M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information

Isogeny-Based Cryptography

TB Fouotsa ${ }^{a}$, T Moriya b, C. Petit ${ }^{b, c}$

Eurocrypt 2023, Lyon, France

[^0]
Outline

SIDH and the attacks

Countermeasures for SIDH attacks

Analysis of the countermeasures

Summary

SIDH and the attacks

SIDH

Ambient field: $\mathbb{F}_{p^{2}}, p=2^{a} 3^{b}-1 . \quad \operatorname{deg} \phi_{A}=2^{a} \quad \operatorname{deg} \phi_{B}=3^{b}$
$E_{0}\left[2^{a}\right]=\left\langle P_{A}, Q_{A}\right\rangle, \quad E_{0}\left[3^{b}\right]=\left\langle P_{B}, Q_{B}\right\rangle$
SSI-T: Given $E_{0}, P_{A}, Q_{A}, P_{B}, Q_{B}, E_{B}, \phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$, compute ϕ_{B}.

SIDH's life span

Life was nice till 2016: year where a demon possessed the TP!

GPST 2016: adaptive attack on SIDH,
Petit 2017: torsion point attack on imbalanced SIDH, no impact on SIDH dQKL+ 2021: improvement on Petit TPA, but SIDH still safe. FP 2022: new adaptive attack on SIDH using TPA, no impact on SIKE

SIDH attacks, final shot: SIDH/SIKE is broken in seconds...

All these attacks exploit torsion point information !!

Non exhaustive list: BdQL+ 2019, ...

The framework of the attacks

SSI-T Problem: Given $E_{0}, E[A]=\langle P, Q\rangle, E, \phi(P), \phi(Q)$, compute ϕ.

Degree transformation: define a map Γ that can be used to transform ϕ to $\tau=\Gamma$ (ϕ, input $)$ such that:

1. Knowing $\tau=\Gamma$ (ϕ, input), one can recover ϕ
2. τ can be evaluated on the A-torsion
3. τ can be recovered from its action on the A-torsion

The attack: Given a suitable description of Γ,

- Use 2. and 3. to recover τ
- Use 1. to derive ϕ from τ

SIDH attacks (2022)

Assume $\phi: E_{0} \longrightarrow E_{B}$ has degree B and the TP have order A. Set $a=A-B=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right] \in \operatorname{End}\left(E_{0}^{4} \times E_{B}^{4}\right)
$$

where

- $\phi I d_{4}: E_{0}^{4} \longrightarrow E_{B}^{4}$ and $\hat{\phi} I d_{4}: E_{B}^{4} \longrightarrow E_{0}^{4}$
- $\alpha_{0} \in \operatorname{End}\left(E_{0}^{4}\right)$ and $\alpha_{B} \in \operatorname{End}\left(E_{B}^{4}\right)$ having the same matrix representation

$$
M=\left[\begin{array}{cccc}
a_{1} & -a_{2} & -a_{3} & -a_{4} \\
a_{2} & a_{1} & a_{4} & -a_{3} \\
a_{3} & -a_{4} & a_{1} & a_{2} \\
a_{4} & a_{3} & -a_{2} & a_{1}
\end{array}\right]
$$

SIDH attacks (2022)

Assume $\phi: E_{0} \longrightarrow E_{B}$ has degree B and the TP have order A. Set $a=A-B=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right] \in \operatorname{End}\left(E_{0}^{4} \times E_{B}^{4}\right)
$$

Fact: τ has degree $B+a=A$

1. Knowing $\tau=\Gamma$ (ϕ, input), one can recover ϕ
2. τ can be evaluated on the A-torsion
3. τ can be recovered from its action on the A-torsion

SIDH attacks (2022)

Assume $\phi: E_{0} \longrightarrow E_{B}$ has degree B and the TP have order A. Set $a=A-B=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right] \in \operatorname{End}\left(E_{0}^{4} \times E_{B}^{4}\right)
$$

Fact: τ has degree $B+a=A$

1. Knowing $\tau=\Gamma(\phi$, input $)$, one can recover ϕ
2. τ can be evaluated on the A-torsion
3. τ can be recovered from its action on the A-torsion

SIDH attacks (2022)

Assume $\phi: E_{0} \longrightarrow E_{B}$ has degree B and the TP have order A. Set $a=A-B=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right] \in \operatorname{End}\left(E_{0}^{4} \times E_{B}^{4}\right)
$$

Fact: τ has degree $B+a=A$

1. Knowing $\tau=\Gamma(\phi$, input $)$, one can recover ϕ
2. τ can be evaluated on the A-torsion
3. τ can be recovered from its action on the A-torsion

SIDH attacks (2022)

Assume $\phi: E_{0} \longrightarrow E_{B}$ has degree B and the TP have order A. Set $a=A-B=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right] \in \operatorname{End}\left(E_{0}^{4} \times E_{B}^{4}\right)
$$

Fact: τ has degree $B+a=A$

1. Knowing $\tau=\Gamma$ (ϕ, input), one can recover ϕ
2. τ can be evaluated on the A-torsion
3. τ can be recovered from its action on the A-torsion

SIDH attacks (2022)

Assume $\phi: E_{0} \longrightarrow E_{B}$ has degree B and the TP have order A. Set $a=A-B=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right] \in \operatorname{End}\left(E_{0}^{4} \times E_{B}^{4}\right)
$$

Fact: τ has degree $B+a=A$

1. Knowing $\tau=\Gamma(\phi$, input $)$, one can recover ϕ
2. τ can be evaluated on the A-torsion
3. τ can be recovered from its action on the A-torsion

Runs in polynomial time when $A^{2}>B$

Countermeasures for SIDH

 attacks
Countermeasures

SIDH attacks require:

1. degree of the secret isogeny;
2. torsion points information.

Two countermeasures:

- Masked-degree SIDH (MD-SIDH): the degree of the secret isogeny is secret;
- Masked torsion points SIDH (M-SIDH): the degree of the secret isogeny is fixed, but the torsion point images are scaled by a secret scalar.

MD-SIDH

MD-SIDH

Ambient field: $\mathbb{F}_{p^{2}}, p=\ell_{1}^{a_{1}} \cdots \ell_{t}^{a_{t}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}} f-1$
$A:=\prod_{i=1}^{t} \ell_{i}^{a_{i}} \quad B:=\prod_{i=1}^{t} q_{i}^{b_{i}}, \quad A \approx B$.
$\operatorname{deg} \phi_{A}=A^{\prime}, \quad A^{\prime}\left|A, \quad \operatorname{deg} \phi_{B}=B^{\prime}, \quad B^{\prime}\right| B$.

MD-SIDH

$$
\begin{gathered}
E_{0}, P_{A}, Q_{A}, P_{B}, Q_{B} \xrightarrow{\phi_{A}} E_{A},[\alpha] \phi_{A}\left(P_{B}\right),[\alpha] \phi_{A}\left(Q_{B}\right) \\
E_{B},[\beta] \phi_{B}\left(P_{A}\right),[\beta] \phi_{B}\left(Q_{A}\right) \xrightarrow[\phi_{A}{ }^{\prime}]{ } \xrightarrow[E_{A B}]{\phi_{B}^{\prime}}
\end{gathered}
$$

Ambient field: $\mathbb{F}_{p^{2}}, p=\ell_{1}^{a_{1}} \cdots \ell_{t}^{a_{t}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}} f-1$
$A:=\prod_{i=1}^{t} \ell_{i}^{a_{i}} \quad B:=\prod_{i=1}^{t} q_{i}^{b_{i}}, \quad A \approx B$.
$\operatorname{deg} \phi_{A}=A^{\prime}, \quad A^{\prime}\left|A, \quad \operatorname{deg} \phi_{B}=B^{\prime}, \quad B^{\prime}\right| B$.
Hide the degree from pairings: $\alpha \in(\mathbb{Z} / B \mathbb{Z})^{\times} \quad \beta \in(\mathbb{Z} / A \mathbb{Z})^{\times}$

MD-SIDH

$$
E_{0}, P_{A}, Q_{A}, P_{B}, Q_{B} \xrightarrow{\phi_{A}} E_{A},[\alpha] \phi_{A}\left(P_{B}\right),[\alpha] \phi_{A}\left(Q_{B}\right)
$$

$$
E_{B},[\beta] \phi_{B}\left(P_{A}\right),[\beta] \phi_{B}\left(Q_{A}\right) \xrightarrow[\phi_{A}^{\prime}]{\downarrow}
$$

Ambient field: $\mathbb{F}_{p^{2}}, p=\ell_{1}^{a_{1}} \cdots \ell_{t}^{a_{t}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}} f-1$
$A:=\prod_{i=1}^{t} \ell_{i}^{a_{i}} \quad B:=\prod_{i=1}^{t} q_{i}^{b_{i}}, \quad A \approx B$.
$\operatorname{deg} \phi_{A}=A^{\prime}, \quad A^{\prime}\left|A, \quad \operatorname{deg} \phi_{B}=B^{\prime}, \quad B^{\prime}\right| B$.
Hide the degree from pairings: $\alpha \in(\mathbb{Z} / B \mathbb{Z})^{\times} \quad \beta \in(\mathbb{Z} / A \mathbb{Z})^{\times}$
There are about $\prod_{i=1}^{t}\left(a_{i}+1\right)$ possibilities of degrees!

M-SIDH

$$
\begin{aligned}
& E_{0}, P_{A}, Q_{A}, P_{B}, Q_{B} \xrightarrow{\phi_{A}} E_{A},[\alpha] \phi_{A}\left(P_{B}\right),[\alpha] \phi_{A}\left(Q_{B}\right) \\
& E_{B},[\beta] \phi_{B}\left(P_{A}\right),[\beta] \phi_{B}\left(Q_{A}\right) \xrightarrow[\phi_{A}^{\prime}]{E_{A B}^{\prime}} \\
& \text { Ambient field: } \mathbb{F}_{p^{2}}, p=\ell_{1} \cdots \ell_{t} q_{1} \cdots q_{t} f-1
\end{aligned}
$$

Ambient field: $\mathbb{F}_{p^{2}}, p=\ell_{1} \cdots \ell_{t} q_{1} \cdots q_{t} f-1$
$A:=\prod_{i=1}^{t} \ell_{i} \quad B:=\prod_{i=1}^{t} q_{i}, \quad A \approx B$.
$\operatorname{deg} \phi_{A}=A, \quad \operatorname{deg} \phi_{B}=B$.
$E_{0}[A]=\left\langle P_{A}, Q_{A}\right\rangle, \quad E_{0}[B]=\left\langle P_{B}, Q_{B}\right\rangle$
Hide the exact TP images: $\quad \alpha \in \mu(A) \quad \beta \in \mu(A)$

M-SIDH

$$
E_{0}, P_{A}, Q_{A}, P_{B}, Q_{B} \xrightarrow{\phi_{A}} E_{A},[\alpha] \phi_{A}\left(P_{B}\right),[\alpha] \phi_{A}\left(Q_{B}\right)
$$

Ambient field: $\mathbb{F}_{p^{2}}, p=\ell_{1} \cdots \ell_{t} q_{1} \cdots q_{t} f-1$
$A:=\prod_{i=1}^{t} \ell_{i} \quad B:=\prod_{i=1}^{t} q_{i}, \quad A \approx B$.
$\operatorname{deg} \phi_{A}=A, \quad \operatorname{deg} \phi_{B}=B$.
$E_{0}[A]=\left\langle P_{A}, Q_{A}\right\rangle, \quad E_{0}[B]=\left\langle P_{B}, Q_{B}\right\rangle$
Hide the exact TP images: $\quad \alpha \in \mu(A) \quad \beta \in \mu(A)$
$\alpha^{2} \equiv 1(\bmod A)$ has about 2^{t} solutions by CRT!

Does this work?

In the SIDH attacks, we had

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & \hat{\phi} I d_{4} \\
-\phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right]
$$

of degree $A=B+a$.
For M-SIDH, it becomes

$$
\tau=\Gamma(\phi, a):=\left[\begin{array}{cc}
\alpha_{0} & {[\alpha] \hat{\phi} I d_{4}} \\
-[\alpha] \phi I d_{4} & \hat{\alpha}_{B}
\end{array}\right]
$$

whose degree is
$a+\alpha^{2} B=A-B+\alpha^{2} B=A+B\left(\alpha^{2}-1\right) \approx B A^{2}$.
The attack would require $\sqrt{B A^{2}} \approx \sqrt{B} A$ TP information.

Analysis of the countermeasures

Case of M-SIDH (General case)

SIDH attacks: works when $A^{2}>B$.
Goal: Find $\left(P_{A}^{\prime}, Q_{A}^{\prime}\right)$ and $\left(\phi_{B}\left(P_{A}^{\prime}\right), \phi_{B}\left(Q_{A}^{\prime}\right)\right)$ s.t. $\operatorname{ord}\left(P_{A}^{\prime}\right)^{2}>B$.
In M-SIDH, $B \approx A=(\sqrt{A})^{2}$.
Hence we can use less torsion $A^{\prime}=\prod_{i=t^{\prime}}^{t} \ell_{i}>\sqrt{A}$.
$P_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] P_{A}, Q_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \rho_{i} 1 Q_{A}\right.$.
Guessing the exact torsion point: $O\left(2^{t-t^{\prime}}\right)$
Consequence: A and B must have at least 2λ distinct prime factors each.

Case of M-SIDH (General case)

SIDH attacks: works when $A^{2}>B$.
Goal: Find $\left(P_{A}^{\prime}, Q_{A}^{\prime}\right)$ and $\left(\phi_{B}\left(P_{A}^{\prime}\right), \phi_{B}\left(Q_{A}^{\prime}\right)\right)$ s.t. $\operatorname{ord}\left(P_{A}^{\prime}\right)^{2}>B$.
In M-SIDH, $B \approx A=(\sqrt{A})^{2}$.
Hence we can use less torsion $A^{\prime}=\prod_{i=t^{\prime}}^{t} \ell_{i}>\sqrt{A}$.
$P_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] P_{A}, Q_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] Q_{A}$.
Guessing the exact torsion point: $O\left(2^{t-t^{\prime}}\right)$

Case of M-SIDH (General case)

SIDH attacks: works when $A^{2}>B$.
Goal: Find $\left(P_{A}^{\prime}, Q_{A}^{\prime}\right)$ and $\left(\phi_{B}\left(P_{A}^{\prime}\right), \phi_{B}\left(Q_{A}^{\prime}\right)\right)$ s.t. $\operatorname{ord}\left(P_{A}^{\prime}\right)^{2}>B$.
In M-SIDH, $B \approx A=(\sqrt{A})^{2}$.
Hence we can use less torsion $A^{\prime}=\prod_{i=t^{\prime}}^{t} \ell_{i}>\sqrt{A}$.
$P_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] P_{A}, Q_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] Q_{A}$.
Guessing the exact torsion point: $O\left(2^{t-t^{\prime}}\right)$

Case of M-SIDH (General case)

SIDH attacks: works when $A^{2}>B$.
Goal: Find $\left(P_{A}^{\prime}, Q_{A}^{\prime}\right)$ and $\left(\phi_{B}\left(P_{A}^{\prime}\right), \phi_{B}\left(Q_{A}^{\prime}\right)\right)$ s.t. $\operatorname{ord}\left(P_{A}^{\prime}\right)^{2}>B$.
In M-SIDH, $B \approx A=(\sqrt{A})^{2}$.
Hence we can use less torsion $A^{\prime}=\prod_{i=t^{\prime}}^{t} \ell_{i}>\sqrt{A}$.
$P_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] P_{A}, Q_{A}^{\prime}=\left[\prod_{i=1}^{t^{\prime}-1} \ell_{i}\right] Q_{A}$.
Guessing the exact torsion point: $O\left(2^{t-t^{\prime}}\right)$
Consequence: A and B must have at least 2λ distinct prime factors each.

Case of M-SIDH (E_{0} has a special endomorphism)

Setting : E_{0} has a small degree endomorphism θ.

Case of M-SIDH (E_{0} has a special endomorphism)

Setting : E_{0} has a small degree endomorphism θ.

Key : We can compute $\phi_{B} \circ \theta \circ \hat{\phi_{B}}\left([\beta] \phi_{B}\left(P_{A}\right)\right)$.
With respect to the A torsion, we have:

SIDH attacks on τ requires : $\sqrt{\operatorname{deg} \tau}=B \sqrt{\operatorname{deg} \theta} \approx B$ torsions. Consequence: No small endomorphisms in E_{0}, if possible, no known endomorphism at all.

Case of M-SIDH (E_{0} has a special endomorphism)

Setting : E_{0} has a small degree endomorphism θ.

Key : We can compute $\phi_{B} \circ \theta \circ \hat{\phi_{B}}\left([\beta] \phi_{B}\left(P_{A}\right)\right)$.
With respect to the A torsion, we have:

$$
\left([\beta] \phi_{B}\right) \circ \theta \circ\left(\widehat{[\beta] \phi_{B}}\right)=\left[\beta^{2}\right] \circ \phi_{B} \circ \theta \circ \widehat{\phi_{B}} \equiv \phi_{B} \circ \theta \circ \widehat{\phi_{B}}=: \tau
$$

SIDH attacks on τ requires : $\sqrt{\operatorname{deg} \tau}=B \sqrt{\operatorname{deg} \theta} \approx B$ torsions. Consequence: No small endomorphisms in E_{0}, if possible, no known endomorphism at all.

Case of M-SIDH (E_{0} has a special endomorphism)

Setting : E_{0} has a small degree endomorphism θ.

Key : We can compute $\phi_{B} \circ \theta \circ \hat{\phi_{B}}\left([\beta] \phi_{B}\left(P_{A}\right)\right)$.
With respect to the A torsion, we have:

$$
\left([\beta] \phi_{B}\right) \circ \theta \circ\left(\widehat{\left([\beta] \phi_{B}\right.}\right)=\left[\beta^{2}\right] \circ \phi_{B} \circ \theta \circ \widehat{\phi_{B}} \equiv \phi_{B} \circ \theta \circ \widehat{\phi_{B}}=: \tau
$$

$\operatorname{deg} \tau=B^{2} \operatorname{deg} \theta$.
SIDH attacks on τ requires : $\sqrt{\operatorname{deg} \tau}=B \sqrt{\operatorname{deg} \theta} \approx B$ torsions.
known endomorphism at all.

Case of M-SIDH (E_{0} has a special endomorphism)

Setting : E_{0} has a small degree endomorphism θ.

Key : We can compute $\phi_{B} \circ \theta \circ \hat{\phi_{B}}\left([\beta] \phi_{B}\left(P_{A}\right)\right)$.
With respect to the A torsion, we have:

$$
\left([\beta] \phi_{B}\right) \circ \theta \circ\left(\widehat{\left([\beta] \phi_{B}\right.}\right)=\left[\beta^{2}\right] \circ \phi_{B} \circ \theta \circ \widehat{\phi_{B}} \equiv \phi_{B} \circ \theta \circ \widehat{\phi_{B}}=: \tau
$$

$\operatorname{deg} \tau=B^{2} \operatorname{deg} \theta$.
SIDH attacks on τ requires : $\sqrt{\operatorname{deg} \tau}=B \sqrt{\operatorname{deg} \theta} \approx B$ torsions.
Consequence: No small endomorphisms in E_{0}, if possible, no known endomorphism at all.

Case of MD-SIDH (1/2)

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.
Key : SIDH attacks also work on non-cyclic isogenies.
Recall: $\operatorname{deg} \phi_{B}=B^{\prime} \mid B$, TP are scaled by $\beta \in \mathbb{Z} / B \mathbb{Z}$.
Denote the square free part of B^{\prime} by B_{1}^{\prime}.

where $N_{i}:=q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}\left(\bmod \ell_{i}^{a_{i}}\right)$.

Claims:

- The image of $\Phi \leftrightarrow$ Information of B_{1}^{\prime} leaked by Weil pairing
- Φ is almost injective.

Case of MD-SIDH (1/2)

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.
Key : SIDH attacks also work on non-cyclic isogenies.
Recall: $\operatorname{deg} \phi_{B}=B^{\prime} \mid B$, TP are scaled by $\beta \in \mathbb{Z} / B \mathbb{Z}$.
Denote the square free part of B^{\prime} by B_{1}^{\prime}.

where $N_{i}:=q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}\left(\bmod \ell_{i}^{a_{i}}\right)$.
Claims:

- The image of $\Phi \leftrightarrow$ Information of B_{1}^{\prime} leaked by Weil pairing
- Φ is almost injective.

Case of MD-SIDH $(1 / 2)$

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.
Key : SIDH attacks also work on non-cyclic isogenies.
Recall: $\operatorname{deg} \phi_{B}=B^{\prime} \mid B$, TP are scaled by $\beta \in \mathbb{Z} / B \mathbb{Z}$.
Denote the square free part of B^{\prime} by B_{1}^{\prime}.
$\chi_{i}:\left(\mathbb{Z} / \ell_{i}^{a_{i}} \mathbb{Z}\right)^{\times} \longrightarrow \mathbb{Z} / 2 \mathbb{Z}$
$x \longmapsto \begin{cases}1 & \text { if } x \text { is a quad. residue modulo } \ell_{i}^{a_{i}} ; \\ 0 & \text { if not. }\end{cases}$

$$
\Phi: \begin{array}{ccc}
(\mathbb{Z} / 2 \mathbb{Z})^{t} & \longrightarrow & (\mathbb{Z} / 2 \mathbb{Z})^{t} \\
\left(b_{1}, \ldots, b_{t}\right) & \longmapsto & \left(\chi_{1}\left(N_{1}\right), \ldots, \chi_{t}\left(N_{t}\right)\right)
\end{array}
$$

where $N_{i}:=q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}\left(\bmod \ell_{i}^{a_{i}}\right)$.
Claims:

- The image of $\Phi \leftrightarrow$ Information of B_{1}^{\prime} leaked by Weil pairing - Φ is almost injective.

Case of MD-SIDH (1/2)

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.
Key : SIDH attacks also work on non-cyclic isogenies.
Recall: $\operatorname{deg} \phi_{B}=B^{\prime} \mid B$, TP are scaled by $\beta \in \mathbb{Z} / B \mathbb{Z}$.
Denote the square free part of B^{\prime} by B_{1}^{\prime}.
$\chi_{i}:\left(\mathbb{Z} / \ell_{i}^{a_{i}} \mathbb{Z}\right)^{\times} \longrightarrow \mathbb{Z} / 2 \mathbb{Z}$

$$
x \longmapsto \begin{cases}1 & \text { if } x \text { is a quad. residue modulo } \ell_{i}^{a_{i}} ; \\ 0 & \text { if not. }\end{cases}
$$

$$
\Phi: \begin{array}{ccc}
(\mathbb{Z} / 2 \mathbb{Z})^{t} & \longrightarrow & (\mathbb{Z} / 2 \mathbb{Z})^{t} \\
\left(b_{1}, \ldots, b_{t}\right) & \longmapsto & \left(\chi_{1}\left(N_{1}\right), \ldots, \chi_{t}\left(N_{t}\right)\right)
\end{array}
$$

where $N_{i}:=q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}\left(\bmod \ell_{i}^{a_{i}}\right)$.
Claims:

- The image of $\Phi \leftrightarrow$ Information of B_{1}^{\prime} leaked by Weil pairing
- Φ is almost injective.

Case of MD-SIDH (1/2)

Sec. of MD-SIDH reduces to of M-SIDH under SIDH attacks.
Key : SIDH attacks also work on non-cyclic isogenies.
Recall: $\operatorname{deg} \phi_{B}=B^{\prime} \mid B$, TP are scaled by $\beta \in \mathbb{Z} / B \mathbb{Z}$.
Denote the square free part of B^{\prime} by B_{1}^{\prime}.
$\chi_{i}:\left(\mathbb{Z} / \ell_{i}^{a_{i}} \mathbb{Z}\right)^{\times} \longrightarrow \mathbb{Z} / 2 \mathbb{Z}$

$$
x \longmapsto \begin{cases}1 & \text { if } x \text { is a quad. residue modulo } \ell_{i}^{a_{i}} \\ 0 & \text { if not. }\end{cases}
$$

$$
\begin{array}{cccc}
\Phi: & (\mathbb{Z} / 2 \mathbb{Z})^{t} & \longrightarrow & (\mathbb{Z} / 2 \mathbb{Z})^{t} \\
\left(b_{1}, \ldots, b_{t}\right) & \longmapsto & \left(\chi_{1}\left(N_{1}\right), \ldots, \chi_{t}\left(N_{t}\right)\right)
\end{array}
$$

where $N_{i}:=q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}\left(\bmod \ell_{i}^{a_{i}}\right)$.
Claims:

- The image of $\Phi \leftrightarrow$ Information of B_{1}^{\prime} leaked by Weil pairing
- Φ is almost injective.

Consequence: We can recover B_{1}^{\prime} by using Weil pairing.

Case of MD-SIDH (2/2)

Assume that we know B_{1}^{\prime}. Set $B_{0}=\max \left\{n|n| B, n^{2} B_{1}^{\prime} \leq B\right\}$. Then $\exists \beta_{0}$, divisor of $B, N_{B}:=B_{0}^{2} B_{1}^{\prime}=\beta_{0}^{2} B^{\prime} \leq B$.

Case of MD-SIDH (2/2)

Assume that we know B_{1}^{\prime}. Set $B_{0}=\max \left\{n|n| B, n^{2} B_{1}^{\prime} \leq B\right\}$. Then $\exists \beta_{0}$, divisor of $B, N_{B}:=B_{0}^{2} B_{1}^{\prime}=\beta_{0}^{2} B^{\prime} \leq B$.
Set $\phi_{0}=\left[\beta_{0}\right] \circ \phi_{B}$, then $\operatorname{deg}\left(\phi_{0}\right)=N_{B}$ is known.

$$
\begin{aligned}
& {[\beta] \phi_{B}(P)=\left[\left(\beta \beta_{0}^{-1}\right) \cdot \beta_{0}\right] \phi_{B}(P)=\left[\beta \beta_{0}^{-1}\right] \phi_{0}(P)} \\
& {[\beta] \phi_{B}(Q)=\left[\left(\beta \beta_{0}^{-1}\right) \cdot \beta_{0}\right] \phi_{B}(Q)=\left[\beta \beta_{0}^{-1}\right] \phi_{0}(Q)}
\end{aligned}
$$

Set $\beta^{\prime}=\beta \beta_{0}^{-1} \bmod A$.

$$
\left(P, Q,[\beta] \phi_{B}(P),[\beta] \phi_{B}(Q)\right) \text { with } B_{1}^{\prime}(\mathrm{MD}-\mathrm{SIDH})
$$

Case of MD-SIDH (2/2)

Assume that we know B_{1}^{\prime}. Set $B_{0}=\max \left\{n|n| B, n^{2} B_{1}^{\prime} \leq B\right\}$. Then $\exists \beta_{0}$, divisor of $B, N_{B}:=B_{0}^{2} B_{1}^{\prime}=\beta_{0}^{2} B^{\prime} \leq B$.
Set $\phi_{0}=\left[\beta_{0}\right] \circ \phi_{B}$, then $\operatorname{deg}\left(\phi_{0}\right)=N_{B}$ is known.

$$
\begin{aligned}
& {[\beta] \phi_{B}(P)=\left[\left(\beta \beta_{0}^{-1}\right) \cdot \beta_{0}\right] \phi_{B}(P)=\left[\beta \beta_{0}^{-1}\right] \phi_{0}(P)} \\
& {[\beta] \phi_{B}(Q)=\left[\left(\beta \beta_{0}^{-1}\right) \cdot \beta_{0}\right] \phi_{B}(Q)=\left[\beta \beta_{0}^{-1}\right] \phi_{0}(Q)}
\end{aligned}
$$

Set $\beta^{\prime}=\beta \beta_{0}^{-1} \bmod A$.

$$
\begin{gathered}
\left(P, Q,[\beta] \phi_{B}(P),[\beta] \phi_{B}(Q)\right) \text { with } B_{1}^{\prime}(\mathrm{MD}-\mathrm{SIDH}) \\
\left(P, Q,\left[\beta^{\prime}\right] \phi_{0}(P),\left[\beta^{\prime}\right] \phi_{0}(Q)\right) \text { with } \operatorname{deg} \phi_{0}=N_{B}(\mathrm{M}-\mathrm{SIDH})
\end{gathered}
$$

Consequence: We can transform an MD-SIDH instance into an M-SIDH instance, and apply previous attacks.

Parameters size

Parameter selection:

- $A=\prod_{i=1}^{t} \ell_{i}$ s.t. $t-t^{\prime} \geq \lambda$ where $\prod_{i=t^{\prime}}^{t} \ell_{i}>\sqrt{A}$ (t is at least 2λ)
- $\operatorname{End}\left(E_{0}\right)$ unknown

AES	NIST	p (in bits)	secret key	public key
128	level 1	5911	≈ 369 bytes 4434 bytes	
192	level 3	9382	≈ 586 bytes	7037 bytes
256	level 5	13000	≈ 812 bytes	9750 bytes

Summary

Summary

Torsion points were there to make SIDH work.
But today, they killed SIDH.
Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the anolvcis: field characteristic must be at least ≈ 6000 bits!

Summary

Torsion points were there to make SIDH work.
But today, they killed SIDH.
Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least
≈ 6000 bits !

Summary

Torsion points were there to make SIDH work.
But today, they killed SIDH.
Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Thank you for listening! Any questions?

[^0]: ${ }^{a}$ EPFL, ${ }^{b}$ University of Birmingham, ${ }^{c}$ Université Libre de Bruxelles

