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INDISTINGUISHABILITY OBFUSCATION (i0)
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OBFUSTOPIA

[SWI3, GGH+I3, BZI13, HKWI5, BRKWI5, HIKSEWZI6...]

DeuiableEhcfyption
Universal Sighatur‘eAggregatbrs _
Functional Encryptien_ o

CCAZSeis PKE Non—int:eraétivcft‘kéy aé\feérﬁ’enf(NIKE) ;

OT - | Succinct G-afbled_ RAM &5




OBFUSTOPIA

10 + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation



OBFUSTOPIA

10 + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation

can be heuristically instantiated by a hash function.




OBFUSTOPIA

10 + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation

Ideal obfuscation implies: Extractable witness encryption Doubly Efficient
PIR , OT from binary erasure channels , Wiretap-channel coding

and more!!
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OBFUSTOPIA

10 + Pseudorandom Oracle Model (PrOM) => Ideal Obfuscation
Ideal Obfuscation

Co : Chat-GPT23

* A personal assistant that knows your deepest and darkest secrets.

* Ideal obfuscated version can be captured and tortured, yet reveal nothing beyond
input/output behavior.



CONSTRUCTING i0

Well-founded Assumptions

v LPN over Zp + DLIN over Bilinear Groups + PRGs in NC 0+ IWE
v LPN over Zp + DLIN over Bilinear Groups + PRGs in NC 0

' Not post-quantum secure (DLIN over Bilinear Groups).



PLAUSIBLY POST-QUANTUM CONSTRUCTIONS

« Multilinear Maps, GGH’15 encodings Tensor products , NLFE

, Affine determinant programs SplitFHE Paradigm

! No reduction to simple, falsifiable assumption.

« Shielded Randomness Leakage (SRL)

' Circuit-dependent hardness assumption: Each circuit being obfuscated gives a different hardness assumption. (Harder

to cryptanalyze)

! Explicit counterexample to given by . (NOT an attack on obfuscation scheme).

« Homomorphic Pseudorandom LWE Samples (HPLS)

! Unspecified circuit implementation of PRF [exploited by (NOT an attack on obfuscation scheme)]. When
specifying said circuit, difficult to explicitly write down error-distribution, therefore hard to cryptanalyze.
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s PLAUSIBLY POST-QUANTUM CONSTRUCTIQNS

[GGHH3, GGHI5, GJKIS, BIJ+20, CVWIZ, BDGM20A, BDGM20B, GP20, WW20, DQVWW?2I,..

Many beautiful post-quantum iO candidate constructions.

Cryptanalysis refines our assumptions and helps us
understand the security. We need to facilitate it.
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s PLAUSIBLY POST-QUANTUM CONSTRUCTIQNS

[GGHH3, GGHI5, GJKIS, BIJ+20, CVWIZ, BDGM20A, BDGM20B, GP20, WW20, DQVWW?2I,..

Many beautiful post-quantum iO candidate constructions.

Cryptanalysis refines our assumptions and helps us
understand the security. We need to facilitate it.

Desiderata for Assumptions

v" Simple-to-state, falsifiable, fully specified.
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s PLAUSIBLY POST-QUANTUM CONSTRUCTIONS

[GGHH3, GGHI5, GJKIS, BIJ+20, CVWIZ, BDGM20A, BDGM20B, GP20, WW20, DQVWW?2I,..

[DQVWW21] Candidate construction via
Subspace Flooding Assumption

v First fully specified and falsifiable assumption.
v' Elegant candidate construction.

v Prior attacks shown to fail.
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SUBSPACE FLOODING ASSUMPTION

Subspace Flooding Assumption

AN

P.P' seedp«-, A", B=A"Sg+F.C=A"R+E @@4'53 : G_l(]/—s’) @

Hides bi@

All these givens are matrices drawn from some distribution.

@ which depends on{E; };¢[q, drowns out some a

specific error distribution dependent on the bit b.
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OUR WORK

Subspace Flooding Assumption hoviw: i

P.P’ seedg+,A*, B=A*So+F,C=A*"R+E — G, E* + E-G ' (B) — bF

Hides bit b

Theorem (informal): Under a reasonable conjecture, when b = 0, there exists a
PPT algorithm that recovers the {E;};c[q) from the givens.

Corollary (informal): Under a heuristic areument, we obtain a PPT distinguisher for
the subspace-flooding assumption.

15



CONJECTURE

\
f

T many linearly independent vectors
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CQNJECTU RE Entries of P from LWE error distribution (e.g. discrete gaussian).

/

M P M P M P

|

T < M. Conjecture is that these vectors remain linearly independent
under left-multiplication by P.

Provable under entries from uniform dist. and uniform on [—B, B].
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THE DQVWW?2)
CONSTRUCTION
APPROACH



DQVWW22I] CONSTRUCTION APPROACH:
SUCCINCT RANDOMIZED ENCODINGS (SRE)

To build i0, it suffices to build SRE.
SRE = XiO =2 i0
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SRE SYNTAX

To build i0, it suffices to build SRE.
SRE =2 XiO =2 i0

f:{0,1}" = {0, 1}V

Correctness:  Enc(f, x) f(x)
SGCU.I'ity: \V/Qj()aajla S.t. f(xO) — f(ajl)) E’)’LC(f, CUO) %COmp EnC<f,CC1)

Succinctness: |Enc(f,z)| = O(N°),d < 1
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SRE FROM SUCCINCT LWE SAMPLING

[DQVWW?22I]

14 N
F{0.1) - (0.1}
Generates a large pseudorandom LWE

sample of the form B* = AS™ + E*
Enc f, Post- evaluat1on randomness

==
|

seedB*

Random matrix (floodmg)

Random matnx
Homomorph1c commitment to X.

(dual GSW)
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SRE FROM SUCCINCT LWE SAMPLING

IDQVWW2I]

How do you generate a pseudorandom LWE sample?

S*

+ E*

\ /
TN}

|
seedg -



A NATURAL APPROACH: TENSORING

IDQVWW2I]

|

A

[
- [
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OUR ATTACK (SIMPLIFIED)

seeij*

Suppose we knew Y £ A*S™. Do the secrets in the seed remain hidden?

-
[§ 1 &

. = Known values
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OUR ATTACK (SIMPLIFIED)

seeij*

S1

Suppose we knew Y £ A*S™. Do the secrets in the seed remain hidden?

Suppose we knew...

. = Known values
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OUR ATTACK (SIMPLIFIED)

Suppose we knew Y £ A*S* and A1, A,. Can compute left annihilators!

seeij*
(
AvER
B, l- + -

|

. = Known values
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OUR ATTACK (SIMPLIFIED)

Suppose we knew Y £ A*S™ and A1, 4,.

seeij*
[
AvER
B, l- + -

|

L

...then we can recover S by solving an
affine system of equations

. = Known values
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OUR ATTACK (SIMPLIFIED)

Suppose we knew Y £ A*S™ and A1, 4,.

seeij*
[
s WS s
B, l- + -

|

L

...then we can recover S by solving an
affine system of equations

. = Known values
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OUR ATTACK (SIMPLIFIED)

Suppose we knew Y £ A*S™ and A1, 4,.

seedB*

and T R TESGET I

Bgl-+-

L

...then we can recover S by solving an

affine system of equations

- = Known values



OUR ATTACK (SIMPLIFIED)

Suppose we knew Y £ A*S™ and A1, 4,.

seedg-
( : )

-
[§ 1 &

. = Known values

...and then repeat for So
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

' How?

Y —

[A

|

\/’

' How?

- = Known values

If we knew these values, we’d be able to recover
the error terms in the seed!
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OUR ATTACK (SIMPLIFIED)

seedg-
: A
B, l S | 4

' How?

Y —

[A

S e

' How?

. = Known values

Intended attack to recover
components:

1. Recover A1, A,.

2. Compute Y = A*S™.
3. Recover §;.

4. Repeat for next index.
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UNIQUE REPRESENTATIONS (SIMPLIFIED)

R
EE

Can you recover the components Ay, A, from A*?

. = Known values



UNIQUE REPRESENTATIONS (SIMPLIFIED)

Equations

Hypothetical Constraints

seed o]
|

(
. . 5
B, [0y Ve |
*  Many possible solutions.

* A unique solution is necessary to recover a unique
secret.

- = Known values



UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

Equations

Hypothetical Constraints

seeij*

[
- [
.. [

|

EEEE

. = Known values

A possible solution to Uy:

Corresponding V; solution:
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UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

Equations

Hypothetical Constraints

seeij*

[
- [
.. [

|

EEEE

. = Known values

A possible solution to Uy:

Corresponding V; solution:
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UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

‘ . Equations : : )
Hypothetical Constraints A possible solution to U:

N =e
|

[
o, [ . = A
EmEE

l- - Corresponding V; solution:
: + . -

. = Known values
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UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

‘ . Equations : : )
Hypothetical Constraints A possible solution to U:

AT
|

[
o, [ . = A
EmEE

- Corresponding V; solution:
: l + - . -

. = Known values
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UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

Hypothetical Constraints

seeij*

( )
-, [ . [
B, l- + -




UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

Equations

Hypothetical Constraints

seeij*

[
- [
.. [

|

(L L]

For uniqueness, insist on a solution of the form:

. = Known values

Intended solution to Uy Vi:
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UNIQUE REPRESENTATIONS OF A; (SIMPLIFIED)

Equations

Hypothetical Constraints

seeij*

\
To prove uniqueness, we use a linear

independence argument made possible by both

[ . . ] the tensoring and the structure of the solutions.

For uniqueness, insist on a solution of the form:

[
- [
.. [

. = Known values
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

' How?

Y —

[§ | F

. = Known values

Recover A1, A, up to
unique representation.

. Compute Y = A*S™?
. Recover §; up to

unique representation.
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

' How?

Y —

[§ | F

From the givens, we can compute:

Y =A*-(S*+R-G'(B))

. = Known values

Recover A1, A, up to
unique representation.

. Compute Y = A*S™?
. Recover §; up to

unique representation.
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

' How?

Y —

1 1]

|

From the givens, we can compute:

+R-G(B))

T~

. = Known values

T~

Recover A1, A, up to
unique representation.

. Compute Y = A*S™?
. Recover §; up to

unique representation.

Compute right annihilator Q for G™1 (]§) “



OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

' How?

Y —

[§ | F

From the givens, we can compute:

Y Q=A*-S*.Q

. = Known values

Recover A1, A, up to
unique representation.

. Compute Y = A*S™Q.
. Recover §; up to

unique representation.
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

' How?

Y —

[§ | F

From the givens, we can compute:

Y Q=A*-S*.Q

. = Known values

Recover A1, A, up to
unique representation.

Compute Y = A*S*Q.

. Recover §; up to

unique representation.
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

Bl EmEE

From the givens, we can compute:

Y Q=A*-S*.Q

. = Known values

Recover A1, A, up to
unique representation.

Compute Y = A*S5*Q.

. Recover S; up to

unique representation.
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OUR ATTACK (SIMPLIFIED)

seeij*

- rEEs

[
- [
. [

Expand above:

. = Known values

ENERN

Recover A1, A, up to
unique representation.
Compute Y = A*S5*Q.
Recover S; up to
unique representation.
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OUR ATTACK (SIMPLIFIED)

seeij*

[
- [
. [

|

B EEEE

Generically, want to show that X; has unique solutions:

...involves analyzing overlap in column span of A" and B"

X1

. = Known values

ENERN

Recover A1, A, up to
unique representation.
Compute Y = A*S5*Q.
Recover S; up to
unique representation.
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BREAKING THE FULL ASSUMPTION

AN S

P.P’ seedg-,A*, B=A*Sy+ F,C=A"R+E - bG,E*+E-G '(B) — bF

Several randomization tricks were used in the construction in [DQVWW?21].
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BREAKING THE FULL ASSUMPTION

S S

P.P’ seedg-,A*, B=A*Sy+ F,C=A"R+E - bG,E*+E-G '(B) — bF
N !

Several randomization tricks were used in the construction in [DQVWW?21].

Final Remark 1: Under a reasonable conjecture on P preserving rank of small
subspaces, the toy analysis given extends to when P and P’ are present.
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BREAKING THE FULL ASSUMPTION

S S

P.P’ seedg-,A*, B=A*Sy+ F,C=A"R+E - bG,E*+E-G '(B) — bF
TN !

Several randomization tricks were used in the construction in [DQVWW?21].

Final Remark 1: Under a reasonable conjecture on P preserving rank of small
subspaces, the toy analysis given extends to when P and P’ are present.

Final Remark 2: We show that Kilian randomization on A*, S does not hide the
tensor structure.
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BREAKING THE FULL ASSUMPTION

S S

P.P’ seedg-,A*, B=A*Sy+ F,C=A"R+E - bG,E*+E-G '(B) — bF
NN !

Several randomization tricks were used in the construction in [DQVWW?21].

Final Remark 1: Under a reasonable conjecture on P preserving rank of small
subspaces, the toy analysis given extends to when P and P’ are present.

Final Remark 2: We show that Kilian randomization on A*, S does not hide the
tensor structure.

Final Remark 3: We show that the attack extends to the “T-sum” candidate
construction in [DQVWW?21]
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THANK YOU!



