}/B\mathbb{Z})^{\times} \quad \beta \in (\mathbb{Z}/A\mathbb{Z})^{\times}$ There are about $\prod_{i=1}^t (a_i + 1)$ possibilities of degrees!

M-SIDH

 $\begin{array}{ll} \text{Ambient field: } \mathbb{F}_{p^2}, \ p = \ell_1 \cdots \ell_t q_1 \cdots q_t f - 1 \\ A := \prod_{i=1}^t \ell_i \qquad B := \prod_{i=1}^t q_i, \quad A \approx B. \\ \deg \phi_A = A, \qquad \deg \phi_B = B. \\ E_0[A] = \langle P_A, Q_A \rangle, \quad E_0[B] = \langle P_B, Q_B \rangle \\ \text{Hide the exact TP images: } \alpha \in \mu(A) \quad \beta \in \mu(A) \end{array}$

M-SIDH

Ambient field: \mathbb{F}_{p^2} , $p = \ell_1 \cdots \ell_t q_1 \cdots q_t f - 1$ $A := \prod_{i=1}^t \ell_i$ $B := \prod_{i=1}^t q_i$, $A \approx B$. $\deg \phi_A = A$, $\deg \phi_B = B$. $E_0[A] = \langle P_A, Q_A \rangle$, $E_0[B] = \langle P_B, Q_B \rangle$ Hide the exact TP images: $\alpha \in \mu(A)$ $\beta \in \mu(A)$ $\alpha^2 \equiv 1 \pmod{A}$ has about 2^t solutions by CRT! In the SIDH attacks, we had

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix}$$

of degree A = B + a.

For M-SIDH, it becomes

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi}, \boldsymbol{a}) := \begin{bmatrix} \alpha_0 & [\boldsymbol{\alpha}] \hat{\boldsymbol{\phi}} I d_4 \\ -[\boldsymbol{\alpha}] \boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix}$$

whose degree is $a + \alpha^2 B = A - B + \alpha^2 B = A + B(\alpha^2 - 1) \approx BA^2.$

The attack would require $\sqrt{BA^2} \approx \sqrt{B}A$ TP information.

Analysis of the countermeasures

SIDH attacks : works when $A^2 > B$. **Goal:** Find (P'_A, Q'_A) and $(\phi_B(P'_A), \phi_B(Q'_A))$ s.t. $\operatorname{ord}(P'_A)^2 > B$. In M-SIDH, $B \approx A = (\sqrt{A})^2$.

Hence we can use less torsion $A' = \prod_{i=t'}^{t} \ell_i > \sqrt{A}$.

$$P'_A = [\prod_{i=1}^{t'-1} \ell_i] P_A, \ Q'_A = [\prod_{i=1}^{t'-1} \ell_i] Q_A.$$

Guessing the exact torsion point: $O(2^{t-t'})$

SIDH attacks : works when $A^2 > B$. **Goal:** Find (P'_A, Q'_A) and $(\phi_B(P'_A), \phi_B(Q'_A))$ s.t. $\operatorname{ord}(P'_A)^2 > B$. In M-SIDH, $B \approx A = (\sqrt{A})^2$.

Hence we can use less torsion $A' = \prod_{i=t'}^{t} \ell_i > \sqrt{A}$.

$$P'_A = [\prod_{i=1}^{t'-1} \ell_i] P_A, \ Q'_A = [\prod_{i=1}^{t'-1} \ell_i] Q_A.$$

Guessing the exact torsion point: $O(2^{t-t'})$

SIDH attacks : works when $A^2 > B$. **Goal:** Find (P'_A, Q'_A) and $(\phi_B(P'_A), \phi_B(Q'_A))$ s.t. $\operatorname{ord}(P'_A)^2 > B$. In M-SIDH, $B \approx A = (\sqrt{A})^2$.

Hence we can use less torsion $A' = \prod_{i=t'}^{t} \ell_i > \sqrt{A}$.

$$P'_A = [\prod_{i=1}^{t'-1} \ell_i] P_A, \ Q'_A = [\prod_{i=1}^{t'-1} \ell_i] Q_A.$$

Guessing the exact torsion point: $O(2^{t-t'})$

SIDH attacks : works when $A^2 > B$.

Goal: Find (P'_A, Q'_A) and $(\phi_B(P'_A), \phi_B(Q'_A))$ s.t. $\operatorname{ord}(P'_A)^2 > B$. In M-SIDH, $B \approx A = (\sqrt{A})^2$.

Hence we can use less torsion $A' = \prod_{i=t'}^t \ell_i > \sqrt{A}$.

$$P'_A = [\prod_{i=1}^{t'-1} \ell_i] P_A, \ Q'_A = [\prod_{i=1}^{t'-1} \ell_i] Q_A.$$

Guessing the exact torsion point: $O(2^{t-t'})$

Setting : E_0 has a small degree endomorphism θ .

Key : We can compute $\phi_B \circ \theta \circ \phi_B([\beta]\phi_B(P_A))$. With respect to the A torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta.$

SIDH attacks on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ torsions.

Setting : E_0 has a small degree endomorphism θ .

Key : We can compute $\phi_B \circ \theta \circ \hat{\phi_B}([\beta]\phi_B(P_A))$.

With respect to the A torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta.$

SIDH attacks on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ torsions.

Setting : E_0 has a small degree endomorphism θ .

Key : We can compute $\phi_B \circ \theta \circ \hat{\phi_B}([\beta]\phi_B(P_A))$. With respect to the *A* torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta.$

SIDH attacks on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ torsions.

Setting : E_0 has a small degree endomorphism θ .

Key : We can compute $\phi_B \circ \theta \circ \hat{\phi_B}([\beta]\phi_B(P_A))$. With respect to the *A* torsion, we have:

$$([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\boldsymbol{\tau}.$$

 $\operatorname{deg} {\pmb\tau} = B^2 \operatorname{deg} \theta.$

SIDH attacks on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ torsions.

Setting : E_0 has a small degree endomorphism θ .

Key : We can compute $\phi_B \circ \theta \circ \hat{\phi_B}([\beta]\phi_B(P_A))$. With respect to the *A* torsion, we have:

$$([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$$

 $\deg \boldsymbol{\tau} = B^2 \deg \theta.$

SIDH attacks on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ torsions. Consequence: No small endomorphisms in E_0 , if possible, no known endomorphism at all.

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.

Key : SIDH attacks also work on non-cyclic isogenies.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Denote the square free part of B' by B'_1 .

$$\begin{array}{rccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if } x \text{ is a quad. residue modulo } \ell_i^{a_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\Phi \colon \begin{array}{ccc} (\mathbb{Z}/2\mathbb{Z})^t & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ (b_1, \dots, b_t) & \longmapsto & (\chi_1(N_1), \dots, \chi_t(N_t)) \end{array}$$

where $N_i := q_1^{b_1} \cdots q_t^{b_t} \pmod{\ell_i^{a_i}}$.

Claims:

- The image of $\Phi \leftrightarrow$ Information of B'_1 leaked by Weil pairing
- Φ is almost injective.

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.

Key : SIDH attacks also work on non-cyclic isogenies.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Denote the square free part of B' by B'_1 .

 $\begin{array}{rccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if } x \text{ is a quad. residue modulo } \ell_i^{a_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$

$$\Phi \colon \begin{array}{ccc} (\mathbb{Z}/2\mathbb{Z})^t & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ (b_1, \dots, b_t) & \longmapsto & (\chi_1(N_1), \dots, \chi_t(N_t)) \end{array}$$

where $N_i := q_1^{b_1} \cdots q_t^{b_t} \pmod{\ell_i^{a_i}}$.

Claims:

- The image of $\Phi \leftrightarrow$ Information of B'_1 leaked by Weil pairing
- Φ is almost injective.

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.

Key : SIDH attacks also work on non-cyclic isogenies.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Denote the square free part of B' by B'_1 .

$$\begin{array}{rcccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if } x \text{ is a quad. residue modulo } \ell_i^{a_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\begin{aligned} \Phi \colon & (\mathbb{Z}/2\mathbb{Z})^t & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ & (b_1, \dots, b_t) & \longmapsto & (\chi_1 \left(N_1 \right), \dots, \chi_t \left(N_t \right)) \end{aligned} \\ \text{where } N_i &:= q_1^{b_1} \cdots q_t^{b_t} \pmod{\ell_i^{a_i}}. \end{aligned}$$

Claims:

- The image of $\Phi \leftrightarrow$ Information of B'_1 leaked by Weil pairing
- Φ is almost injective.

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.

Key : SIDH attacks also work on non-cyclic isogenies.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Denote the square free part of B' by B'_1 .

$$\begin{array}{rccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if } x \text{ is a quad. residue modulo } \ell_i^{a_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\Phi \colon \begin{array}{ccc} (\mathbb{Z}/2\mathbb{Z})^t & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ (b_1, \dots, b_t) & \longmapsto & (\chi_1 \left(N_1 \right), \dots, \chi_t \left(N_t \right)) \end{array}$$

where $N_i := q_1^{b_1} \cdots q_t^{b_t} \pmod{\ell_i^{a_i}}$.

Claims:

- The image of $\Phi \leftrightarrow$ Information of B'_1 leaked by Weil pairing
- Φ is almost injective.

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.

Key : SIDH attacks also work on non-cyclic isogenies.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Denote the square free part of B' by B'_1 .

$$\begin{array}{rcccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if } x \text{ is a quad. residue modulo } \ell_i^{a_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\Phi \colon \begin{array}{ccc} (\mathbb{Z}/2\mathbb{Z})^t & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ (b_1, \dots, b_t) & \longmapsto & (\chi_1 \left(N_1 \right), \dots, \chi_t \left(N_t \right)) \end{array}$$

where $N_i := q_1^{b_1} \cdots q_t^{b_t} \pmod{\ell_i^{a_i}}$.

Claims:

- The image of $\Phi \leftrightarrow$ Information of B'_1 leaked by Weil pairing
- Φ is almost injective.

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of B, $N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

 $[\beta]\phi_B(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi_B(P) = [\beta\beta_0^{-1}]\phi_0(P)$ $[\beta]\phi_B(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi_B(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$

Set $\beta' = \beta \beta_0^{-1} \mod A$.

 $(P, Q, [\beta]\phi_B(P), [\beta]\phi_B(Q))$ with B'_1 (MD-SIDH) || $(P, Q, [\beta']\phi_0(P), [\beta']\phi_0(Q))$ with deg $\phi_0 = N_B$ (M-SIDH)

Consequence: We can transform an MD-SIDH instance into an M-SIDH instance, and apply previous attacks.

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of $B, N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

$$[\beta]\phi_B(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi_B(P) = [\beta\beta_0^{-1}]\phi_0(P) [\beta]\phi_B(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi_B(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$$

Set $\beta' = \beta \beta_0^{-1} \mod A$.

 $(P, Q, [\beta]\phi_B(P), [\beta]\phi_B(Q))$ with B'_1 (MD-SIDH) || $(P, Q, [\beta']\phi_0(P), [\beta']\phi_0(Q))$ with deg $\phi_0 = N_B$ (M-SIDH)

Consequence: We can transform an MD-SIDH instance into an M-SIDH instance, and apply previous attacks.

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of $B, N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

$$[\beta]\phi_B(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi_B(P) = [\beta\beta_0^{-1}]\phi_0(P) [\beta]\phi_B(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi_B(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$$

Set $\beta' = \beta \beta_0^{-1} \mod A$.

 $(P, Q, [\beta]\phi_B(P), [\beta]\phi_B(Q))$ with B'_1 (MD-SIDH) || $(P, Q, [\beta']\phi_0(P), [\beta']\phi_0(Q))$ with deg $\phi_0 = N_B$ (M-SIDH)

Consequence: We can transform an MD-SIDH instance into an M-SIDH instance, and apply previous attacks.

Parameter selection:

- $A = \prod_{i=1}^{t} \ell_i \text{ s.t. } t t' \ge \lambda$ where $\prod_{i=t'}^{t} \ell_i > \sqrt{A}$ (t is at least 2λ)
- $\operatorname{End}(E_0)$ unknown

AES	NIST	p (in bits)	secret key	public key
128	level 1	5911	≈ 369 by tes	4434 bytes
192	level 3	9382	≈ 586 by tes	7037 bytes
256	level 5	13000	≈ 812 by tes	9750 bytes

Torsion points were there to make SIDH work. But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Torsion points were there to make SIDH work.

But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Torsion points were there to make SIDH work.

But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Thank you for listening! Any questions?