

POLYNOMIAL TIME CRYPTANALYSIS OF THE SUBSPACE FLOODING ASSUMPTION FOR POST-QUANTUM *io*

Aayush Jain (CMU), Huijia [Rachel] Lin (UW), <u>Paul Lou</u> (UCLA), Amit Sahai (UCLA)

INDISTINGUISHABILITY OBFUSCATION (i0)

[BGI+01, GGH+13]

[SW13, GGH+13, BZ13, HKW15, BKW15, HJKSWZ16...]

iO + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation [JLLW22]

iO + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation [JLLW22]can be heuristically instantiated by a hash function.

iO + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation [JLLW22]

Ideal obfuscation implies: Extractable witness encryption [GKPVZ13], Doubly Efficient PIR [BIPW17], OT from binary erasure channels [AIKNPPR21], Wiretap-channel coding [IKLS22] and more!!

iO + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation [JLLW22]

Ideal Obfuscation

iO + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation [JLLW22]

Ideal Obfuscation

C_0 : Chat-GPT23

- A personal assistant that knows your deepest and darkest secrets.
- Ideal obfuscated version can be captured and tortured, yet reveal nothing beyond input/output behavior.

CONSTRUCTING 10

```
Well-founded Assumptions
[JLS20, JLS21]
```

- ✓ LPN over \mathbb{Z}_p + DLIN over Bilinear Groups + PRGs in NC^0 + LWE [JLS20]
- ✓ LPN over Z_p + DLIN over Bilinear Groups + PRGs in NC^0 [JLS21]

! Not post-quantum secure (DLIN over Bilinear Groups).

- Multilinear Maps, GGH'15 encodings [GGH+13, GGH15, CVW18], Tensor products [GJK18], NLFE [Agr19, AP20], Affine determinant programs [BIJ+20], Split-FHE Paradigm [BDGM20A]
 - ⚠ No reduction to simple, falsifiable assumption.
- Shielded Randomness Leakage (SRL) [GP20, BDGM20B]
 - Circuit-dependent hardness assumption: Each circuit being obfuscated gives a different hardness assumption. (Harder to cryptanalyze)
 - Leave the Explicit counterexample to [GP20] given by [HJL21]. (NOT an attack on obfuscation scheme).
- Homomorphic Pseudorandom LWE Samples (HPLS) [WW20]
 - ⚠ Unspecified circuit implementation of PRF [exploited by [HJL21], (NOT an attack on obfuscation scheme)]. When specifying said circuit, difficult to explicitly write down error-distribution, therefore hard to cryptanalyze.

- GGH'15 Encodings [GGH+13, GGH15, CVW18], Tensor products [GJK18], NLFE [Agr19, AP20], Affine determinant programs [BIJ+201—Split FHE Paradiam [BDCM204]
 - No reduction to simple, fa
- Shielded Randomness Lea
 - Circuit-dependent hardne to cryptanalyze)
 - Explicit counterexample t

Many beautiful post-quantum iO candidate constructions.

Cryptanalysis refines our assumptions and helps us understand the security. We need to facilitate it.

- Homomorphic Pseudoran Long Lw L Campies (1)
 - Unspecified circuit implementation of PRF [exploited by [HJL21], (NOT an attack on obfuscation scheme)]. Wher specifying said circuit, difficult to explicitly write down error-distribution, therefore hard to cryptanalyze.

nption. (Harder

• GGH'15 Encodings [GGH+13, GGH15, CVW18], Tensor products [GJK18], NLFE [Agr19, AP20], Affine determinant programs [BIJ+201—Split FHE Paradiam [BDCM204]

- No reduction to simple, fa

Shielded Randomness Lea

- Circuit-dependent hardnes to cryptanalyze)

- Explicit counterexample

Many beautiful post-quantum iO candidate constructions.

Cryptanalysis refines our assumptions and helps us understand the security. We need to facilitate it.

Homomorphic Pseudoran

- Unspecified circuit implementat specifying said circuit, difficult t

Desiderata for Assumptions

Desiderate for Assumptions

✓ Simple-to-state, falsifiable, fully specified.

nption. (Harder

- GGH'15 Encodings [GGH+13, GGH15, CVW18], Tensor products [GJK18], NLFE [Agr19, AP20], Affine determinant programs [BIJ+20], Split-FHE Paradigm [BDGM20A]
 - No reduction to simple, falsifiable assumption.
- Shielded Randomness Leakag
 - Circuit-dependent hardness a to cryptanalyze)
 - Explicit counterexample to [G
- Homomorphic Pseudorando

[DQVWW21] Candidate construction via Subspace Flooding Assumption

- ✓ First fully specified and falsifiable assumption.
- ✓ Elegant candidate construction.
- ✓ Prior attacks shown to fail.

hardness assumption. (Harder

reme).

Unspecified circuit implementation of PRF [exploited by [HJL21], (NOT an attack on obfuscation scheme)]. Where
specifying said circuit, difficult to explicitly write down error-distribution, therefore hard to cryptanalyze.

SUBSPACE FLOODING ASSUMPTION

[DQVWW21]

Subspace Flooding Assumption

$$\mathbf{P}, \mathbf{P}', \mathsf{seed}_{\mathbf{B}^*}, \mathbf{A}^*, \widehat{\mathbf{B}} = \mathbf{A}^* \mathbf{S}_0 + \mathbf{F}, \mathbf{C} = \mathbf{A}^* \mathbf{R} + \mathbf{E} - b \mathbf{G}, \mathbf{E}^* + \mathbf{E} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}) - b \mathbf{F}$$

Hides bit b

All these givens are matrices drawn from some distribution.

$$\{\mathbf{B}_i = \mathbf{A}_i \mathbf{S}_i + \mathbf{E}_i\}_{i \in [d]} \longrightarrow \mathbf{B}^* = \mathbf{A}^* \mathbf{S}^* + \mathbf{E}^*$$

 \mathbf{E}^* , which depends on $\{\mathbf{E}_i\}_{i\in[d]}$, drowns out some a specific error distribution dependent on the bit b.

OUR WORK

Subspace Flooding Assumption [DQVWW21]

$$\mathbf{P}, \mathbf{P}', \mathsf{seed}_{\mathbf{B}^*}, \mathbf{A}^*, \widehat{\mathbf{B}} = \mathbf{A}^* \mathbf{S}_0 + \mathbf{F}, \mathbf{C} = \mathbf{A}^* \mathbf{R} + \mathbf{E} - b \mathbf{G}, \mathbf{E}^* + \mathbf{E} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}) - b \mathbf{F}$$

Hides bit b

Theorem (informal): Under a reasonable conjecture, when b=0, there exists a PPT algorithm that recovers the $\{\mathbf{E}_i\}_{i\in[d]}$ from the givens.

Corollary (informal): Under a heuristic argument, we obtain a PPT distinguisher for the subspace-flooding assumption.

CONJECTURE

T many linearly independent vectors

 $T \ll M$. Conjecture is that these vectors remain linearly independent under left-multiplication by P.

Provable under entries from uniform dist. and uniform on [-B, B].

THE DQVWW21 CONSTRUCTION APPROACH

[DQVWW21] CONSTRUCTION APPROACH: SUCCINCT RANDOMIZED ENCODINGS (SRE)

[IK00, IK02, AIK04, BGL+15, LPST16, WW21, DQVWW21]

To build iO, it suffices to build SRE. SRE \rightarrow X $iO \rightarrow iO$ [LPSTI6]

SRE SYNTAX

[IK00, IK02, AIK04, BGL+15, LPST16, WW21, DQVWW21]

To build iO, it suffices to build SRE. SRE \rightarrow XiO \rightarrow iO [LPST16]

$$f: \{0,1\}^{\ell} \to \{0,1\}^{N}$$

Correctness: $Enc(f, x) \longrightarrow f(x)$

Security: $\forall x_0, x_1, \ s.t. \ f(x_0) = f(x_1), Enc(f, x_0) \approx_{\mathsf{comp}} Enc(f, x_1)$

Succinctness: $|Enc(f,x)| = O(N^{\delta}), \delta < 1$

SRE FROM SUCCINCT LWE SAMPLING

[DQVWW21]

$$f: \{0,1\}^{\ell} \to \{0,1\}^{N}$$

Enc(f,x):

Post-evaluation randomness

Generates a large pseudorandom LWE sample of the form $\mathbf{B}^* = \mathbf{AS}^* + \mathbf{E}^*$

Random matrix.

Homomorphic commitment to x. (dual GSW)

SRE FROM SUCCINCT LWE SAMPLING

How do you generate a pseudorandom LWE sample?

A NATURAL APPROACH: TENSORING

[DQVWW21]

Suppose we knew $Y riangleq A^*S^*$. Do the secrets in the seed remain hidden? $Y = \begin{bmatrix} \mathbf{A}_1 \otimes \mathbf{I}_m & \mathbf{I}_m & \otimes \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{S}_1 & \otimes \mathbf{B}_2 \\ \mathbf{E}_1 & \otimes \mathbf{S}_2 \end{bmatrix}$

Suppose we knew $Y \triangleq A^*S^*$ and A_1, A_2 . Can compute left annihilators!

Suppose we knew $Y \triangleq A^*S^*$ and A_1, A_2 .

...then we can recover S_1 by solving an affine system of equations

Suppose we knew $Y \triangleq A^*S^*$ and A_1, A_2 .

...then we can recover S_1 by solving an affine system of equations

Suppose we knew $Y \triangleq A^*S^*$ and A_1, A_2 .

...then we can recover S_1 by solving an affine system of equations

Suppose we knew $Y \triangleq A^*S^*$ and A_1, A_2 .

...and then repeat for \mathbf{S}_2

If we knew these values, we'd be able to recover the error terms in the seed!

Intended attack to recover components:

- 1. Recover A_1 , A_2 .
- 2. Compute $Y = A^*S^*$.
- 3. Recover S_1 .
- 4. Repeat for next index.

UNIQUE REPRESENTATIONS (SIMPLIFIED)

Can you recover the components A_1 , A_2 from A^* ?

UNIQUE REPRESENTATIONS (SIMPLIFIED)

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{E}_2 \quad \mathbf{E}_2$$

- Many possible solutions.
- A unique solution is necessary to recover a unique secret.

UNIQUE REPRESENTATIONS OF A_i (SIMPLIFIED)

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{E}_2 \quad \mathbf{E}_2$$

A possible solution to U_1 :

Corresponding V_1 solution:

 ${f S}_1$

UNIQUE REPRESENTATIONS OF A_i (SIMPLIFIED)

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_1 \quad \mathbf{U}_1 \quad \mathbf{V}_1 \quad + \quad \mathbf{E}_1$$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{V}_2 \quad + \quad \mathbf{E}_2$$

= Known values

A possible solution to U_1 :

Corresponding V_1 solution:

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{V}_2 \quad + \quad \mathbf{E}_2$$

= Known values

A possible solution to U_1 :

Corresponding V_1 solution:

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_1 \quad \mathbf{U}_1 \quad \mathbf{V}_1 \quad + \quad \mathbf{E}_1$$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{E}_2 \quad \mathbf{E}_2$$

 \mathbf{A}^*

 $oxed{\mathbf{U}_1} \otimes oxed{\mathbf{I}_m} oxed{\mathbf{I}_m} \otimes oxed{\mathbf{U}_2}$

= Known values

A possible solution to U_1 :

Corresponding V_1 solution:

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_2$$
 \mathbf{U}_2 \mathbf{V}_2 $+$ \mathbf{E}_2

For uniqueness, insist on a solution of the form:

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$egin{array}{c|cccc} \mathbf{B}_1 & \mathbf{U}_1 & \mathbf{V}_1 & + & \mathbf{E}_1 \end{array}$$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{V}_2 \quad + \quad \mathbf{E}_2$$

For uniqueness, insist on a solution of the form:

Hypothetical Constraints

 $seed_{\mathbf{B}^*}$

$$\mathbf{B}_2 \quad \mathbf{U}_2 \quad \mathbf{V}_2 \quad + \quad \mathbf{E}_2$$

 \mathbf{A}^*

To prove uniqueness, we use a linear independence argument made possible by both the tensoring and the structure of the solutions.

For uniqueness, insist on a solution of the form:

- Recover A_1 , A_2 up to unique representation.
- 2. Compute $Y = A^*S^*$?
- 3. Recover S_1 up to unique representation.

From the givens, we can compute:

$$\mathbf{Y}' = \mathbf{A}^* \cdot (\mathbf{S}^* + \mathbf{R} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}))$$

- Recover A_1 , A_2 up to unique representation.
- 2. Compute $Y = A^*S^*$?
- 3. Recover S_1 up to unique representation.

- Recover A_1 , A_2 up to unique representation.
- 2. Compute $Y = A^*S^*$?
- 3. Recover S_1 up to unique representation.

From the givens, we can compute:

$$\mathbf{Y}' = \mathbf{A}^* \cdot (\mathbf{S}^* + \mathbf{R} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}))$$

= Known values

Compute right annihilator ${f Q}$ for ${f G}^{-1}(\widehat{f B})$ 44

From the givens, we can compute:

$$\mathbf{Y}' \cdot \mathbf{Q} = \mathbf{A}^* \cdot \mathbf{S}^* \cdot \mathbf{Q}$$

- Recover A_1 , A_2 up to unique representation.
- 2. Compute $Y = A^*S^*Q$.
- 3. Recover S_1 up to unique representation.

From the givens, we can compute:

$$\mathbf{Y}' \cdot \mathbf{Q} = \mathbf{A}^* \cdot \mathbf{S}^* \cdot \mathbf{Q}$$

- Recover A_1 , A_2 up to unique representation.
- ✓ Compute $Y = A^*S^*Q$.
- 3. Recover S_1 up to unique representation.

From the givens, we can compute:

$$\mathbf{Y}' \cdot \mathbf{Q} = \mathbf{A}^* \cdot \mathbf{S}^* \cdot \mathbf{Q}$$

- ✓ Recover A_1 , A_2 up to unique representation.
- \checkmark Compute $Y = A^*S^*Q$.
- 3. Recover S_1 up to unique representation.

Expand above:

- Recover A_1 , A_2 up to unique representation.
- \checkmark Compute $Y = A^*S^*Q$.
- Recover S_1 up to unique representation.

Generically, want to show that X_1 has unique solutions:

$$\mathbf{Y''} = egin{bmatrix} \mathbf{A''} & \mathbf{X}_1 \end{bmatrix} + egin{bmatrix} \mathbf{B''} & \mathbf{X}_2 \end{bmatrix}$$

...involves analyzing overlap in column span of $A^{\prime\prime}$ and $B^{\prime\prime}$

- ✓ Recover A_1 , A_2 up to unique representation.
- \checkmark Compute $Y = A^*S^*Q$.
- \checkmark Recover S_1 up to unique representation.

$$\mathbf{P}, \mathbf{P}', \mathsf{seed}_{\mathbf{B}^*}, \mathbf{A}^*, \widehat{\mathbf{B}} = \mathbf{A}^* \mathbf{S}_0 + \mathbf{F}, \mathbf{C} = \mathbf{A}^* \mathbf{R} + \mathbf{E} - b \mathbf{G}, \mathbf{E}^* + \mathbf{E} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}) - b \mathbf{F}$$

Several randomization tricks were used in the construction in [DQVWW21].

$$\mathbf{P}, \mathbf{P}', \mathsf{seed}_{\mathbf{B}^*}, \mathbf{A}^*, \widehat{\mathbf{B}} = \mathbf{A}^* \mathbf{S}_0 + \mathbf{F}, \mathbf{C} = \mathbf{A}^* \mathbf{R} + \mathbf{E} - b \mathbf{G}, \mathbf{E}^* + \mathbf{E} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}) - b \mathbf{F}$$

Several randomization tricks were used in the construction in [DQVWW21].

Final Remark 1: Under a reasonable conjecture on **P** preserving rank of small subspaces, the toy analysis given extends to when **P** and **P'** are present.

$$\mathbf{P}, \mathbf{P}', \mathsf{seed}_{\mathbf{B}^*}, \mathbf{A}^*, \widehat{\mathbf{B}} = \mathbf{A}^* \mathbf{S}_0 + \mathbf{F}, \mathbf{C} = \mathbf{A}^* \mathbf{R} + \mathbf{E} - b \mathbf{G}, \mathbf{E}^* + \mathbf{E} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}) - b \mathbf{F}$$

Several randomization tricks were used in the construction in [DQVWW21].

Final Remark 1: Under a reasonable conjecture on **P** preserving rank of small subspaces, the toy analysis given extends to when **P** and **P'** are present.

Final Remark 2: We show that Kilian randomization on A^* , S^* does not hide the tensor structure.

$$\mathbf{P}, \mathbf{P}', \mathsf{seed}_{\mathbf{B}^*}, \mathbf{A}^*, \widehat{\mathbf{B}} = \mathbf{A}^* \mathbf{S}_0 + \mathbf{F}, \mathbf{C} = \mathbf{A}^* \mathbf{R} + \mathbf{E} - b \mathbf{G}, \mathbf{E}^* + \mathbf{E} \cdot \mathbf{G}^{-1}(\widehat{\mathbf{B}}) - b \mathbf{F}$$

Several randomization tricks were used in the construction in [DQVWW21].

Final Remark 1: Under a reasonable conjecture on **P** preserving rank of small subspaces, the toy analysis given extends to when **P** and **P'** are present.

Final Remark 2: We show that Kilian randomization on A^* , S^* does not hide the tensor structure.

Final Remark 3: We show that the attack extends to the "*T*-sum" candidate construction in [DQVWW21]

THANK YOU!