
NanoGram: Garbled RAM 
with Õ(log N) Overhead 

Andrew Park 
CMU

Wei-Kai Lin 
Northeastern

Elaine Shi
CMU

1



Garbled Circuits [Yao82,Yao86] 

2



Garbled Circuits [Yao82,Yao86] 

C

Garbler Evaluator



Garbled Circuits [Yao82,Yao86] 

C

Garbler Evaluator

Non Interactive



Garbled Circuits [Yao82,Yao86] 

C

Garbler Evaluator

5

Non Interactive

Large RAM-to-circuit conversion
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Input: {{i}} 
Output: {{xi}}   
Goal: Access takes time sublinear in size of RAM 
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This Work

Can we have a (non-interactive) garbled RAM scheme whose 
asymptotical performance is competitive to the interactive 

state-of-the-art?
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Each garbled circuit speaks a time-dependent language 

{{input}} ←Encode(sk, data, L) 
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T = 1
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T = 1

T = 2

Each gate expects input garbled 
under time-dependent language
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T = 1

T = 2

I want xi 
garbled under 
lang for t = 1
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T = 1

T = 2

G:
doesn’t know 
i in advance E:

doesn’t know t 
in advance

Goal: Translate xi under language Lt
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Strawman: Garbled ORAM Tree
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= Garbled Data Structure

Each        has its own local clock 



Strawman: Garbled ORAM Tree

36

{{labels}}, Lt 



Strawman: Garbled ORAM Tree

37

{{labels}}, Lt 

xi 

O(log N) labels, one to read 
from each bucket
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xi 

{{labels}}, Lt 

GOAL: Route Lt to xi on path
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xi 

Garbled Switch: 
Gadget for Language Translation  

GOAL: Route Lt to xi on path

{{labels}}, Lt 
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T = 5

T = 3 T = 2

Every node has its local clock 

When invoked, local time increments

Garbled message must speak the local time 
dependent language of node
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Garbled Stacks of Labels [ZRE15]
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L2

L3

L4

L1

L2

L3

L4

{{L1}} {{0}}

{{data, leaf_addr}}

{{data, leaf_addr}}

Cost: O(log N), N = Stack Size
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The Language Translation Problem

Construction of [HKO21]

Our Techniques
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Large Switches (i.e. Root Node) = Large Number of Access 

Passing large payload length (O(log n) labels,λ bits long) 
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Our Contributions

Large Switches (i.e. Root Node) = Large Number of Access 

Polylog sized buckets with dynamic finalization 
(Bucket ORAM) 

55

Passing large payload length (O(log n) labels,λ bits long) 

Passing Single Label Using XOR Trick (see paper)
                  



Trick: Break down switches into smaller size

56

Each node at level i has T /(B · 2i ) copies of GSwitch + GBkt



Trick: Break down switches into smaller size

57

Each node at level i has T /(B · 2i ) copies of GSwitch + GBkt
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Each node at level i has T /(B · 2i ) copies of GSwitch + GBkt

Bucket are of size O(log N)
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Trick: Break down switches into smaller size
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Each node at level i has T /(B · 2i ) copies of GSwitch + GBkt

0 0 0 0 0 0 0 0 

0 1 0 1 0 1 0 1 

0 1 2 3 0 1 2 3 

0 1 2 3 4 5 6 7 

= Empty

= Full

T = 0 B 2B 3B 4B 5B 6B 7B 

Break up O(N)-sized switch into O(log N)-sized
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Rebuild every B time steps
B = Stash Size 
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Accesses are unknown at garbling time

Rebuild 

Accesses are unknown at garbling time

Local clocks of children have advanced to unknown 
dynamic value
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Equip Garbled data structures with Finalize routine
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Equip Garbled data structures with Finalize routine

Rebuild 
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Equip Garbled data structures with Finalize routine

Rebuild + Finalize 
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Equip Garbled data structures with Finalize routine

Rebuild + Finalize 
stateL stateR



Additional Optimizations (See Paper) 
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Avoiding λ factor blowup when garbling 

Modular framework for garbled algorithm composition 

Practical Optimizations



Concrete Performance 
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THANK YOU! 

https://eprint.iacr.org/2022/191.pdf

77


