
NanoGram: Garbled RAM
with Õ(log N) Overhead

Andrew Park
CMU

Wei-Kai Lin
Northeastern

Elaine Shi
CMU

1

Garbled Circuits [Yao82,Yao86]

2

Garbled Circuits [Yao82,Yao86]

C

Garbler Evaluator

Garbled Circuits [Yao82,Yao86]

C

Garbler Evaluator

Non Interactive

Garbled Circuits [Yao82,Yao86]

C

Garbler Evaluator

5

Non Interactive

Large RAM-to-circuit conversion

Garbled RAM [LO13]

6

Garbled RAM [LO13]

C

Garbler Evaluator

7

Garbled RAM [LO13]

Access

Garbler Evaluator

8

Garbled RAM [LO13]

Access

Garbler Evaluator

9

Input: {{i}}
Output: {{xi}}

Garbled RAM [LO13]

Access

Garbler Evaluator

10

Input: {{i}}
Output: {{xi}}
Goal: Access takes time sublinear in size of RAM

Garbled RAM Landscape

11

Garbled RAM Landscape

12

[LO13, GLO15,
HL20]

poly(λ, log n)

Garbled RAM Landscape

13

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

Garbled RAM Landscape

14

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

 Epigram
[HKO21]

O(λ log2 n)

Garbled RAM Landscape

15

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

 Epigram
[HKO21]

O(λ log2 n)

Lower Bound

Garbled RAM Landscape

16

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

[GO’87, WCS’15]

Ω(log n)

 Epigram
[HKO21]

O(λ log2 n)

Lower Bound

Garbled RAM Landscape

17

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

[GO’87, WCS’15]

Ω(log n)

Interactive

 Epigram
[HKO21]

O(λ log2 n)

Lower Bound

This Work

18

This Work

Can we have a (non-interactive) garbled RAM scheme whose
asymptotical performance is competitive to the interactive

state-of-the-art?

19

This Work

20

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

[GO’87, WCS’15]

Ω(log n)

Interactive

 Epigram
[HKO21]

O(λ log2 n)

[GO’87, WCS’15]

Ω(log n)

Interactive

Lower Bound

This Work

21

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

[GO’87, WCS’15]

Ω(log n)

Interactive

 Epigram
[HKO21]

O(λ log2 n)

NanoGRAM

Õ(λ log N)

[GO’87, WCS’15]

Ω(log n)

Interactive

Lower Bound

This Work

22

[LO13, GLO15,
HL20]

poly(λ, log n)

Impractical

[GO’87, WCS’15]

Ω(log n)

Interactive

 Epigram
[HKO21]

O(λ log2 n)

NanoGRAM

Õ(λ log N)

Near optimal dependence on N

[GO’87, WCS’15]

Ω(log n)

Interactive

Lower Bound

Outline

The Language Translation Problem

Strawman: Garbled ORAM Tree

Our Techniques

23

Outline

The Language Translation Problem

Strawman: Garbled ORAM Tree

Our Techniques

24

The Language Translation Problem

25

Each garbled circuit speaks a time-dependent language

The Language Translation Problem

26

Each garbled circuit speaks a time-dependent language

{{input}} ←Encode(sk, data, L)

The Language Translation Problem

T = 0

27

T = 1

T = 2

The Language Translation Problem

T = 0

28

T = 1

T = 2

Each gate expects input garbled
under time-dependent language

The Language Translation Problem

T = 0

29

T = 1

T = 2

I want xi
garbled under
lang for t = 1

The Language Translation Problem

T = 0

30

T = 1

T = 2

G:
doesn’t know
i in advance E:

doesn’t know t
in advance

The Language Translation Problem

T = 0

31

T = 1

T = 2

G:
doesn’t know
i in advance E:

doesn’t know t
in advance

The Language Translation Problem

T = 0

32

T = 1

T = 2

G:
doesn’t know
i in advance E:

doesn’t know t
in advance

Goal: Translate xi under language Lt

Outline
The Language Translation Problem

Strawman: Garbled ORAM Tree

Our Techniques

33

Strawman: Garbled ORAM Tree

34

Strawman: Garbled ORAM Tree

35

= Garbled Data Structure

Each has its own local clock

Strawman: Garbled ORAM Tree

36

{{labels}}, Lt

Strawman: Garbled ORAM Tree

37

{{labels}}, Lt

xi

O(log N) labels, one to read
from each bucket

Strawman: Garbled ORAM Tree

38

xi

{{labels}}, Lt

GOAL: Route Lt to xi on path

Strawman: Garbled ORAM Tree

39

xi

Garbled Switch:
Gadget for Language Translation

GOAL: Route Lt to xi on path

{{labels}}, Lt

Garbled Switch [HKO21]

40

Garbled Switch [HKO21]

41

T = 5

T = 3 T = 2

Every node has its local clock

Garbled Switch [HKO21]

42

T = 5

T = 3 T = 2

Every node has its local clock

When invoked, local time increments

Garbled Switch [HKO21]

43

T = 5

T = 3 T = 2

Every node has its local clock

When invoked, local time increments

Garbled message must speak the local time
dependent language of node

44

Garbled Stacks of Labels [ZRE15]

L1

L2

L3

L4

L1

L2

L3

L4

45

L1

L2

L3

L4

L1

L2

L3

L4

{{data, leaf_addr}}

46

L2

L3

L4

L1

L2

L3

L4

{{L1}} {{0}}

{{data, leaf_addr}}

47

L2

L3

L4

L1

L2

L3

L4

{{L1}} {{0}}

{{data, leaf_addr}}

{{data, leaf_addr}}

48

L2

L3

L4

L1

L2

L3

L4

{{L1}} {{0}}

{{data, leaf_addr}}

{{data, leaf_addr}}

Cost: O(log N), N = Stack Size

Outline

The Language Translation Problem

Construction of [HKO21]

Our Techniques

49

Two Reasons of Inefficiency

50

Two Reasons of Inefficiency

51

Large Switches (i.e. Root Node) = Large Number of Access

Two Reasons of Inefficiency

52

Large Switches (i.e. Root Node) = Large Number of Access

Passing large payload length (O(log n) labels,λ bits long)

Our Contributions

Large Switches (i.e. Root Node) = Large Number of Access

53

Passing large payload length (O(log n) labels,λ bits long)

Our Contributions

Large Switches (i.e. Root Node) = Large Number of Access

Polylog sized buckets with dynamic finalization
(Bucket ORAM)

54

Passing large payload length (O(log n) labels,λ bits long)

Our Contributions

Large Switches (i.e. Root Node) = Large Number of Access

Polylog sized buckets with dynamic finalization
(Bucket ORAM)

55

Passing large payload length (O(log n) labels,λ bits long)

Passing Single Label Using XOR Trick (see paper)

Trick: Break down switches into smaller size

56

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

Trick: Break down switches into smaller size

57

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

Trick: Break down switches into smaller size

58

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

Bucket are of size O(log N)

Trick: Break down switches into smaller size

59

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

Trick: Break down switches into smaller size

60

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

= Empty

= Full

T = 0 B 2B 3B 4B 5B 6B 7B

Trick: Break down switches into smaller size

61

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

= Empty

= Full

T = 0 B 2B 3B 4B 5B 6B 7B

Trick: Break down switches into smaller size

62

Each node at level i has T /(B · 2i) copies of GSwitch + GBkt

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

= Empty

= Full

T = 0 B 2B 3B 4B 5B 6B 7B

Break up O(N)-sized switch into O(log N)-sized

Rebuilding the Garbled Buckets

Rebuilding the Garbled Buckets

Rebuilding the Garbled Buckets

Rebuild every B time steps
B = Stash Size

Rebuilding the Garbled Buckets

Rebuild every B time steps
B = Stash Size

Issue: Dynamic Rebuild

67

Accesses are unknown at garbling time

Issue: Dynamic Rebuild

68

Accesses are unknown at garbling time

Rebuild

Issue: Dynamic Rebuild

69

Accesses are unknown at garbling time

Rebuild

Accesses are unknown at garbling time

Issue: Dynamic Rebuild

70

Accesses are unknown at garbling time

Rebuild

Accesses are unknown at garbling time

Local clocks of children have advanced to unknown
dynamic value

Solution: Dynamic Finalization

71

Equip Garbled data structures with Finalize routine

Solution: Dynamic Finalization

72

Equip Garbled data structures with Finalize routine

Rebuild

Solution: Dynamic Finalization

73

Equip Garbled data structures with Finalize routine

Rebuild + Finalize

Solution: Dynamic Finalization

74

Equip Garbled data structures with Finalize routine

Rebuild + Finalize
stateL stateR

Additional Optimizations (See Paper)

75

Avoiding λ factor blowup when garbling

Modular framework for garbled algorithm composition

Practical Optimizations

Concrete Performance

76

THANK YOU!

https://eprint.iacr.org/2022/191.pdf

77

