NanoGram: Garbled RAM
with O(log N) Overhead

Andrew Park Wei-Kai Lin Elaine Shi
CMU Northeastern CMU

Garbled Circuits [Ya082,Ya086]

Garbled Circuits [Ya082,Ya086]

Garbler Evaluator

Garbled Circuits [Ya082,Ya086]

)

Garbler Evaluator

00 -
— Non Interactive

Garbled Circuits [Ya082,Ya086]

Garbler Evaluator

00 .
— Non Interactive

v v Large RAM-to-circuit conversion

-~

Garbled RAM [LO13]

Garbled RAM [LO13]

Garbler Evaluator

Garbled RAM [LO13]

Access >

Garbler Evaluator

Garbled RAM [LO13]

Access >

Garbler Evaluator

Input:
Output:

Garbled RAM [LO13]

Access >

Garbler Evaluator

Input:
Output:

Goal: Access takes time sublinear in size of RAM

10

Garbled RAM Landscape

11

Garbled RAM Landscape

[LO13, GLO15,
HL20]

poly(A, log n)

12

Garbled RAM Landscape

[LO13, GLO15,
HL20]

poly(A, log n)

Impractical

13

Garbled RAM Landscape

[LO13, GLO15, Epigram
HL20] [HKO21]
poly(A, log n) O(A log? n)

Impractical

14

Garbled RAM Landscape

[LO13, GLO15, Epigram
HL20] [HKO21]
poly(A, log n) O(A log? n)

Impractical

Lower Bound

15

Garbled RAM Landscape

[LO13, GLO15, Epigram
HL20] [HKO21]
poly(A, log n) O(A log? n)

Impractical

Lower Bound

[GO'87, WCS’15]

Q(log n)

16

Garbled RAM Landscape

Lower Bound

[LO13, GLO15, Epigram [GO’87, WCS’195]
HL20] [HKO21]
poly(A, log n) O(A log? n) Q(log n)

Impractical Interactive

17

This Work

18

This Work

Can we have a (non-interactive) garbled RAM scheme whose
asymptotical performance is competitive to the interactive
state-of-the-art?

19

This Work

[LO13, GLO15, Epigram
HL20] [HKO21]
poly(A, log n) O(A log? n)

Impractical

Lower Bound

[GO'87, WCS'15]

Q(log n)

Interactive

20

This Work

[LO13, GLO15,
HL20]

poly(A, log n)

Impractical

Lower Bound

Epigram NanoGRAM [GO’87, WCS’195]
[HKO21]
O(A log? n) O(A log N) Q(log n)

Interactive

21

This Work

Near optimal dependence on N Lower Bound

[LO13, GLO15, Epigram NanoGRAM || [GO'87, WCS'15]
HL20] [HKO21]
poly(A, log n) O(A log? n) O(A log N) Q(log n)

Impractical

Interactive

22

Outline

The Language Translation Problem
Strawman: Garbled ORAM Tree

Our Techniques

23

Outline

The Language Translation Problem
Strawman: Garbled ORAM Tree

Our Techniques

24

The Language Translation Problem

Each garbled circuit speaks a time-dependent language

25

The Language Translation Problem

Each garbled circuit speaks a time-dependent language

—Encode(sk, data, |)

26

The Language Translation Problem

D

D

D

27

The Language Translation Problem

T=0 Each gate expects input garbled
under time-dependent language

D

D

28

The Language Translation Problem

| want
garbled under

lang fort =1

29

The Language Translation Problem

G:
doesn’t know c.

I in advance

doesn’t know t
in advance

30

The Language Translation Problem

E.

doesn’t know t
in advance

31

The Language Translation Problem

E.

doesn’t know t
in advance

T=2
> Goal: Translate x. under language L,

32

Outline

The Language Translation Problem
Strawman: Garbled ORAM Tree

Our Techniques

33

Strawman: Garbled ORAM Tree

34

Strawman: Garbled ORAM Tree

@ -= Garbled Data Structure
Each @ has its own

P PrPy

35

Strawman: Garbled ORAM Tree

P PrPy

36

Strawman: Garbled ORAM Tree

P PYPy

37

Strawman: Garbled ORAM Tree

38

Strawman: Garbled ORAM Tree

-
\/

~

J

®

»
é

Garbled Switch:
Gadget for Language Translation

39

Garbled Switch [HKO21]

40

Garbled Switch [HKO21]

T=5 Every node has its local clock

41

Garbled Switch [HKO21]

T=5 Every node has its local clock

When invoked, local time increments

42

Garbled Switch [HKO21]

T=5 Every node has its local clock

When invoked, local time increments

43

Garbled Stacks of Labels [ZRE15]

I'1
o

L3
O

44

¢ {{data, leaf addr}}

45

¢ {{data, leaf addr}}

46

¢ {{data, leaf addr}}

47

!

{{data, leaf _addr}}
Cost: O(log N), N = Stack Size

48

Outline

The Language Translation Problem
Construction of [HKO21]

Our Techniques

49

Two Reasons of Inefficiency

50

Two Reasons of Inefficiency

Large Switches (i.e. Root Node) = Large Number of Access

[]
E

51

Two Reasons of Inefficiency

Large Switches (i.e. Root Node) = Large Number of Access

[]
ﬁ

Passing large payload length (O(log n) labels,A bits long)

([]
H

52

Our Contributions

Large Switches (i.e. Root Node) = Large Number of Access

:

Passing large payload length (O(log n) labels,A bits long)

53

Our Contributions

Large Switches (i.e. Root Node) = Large Number of Access

o ﬁ _ Polylog sized buckets with dynamic finalization
- (Bucket ORAM)

Passing large payload length (O(log n) labels,A bits long)

54

Our Contributions

\ '/ Large Switches (i.e. Root Node) = Large Number of Access

Zyﬁ

— Polylog sized buckets with dynamic finalization
(Bucket ORAM)

\ | /_ Passing large payload length (O(log n) labels,A bits long)

7

. ﬁf} — Passing Single Label Using XOR Trick (see paper)

s

55

Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

56

Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

57

Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

Bucket are of size O(log N)

58

Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

59

Trick: Break down switches into smaller size

= Empty

O 1 2 3 4 5 6 7 = Full

60

Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt
= Empty

O 1 2 3 4 5 6 7 = Full

61

Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

T= O B 2B 3B 4B 5B 6B 7B = Empty

O 1 2 3 4 5 6 7 = Full

o 1 2 s [o1]2]s

o 1 0 1 0 1 0 1

Y seeessss)

Break up O(N)-sized switch into O(log N)-sized

62

Rebuilding the Garbled Buckets

Rebuilding the Garbled Buckets

Rebuilding the Garbled Buckets

Rebuilding the Garbled Buckets

Issue: Dynamic Rebuild
Accesses are unknown at garbling time

67

Issue: Dynamic Rebuild

68

Issue: Dynamic Rebuild

Issue: Dynamic Rebuild
Accesses are unknown at garbling time

T

Local clocks of children have advanced to unknown
dynamic value

70

Solution: Dynamic Finalization
Equip Garbled data structures with Finalize routine

71

Solution: Dynamic Finalization

72

Solution: Dynamic Finalization

73

Solution: Dynamic Finalization

74

Additional Optimizations (See Paper)
Avoiding A factor blowup when garbling

Modular framework for garbled algorithm composition

Practical Optimizations

75

Concrete Performance

— N N
o1 () o1
o (&) o

megabytes per memory access
—
(@)
o

o1
)

—— Nanogram

—-— Epigram

- Linear scan

10 15

20
log(N)

25

30

76

THANK YOU!
https://eprint.iacr.org/2022/191.pdf

77

