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Goal: Access takes time sublinear in size of RAM
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Garbled RAM Landscape

Lower Bound

[LO13, GLO15, Epigram [GO’87, WCS’195]
HL20] [HKO21]
poly(A, log n) O(A log? n) Q(log n)

Impractical Interactive
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This Work

Can we have a (non-interactive) garbled RAM scheme whose
asymptotical performance is competitive to the interactive
state-of-the-art?
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This Work

Near optimal dependence on N Lower Bound
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The Language Translation Problem

Each garbled circuit speaks a time-dependent language
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Each garbled circuit speaks a time-dependent language

—Encode(sk, data, |)

26



The Language Translation Problem

D

D

D

27



The Language Translation Problem

T=0 Each gate expects input garbled
under time-dependent language

D

D
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The Language Translation Problem

| want
garbled under

lang fort =1
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The Language Translation Problem

G:
doesn’t know c.

I in advance

doesn’t know t
in advance
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The Language Translation Problem

E.

doesn’t know t
in advance

T=2
> Goal: Translate x. under language L,
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Strawman: Garbled ORAM Tree
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Strawman: Garbled ORAM Tree

@ -= Garbled Data Structure
Each @ has its own

P PrPy
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Strawman: Garbled ORAM Tree
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Garbled Switch:
Gadget for Language Translation
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Garbled Stacks of Labels [ZRE15]

I'1
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¢ {{data, leaf addr}}
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!

{{data, leaf _addr}}
Cost: O(log N), N = Stack Size
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Outline

The Language Translation Problem
Construction of [HKO21]

Our Techniques
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Our Contributions

\ '/ Large Switches (i.e. Root Node) = Large Number of Access

Zyﬁ

— Polylog sized buckets with dynamic finalization
(Bucket ORAM)

\ | /_ Passing large payload length (O(log n) labels,A bits long)

7

. ﬁf} — Passing Single Label Using XOR Trick (see paper)

s
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Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt
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Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

Bucket are of size O(log N)
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Trick: Break down switches into smaller size

= Empty

O 1 2 3 4 5 6 7 = Full
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Trick: Break down switches into smaller size
Each node at level i has T /(B - 2') copies of GSwitch + GBkt

T= O B 2B 3B 4B 5B 6B 7B = Empty

O 1 2 3 4 5 6 7 = Full

o 1 2 s [o1]2]s

o 1 0 1 0 1 0 1

Y seeessss )

Break up O(N)-sized switch into O(log N)-sized
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Issue: Dynamic Rebuild
Accesses are unknown at garbling time
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Issue: Dynamic Rebuild
Accesses are unknown at garbling time

T

Local clocks of children have advanced to unknown
dynamic value
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Solution: Dynamic Finalization
Equip Garbled data structures with Finalize routine
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Solution: Dynamic Finalization
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Additional Optimizations (See Paper)
Avoiding A factor blowup when garbling

Modular framework for garbled algorithm composition

Practical Optimizations
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Concrete Performance

— N N
o1 () o1
o (&) o

megabytes per memory access
—
(@)
o

o1
)

—— Nanogram

—-— Epigram

- Linear scan

10 15

20
log(N)

25

30

76



THANK YOU!
https://eprint.iacr.org/2022/191.pdf
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