Meet－in－the－Middle Preimage Attacks on Sponge－based Hashing

Lingyue Qin ${ }^{1}$ Jialiang Hua ${ }^{1}$ Xiaoyang Dong ${ }^{1(\boxtimes)}$ Hailun Yan ${ }^{2}$ Xiaoyun Wang ${ }^{1}$
${ }^{1}$ Tsinghua University
${ }^{2}$ University of Chinese Academy of Sciences
（9）
University of Chinese Academy of Sciences

April 25， 2023

Outline

(1) Introduction to the Meet-in-the-Middle Attack
(2) MITM Attack on Sponge-based Hashing: Framework \& Automatic Tool
(3) Applications to Keccak, Xoodyak and Ascon
4. Conclusion and Future Work
(1) Introduction to the Meet-in-the-Middle Attack
(2) MITM Attack on Sponge-based Hashing: Framework \& Automatic Tool
(3) Applications to Keccak, Xoodyak and Ascon
4. Conclusion and Future Work

Meet-in-the-Middle (MITM) Attack

- Proposed by Diffie and Hellman in 1977 [DH77]
- A generic technique for cryptanalysis of symmetric-key primitives
- An efficient exhaustive search way based on the birthday attack

Example: Double Encryption

- $C=E_{K}(P)=F_{K_{2}}\left(F_{K_{1}}(P)\right), K=K_{1} \| K_{2}$
- The time complexity of a naive exhaust search: $2^{\left|K_{1}\right|+\left|K_{2}\right|}$
- The time complexity of MITM attach: $2^{\left|K_{1}\right|+\left|K_{2}\right|-n}$
- Meet in the middle: $F_{K_{1}}(P) ?=F_{K_{2}}^{-1}(C)$

Meet-in-the-Middle (MITM) Attack

- It has been widely applied on block ciphers and hash functions.
- Various techniques improve the framework of MitM attack
- internal state guessing, splice-and-cut, initial structure, bicliques, 3subset MitM, indirect-partial matching, sieve-in-the-middle, match-box, dissection, differential-aided MitM, nonlinear constrained neutral words...
- There are also some MILP-based automatic tools.
- Sasaki at IWSEC 2018, Bao et al. at EUROCRYPT 2021 and CRYPTO 2022, Dong et al. at CRYPTO 2021...
- The MITM attack and its variants have broken:
- MD4, GOST, MD5, HAVAL, GEA-1/2 ...

MITM Preimage Attacks on Hash Functions

Most MITM attacks targeted on Merkle-Damgård hash functions

- The feed-forward mechanism \rightarrow A closed computation path

Merkle-Damgård construction

The compression functions f : block cipher + PGV modes

The Splice-and-Cut MITM attacks

- The chunk separation.
- The neutral sets (\square / \square): the degree of freedom (DoF) for each chunk.
- The partial matching: the filtering ability (degree of matching, DoM).

io

Does it work for Sponge-based Hashing?

MITM Attack on Sponge-based Hashing vs. MD Hashing

(a) MITM on DM

(b) MITM on Sponge

- The complexity of exhaustive search: 2^{h}
- For MITM attack on the MD hashing
- The search space $<2^{h}$
- For MITM attack on the sponge-based hashing
- The search space is $2^{(h+c)}$ to meet not only h but also c. Not a good idea!

We need to search for a more compact space.

(1) Introduction to the Meet-in-the-Middle Attack

(2) MITM Attack on Sponge-based Hashing: Framework \& Automatic Tool
(3) Applications to Keccak, Xoodyak and Ascon

4 Conclusion and Future Work

Framework of the MITM Attack on Sponge-based Hashing

- Start from the r-bit rate part and search for a h-bit subspace (if $r>h$)
- Only forward computations are involved
- Specify the configurations: the two neutral sets of the outer part, the two independent forward computation chunks, the matching points
- Partially solve the inverse of the permutation from the h-bit target
- Set conditions to control the characteristic propagation

The MITM Episode on Sponge-based Hashing

- For $2^{d_{1}}$ values of \square neutral set, compute forward to the matching points;
- For $2^{d_{2}}$ values of $■$ neutral set, compute forward to the matching points;
- Compute backward with the known h-bit target to the matching points to derive an m-bit matching and filter states.

Automatic MITM Attack Model on Sponge-based Hashing

Example: Keccak

- Keccak-f permutation: $A^{(r)} \xrightarrow{\theta} \theta^{(r)} \xrightarrow{\rho} \rho^{(r) \xrightarrow{\pi} \pi^{(r)} \xrightarrow{\chi} \chi^{(r) \xrightarrow{\iota}} A^{(r+1)}, ~}$

MILP model: The Objective Function + Constraints

- Modelling the Starting State
- Modelling the Attribute Propagation: XOR (θ) and S-box (χ)
- Modelling the Matching Phase
- Auxiliary Techniques: Conditions + Linear Structure + CP-Kernel

Encoding Scheme

3 -bit encoding scheme: $\left(\omega_{0}, \omega_{1}, \omega_{2}\right)$

- $\square:(1,1,1)$, global constant bits
- $\square:(0,1,1)$, depend on \square and \square
- \quad : $(1,1,0)$, depend on \square and $■$
- $\square:(0,1,0)$, depend on $\square / \square / \square$, but the expression does not contain the product of \square and $■$
- $\square:(0,0,0)$, depend on the product of \square and \square

Remark

- In previous MILP-aid MITM models: ($\square, \square, \square, \square$)
- In our model: ($\square, \square, \square, \square, \square$)
- The addition of \square and \square (not multiplied) can also be used

Modelling the Starting State with the Linear Structure

- The linear structure (Guo et al. ASIACRYPT 2016)

- Control the diffusion of θ operation
- $A_{\{0,0, z\}}^{(0)}$ and $A_{\{0,1, z\}}^{(0)}$ should be the same color
- $A_{\{0,0, z\}}^{(0)} \oplus A_{\{0,1, z\}}^{(0)}$ should be constant
- Add conditions to reduce the diffusion over χ
- For the row $\pi_{\{*, 0, z\}}^{(0)}$, set $\pi_{\{1,0, z\}}^{(0)}=0$ and $\pi_{\{4,0, z\}}^{(0)}=1$
- Model $A^{(1)}$ only considering the linear operation $\pi \circ \rho$ from $A^{(0)}$

Modelling the θ operation

$\theta: \quad \theta_{\{x, y, z\}}^{(r)}=A_{\{x, y, z\}}^{(r)} \oplus \sum_{y^{\prime}=0}^{4}\left(A_{\left\{x-1, y^{\prime}, z\right\}}^{(r)} \oplus A_{\left\{x+1, y^{\prime}, z-1\right\}}^{(r)}\right)$

We depose the θ operation to three steps in our model:

$$
\begin{aligned}
& C_{\{x, z\}}^{(r)}=A_{\{x, 0, z\}}^{(r)} \oplus A_{\{x, 1, z\}}^{(r)} \oplus A_{\{x, 2, z\}}^{(r)} \oplus A_{\{x, 3, z\}}^{(r)} \oplus A_{\{x, 4, z\}}^{(r)}, \\
& D_{\{x, z\}}^{(r)}=C_{\{x-1, z\}}^{(r)} \oplus C_{\{x+1, z-1\}}^{(r)}, \\
& \theta_{\{x, y, z\}}^{(r)}=A_{\{x, y, z\}}^{(r)} \oplus D_{\{x, z\}}^{(r)} .
\end{aligned}
$$

Modelling the θ operation (Cont.)

The rule of XOR with an arbitrary number of inputs

- XOR-RULE-1: If the inputs have $(0,0,0) \square$ bit, the output is \square.
- XOR-RULE-2: If the inputs are all $(1,1,1) \square$ bits, the output is \square.
- XOR-RULE-3: If the inputs have $(1,1,0) ■(\geq 1)$ and $\square(\geq 0)$ bits:
- the output is \square without consuming DoF, or \square by consuming 1 DoF of \square.
- XOR-RULE-4: If the inputs have $(0,1,1) \square(\geq 1)$ and $\square(\geq 0)$ bits,
- the output is \square without consuming DoF, or \square by consuming 1 DoF of \square.
- XOR-RULE-5: If the inputs have at least two kinds of \square, \square and \square bits:
- the output can be \square without consuming DoF.
- the output can be \square (or $■$) by consuming one DoF of \square (or \square).
- the output can be \square by consuming one DoF of \square and one DoF of \llbracket.

Modelling the θ operation (Cont.)

Constraints

- Define three $0-1$ variables $\nu_{i}(i \in\{0,1,2\})$, where $\nu_{0}=1$ if and only if all the ω_{0} 's of the 5 input bits are 1 , similar to the cases $i=1,2$.
- The above five rules can be represented by $\left(\nu_{0}, \nu_{1}, \nu_{2}\right)$:

1. $\left(\nu_{0}, \nu_{1}, \nu_{2}\right)=(*, 0, *)$, XOR-RULE- 1 is applied.
2. $\left(\nu_{0}, \nu_{1}, \nu_{2}\right)=(1,1,1)$, XOR-RULE-2 is applied.
3. $\left(\nu_{0}, \nu_{1}, \nu_{2}\right)=(1,1,0)$, XOR-RULE-3 is applied.
4. $\left(\nu_{0}, \nu_{1}, \nu_{2}\right)=(0,1,1)$, XOR-RULE-4 is applied.
5. $\left(\nu_{0}, \nu_{1}, \nu_{2}\right)=(0,1,0)$, XOR-RULE-5 is applied.

- Define the output bit as $\left(\omega_{0}^{O}, \omega_{1}^{O}, \omega_{2}^{O}\right)$, the consumed DoF of \square bits and \square bits are $\left(\delta_{\mathcal{R}}, \delta_{\mathcal{B}}\right)$:

$$
\left\{\begin{array}{l}
\omega_{0}^{O}-\nu_{0} \geq 0,-\omega_{0}^{O}+\nu_{1} \geq 0 \\
\omega_{1}^{O}-\nu_{1}=0 \\
\omega_{2}^{O}-\nu_{2} \geq 0, \quad-\omega_{2}^{O}+\nu_{1} \geq 0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\delta_{\mathcal{R}}-\omega_{0}^{O}+\nu_{0}=0 \\
\delta_{\mathcal{B}}-\omega_{2}^{O}+\nu_{2}=0
\end{array}\right.
$$

Modelling the χ operation

$$
\chi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}, b_{i}=a_{i} \oplus\left(a_{i+1} \oplus 1\right) \cdot a_{i+2}, i=0,1, \ldots, 4
$$

- If there are \square bits in $\left(a_{i}, a_{i+1}, a_{i+2}\right)$, the output is \square
- If there are all \square bits, the output is \square
- If there are only $\square(\geq 1)$ and $\square(\geq 0)$ bits, the output will be \square
- If there are only $\square(\geq 1)$ and $\square(\geq 0)$ bits, the output will be \square
- If there are \square, or more than two kinds of \llbracket, \square and \square bits in (a_{i}, a_{i+1}, a_{i+2}):
- if a_{i+1} and a_{i+2} are all $■$ (or \square), the output is \square
- if a_{i+1} or a_{i+2} is \square, the output is \square
- if a_{i+1} and a_{i+2} are of arbitrarily two kinds of \square, \square, \square, the output is \square

Modelling the χ operation (Cont.)

Constraints
Derive linear inequalities by using the convex hull computation (Sun et al. ASIACRYPT 2014)

(a) Input.

(b) Output.

Modelling the Matching Phase

Property of χ (Guo et al. ASIACRYPT 2016)

When there are three known consecutive output bits, two linear equations of the input bits can be constructed. Eg. Assuming that (b_{0}, b_{1}, b_{2}) are known, two linear equations on $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ are constructed as

$$
\begin{aligned}
& b_{0}=a_{0} \oplus\left(b_{1} \oplus 1\right) \cdot a_{2}, \\
& b_{1}=a_{1} \oplus\left(b_{2} \oplus 1\right) \cdot a_{3} .
\end{aligned}
$$

For Keccak-512, we have:

$$
\begin{aligned}
& A_{\{0,1, z\}}^{(r+1)}=\pi_{\{0,1, z\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot \pi_{\{2,1, z\}}^{(r)} \\
& A_{\{1,1, z\}}^{(r+1)}=\pi_{\{1,1, z\}}^{(r)} \oplus\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot \pi_{\{3,1, z\}}^{(r)}
\end{aligned}
$$

Modelling the Matching Phase (Cont.)

Apply the inverse of $\rho \circ \pi$, and add the same known $\theta_{\{x, x, z\}}^{(r)}$, we have

$$
\begin{aligned}
& A_{\{0,1, z\}}^{(r+1)} \oplus \underline{\theta_{\{3,3, z-\gamma[3,0]\}}^{(r)}} \oplus \underline{\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right)} \cdot \underline{\theta_{\{0,0, z-\gamma[0,2]\}}^{(r)}} \\
& =\theta_{\{3,0, z-\gamma[3,0]\}}^{(r)} \oplus \underline{\theta_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus} \oplus \underline{\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(\theta_{\{0,2, z-\gamma[0,2]\}}^{(r)} \oplus \underline{\theta_{\{0,0, z-\gamma[0,2]\}}^{(r)}}\right)} \\
& A_{\{1,1, z\}}^{(r+1)} \oplus \underline{\theta_{\{4,4, z-\gamma[4,1]\}}^{(r)}} \oplus \underline{\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot} \cdot \underline{\theta_{\{1,1, z-\gamma[1,3]\}}^{(r)}} \\
& =\theta_{\{4,1, z-\gamma[4,1]\}}^{(r)} \oplus \underline{\theta_{\{4,4, z-\gamma[4,1]\}}^{(r)} \oplus} \underline{\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(\theta_{\{1,3, z-\gamma[1,3]\}}^{(r)} \oplus \underline{\theta_{\{1,1, z-\gamma[1,3]\}}^{(r)}}\right)}
\end{aligned}
$$

Modelling the Matching Phase (Cont.)

The CP-kernel Property of θ

$$
\begin{aligned}
& \theta_{\{3,0, z-\gamma[3,0]\}}^{(r)} \oplus \theta_{\{3,3, z-\gamma[3,0]\}}^{(r)}=A_{\{3,0, z-\gamma[3,0]\}}^{(r)} \oplus A_{\{3,3, z-\gamma[3,0]\}}^{(r)}, \\
& \theta_{\{0,2, z-\gamma[0,2]\}}^{(r)} \oplus \theta_{\{0,0, z-\gamma[0,2]\}}^{(r)}=A_{\{0,2, z-\gamma[0,2]\}}^{(r)} \oplus A_{\{0,0, z-\gamma[0,2]\}}^{(r)}, \\
& \theta_{\{4,1, z-\gamma[4,1]\}}^{(r)} \oplus \theta_{\{4,4, z-\gamma[4,1]\}}^{(r)}=A_{\{4,1, z-\gamma[4,1]\}}^{(r)} \oplus A_{\{4,4, z-\gamma[4,1]\}}^{(r)}, \\
& \theta_{\{1,3, z-\gamma[1,3]\}}^{(r)} \oplus \theta_{\{1,1, z-\gamma[1,3]\}}^{(r)}=A_{\{1,3, z-\gamma[1,3]\}}^{(r)} \oplus A_{\{1,1, z-\gamma[1,3]\}}^{(r)} .
\end{aligned}
$$

Modelling the Matching Phase (Cont.)

With the CP-kernel property of θ, we have

$$
\begin{aligned}
& A_{\{0,1, z\}}^{(r+1)} \oplus \theta_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot \theta_{\{0,0, z-\gamma[0,2]\}}^{(r)} \\
& =\theta_{\{3,0, z-\gamma[3,0]\}}^{(r)} \oplus \theta_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(\theta_{\{0,2, z-\gamma[0,2]\}}^{(r)} \oplus \theta_{\{0,0, z-\gamma[0,2]\}}^{(r)}\right) \\
& \qquad \\
& \downarrow \\
& A_{\{0,1, z\}}^{(r+1)} \oplus \theta_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot \theta_{\{0,0, z-\gamma[0,2]\}}^{(r)} \\
& =A_{\{3,0, z-\gamma[3,0]\}}^{(r)} \oplus A_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(A_{\{0,2, z-\gamma[0,2]\}}^{(r)} \oplus A_{\{0,0, z-\gamma[0,2]\}}^{(r)}\right)
\end{aligned}
$$

Modelling the Matching Phase (Cont.)

Similarly,

$$
\begin{aligned}
& A_{\{1,1, z\}}^{(r+1)} \oplus \theta_{\{4,4, z-\gamma[4,1]\}}^{(r)} \oplus\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot \theta_{\{1,1, z-\gamma[1,3]\}}^{(r)} \\
& =\theta_{\{4,1, z-\gamma[4,1]\}}^{(r)} \oplus \theta_{\{4,4, z-\gamma[4,1]\}}^{(r)} \oplus\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(\theta_{\{1,3, z-\gamma[1,3]\}}^{(r)} \oplus \theta_{\{1,1, z-\gamma[1,3]\}}^{(r)}\right) \\
& \qquad \\
& \qquad \\
& A_{\{1,1, z\}}^{(r+1)} \oplus \theta_{\{4,4, z-\gamma[4,1]\}}^{(r)} \oplus\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot \theta_{\{1,1, z-\gamma[1,3]\}}^{(r)} \\
& =A_{\{4,1, z-\gamma[4,1]\}}^{(r)} \oplus A_{\{4,4, z-\gamma[4,1]\}}^{(r)} \oplus\left(A_{\{2,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(A_{\{1,3, z-\gamma[1,3]\}}^{(r)} \oplus A_{\{1,1, z-\gamma[1,3]\}}^{(r)}\right)
\end{aligned}
$$

Modelling the Matching Phase (Cont.)

Leaked linear relations of $A^{(r)}$ from the hash value $A^{(r+1)}$

$$
\begin{array}{r}
A_{\{3,0, z-\gamma[3,0]\}}^{(r)} \oplus A_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot\left(A_{\{0,2, z-\gamma[0,2]}^{(r)} \oplus A_{\{0,0, z-\gamma[0,2]\}}^{(r)}\right) \\
=A_{\{0,1, z\}}^{(r+1)} \oplus \theta_{\{3,3, z-\gamma[3,0]\}}^{(r)} \oplus\left(A_{\{1,1, z\}}^{(r+1)} \oplus 1\right) \cdot \theta_{\{0,0, z-\gamma[0,2]\}}^{(r)}
\end{array}
$$

Conditions in Matching Points of Keccak
If four bits $\left(A_{\{3,0, z-\gamma[3,0]\}}^{(r)}, A_{\{3,3, z-\gamma[3,0]\}}^{(r)}, A_{\{0,2, z-\gamma[0,2]\}}^{(r)}, A_{\{0,0, z-\gamma[0,2]\}}^{(r)}\right)$ in $A^{(r)}$ satisfy the following two conditions, there is a 1-bit filter:
(1) No $\operatorname{Nin}\left(A_{\{3,0, z-\gamma[3,0]\}}^{(r)}, A_{\{3,3, z-\gamma[3,0]\}}^{(r)}, A_{\{0,2, z-\gamma[0,2]\}}^{(r)}, A_{\{0,0, z-\gamma[0,2]\}}^{(r)}\right)$.
(2) $\left(A_{\{3,0, z-\gamma[3,0]\}}^{(r)}, A_{\{3,3, z-\gamma[3,0]\}}^{(r)}\right)$ is of $(\square, ■),(\square, \square),(\square, \square),(\square, \square)$, or (\square, \square), or opposite order.

The Objective Function

- Maximize $\min \left\{\operatorname{DoF}_{\mathcal{R}}, \operatorname{DoF}_{\mathcal{B}}, \operatorname{DoM}\right\}$ to find the optimal attacks
- $\operatorname{DoF}_{\mathcal{R}}=\lambda_{\mathcal{R}}-I_{\mathcal{R}}, I_{\mathcal{R}}$ be the accumulated consumption of DoF of \square
- $\operatorname{DoF}_{\mathcal{B}}=\lambda_{\mathcal{B}}-I_{\mathcal{B}}$, and $I_{\mathcal{B}}$ be the consumption of DoF of \square
- $\operatorname{DoM}=\sum \delta_{\mathcal{M}}$
- Maximize $v_{o b j}$

$$
\left\{v_{o b j} \leq \mathrm{DoF}_{\mathcal{R}}, v_{o b j} \leq \mathrm{DoF}_{\mathcal{B}}, v_{o b j} \leq \mathrm{DoM}\right\}
$$

(1) Introduction to the Meet-in-the-Middle Attack

(2) MITM Attack on Sponge-based Hashing: Framework \& Automatic Tool

(3) Applications to Keccak, Xoodyak and Ascon

The MITM preimage attack on 4-round Keccak-512

Attack Results of Keccak-512

Target	Attacks	Methods	Rounds	Time	Memory	Ref.
Keccak-512	Preimage	Lin.Stru.	2	2^{384}	-	[GLS16]
		Lin.Stru.	2	2^{321}	-	[Raj19]
		Lin.Stru.	2	2^{270}	-	[LIMY21]
		Lin.Stru.	2	2^{252}	-	[HLY22]
		Lin.Stru.	3	2^{482}	-	[GLS16]
		Lin.Stru.	3	2^{475}	-	[Raj19]
		Lin.Stru.	3	2^{452}	-	[LIMY21]
		Lin.Stru.	3	2^{426}	-	[HLY22]
		Rotational	4	2^{506}	-	[MPS13]
		MitM	4	$2^{504.58}$	2^{108}	Ours
	Collision	Diff.	2	Practical	-	[NRM11]
		Diff.	3	Practical	-	[DDS13]

Attack Results of Xoodyak-XOF and Ascon-XOF

Target	Attacks	Methods	Rounds	Time	Memory	Ref.
Xoodyak-XOF	Preimage	Neural	1		-	[LLL+ ${ }^{+}$]
		MitM	3	$2^{125.06}$	2^{97}	Ours
Ascon-XOF	Preimage	Cube-like	2	2^{103}	-	[DEMS21]
		MitM	3	$2^{120.58}$	2^{39}	Ours
		MitM	4	$2^{124.67}$	2^{54}	Ours
		Algebraic ${ }^{\dagger}$	6	$2^{127.3}$	-	[DEMS21]
	Collision	Diff.	2	2^{103}	-	[GPT21]

(1) Introduction to the Meet-in-the-Middle Attack

(2) MITM Attack on Sponge-based Hashing: Framework \& Automatic Tool
(3) Applications to Keccak, Xoodyak and Ascon
(4) Conclusion and Future Work

Conclusion

- Since 1977, the birthday-paradox MitM attack has been widely applied to block ciphers or MD-based hash functions, this is the first attempt to apply it to sponge-based hash functions
- Dedicated bit-level MILP based automatic tools for MitM attacks, leading to improved or first preimage attacks on reduced-round Keccak-512, Ascon-XOF, and Xoodyak-XOF

Future Work

- For other instances of Keccak, it is open problem to apply one or tworound linear structures in the search for MitM attacks
- More tricks can be combined with automatic MILP model to achieve non-negligible improvements
- Accelerate the search
- Enlarge the space of solutions
- Extend to MitM collision attacks on sponge-based hash functions
ePrint 2023/518
Lingyue Qin, Boxin Zhao, Jialiang Hua, Xiaoyang Dong, Xiaoyun Wang. Weak-Diffusion Structure: Meet-in-the-Middle Attacks on Sponge-based Hashing Revisited.

THANK YOU!

Questions or Comments?

Reference I

Itai Dinur, Orr Dunkelman, and Adi Shamir.
Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials. In FSE 2013, volume 8424, pages 219-240. Springer, 2013.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing.
J. Cryptol., 34(3):33, 2021.

Whitfield Diffie and Martin E. Hellman.
Special feature exhaustive cryptanalysis of the NBS data encryption standard.
Computer, 10(6):74-84, 1977.

Jian Guo, Meicheng Liu, and Ling Song.
Linear structures: Applications to cryptanalysis of round-reduced Keccak.
In ASIACRYPT 2016, Proceedings, Part I, volume 10031, pages 249-274, 2016.
远
David Gérault, Thomas Peyrin, and Quan Quan Tan.
Exploring differential-based distinguishers and forgeries for ASCON.
IACR Trans. Symmetric Cryptol., 2021(3):102-136, 2021.

Reference II

这
Le He, Xiaoen Lin, and Hongbo Yu.
Improved preimage attacks on round-reduced Keccak-384/512 via restricted linear structures.
Cryptol. ePrint Arch., 2022/788, 2022.
Fukang Liu, Takanori Isobe, Willi Meier, and Zhonghao Yang.
Algebraic attacks on round-reduced Keccak.
In ACISP 2021, Proceedings, volume 13083, pages 91-110, 2021.
Guozhen Liu, Jingwen Lu, Huina Li, Peng Tang, and Weidong Qiu.
Preimage attacks against lightweight scheme xoodyak based on deep learning.
In Future of Information and Communication Conference, pages 637-648. Springer, 2021.

Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny.
Rotational cryptanalysis of round-reduced Keccak.
In FSE 2013,, volume 8424, pages 241-262, 2013.

María Naya-Plasencia, Andrea Röck, and Willi Meier.
Practical analysis of reduced-round Keccak.
In INDOCRYPT 2011, volume 7107, pages 236-254, 2011.

Reference III

Mahesh Sreekumar Rajasree.
Cryptanalysis of round-reduced Keccak using non-linear structures.
In INDOCRYPT 2019, volume 11898, pages 175-192, 2019.

