
Asymmetric Group Message Franking:
Definitions & Constructions

Authors: Junzuo Lai1 Gongxian Zeng2 Zhengan Huang2

Siu Ming Yiu3 Xin Mu2 Jian Weng1

Speaker: Shuai Han

1College of Information Science and Technology, Jinan University,
Guangzhou, China

2Peng Cheng Laboratory, Shenzhen, China

3The University of Hong Kong, Hong Kong, China

1 Background & Motivation

2 Contributions

3 AGMF primitive

4 AGMF construction

5 References

Background: Messaging communication

Security properties:
1 Confidentiality
2 Integrity

Background: Abuse of messaging application

However, the messaging applications are abused for the spread of
malicious information.

Background: Message franking (MF) [Fac16, GLR17, TGL+19]

Background: Security properties of MF – Accountability I

Here, we recall the security notions defined in [TGL+19].

Accountability: it allows the receiver to report the malicious
messages to some moderator (e.g., the platform or some trusted
third party), and meanwhile guarantees that no fake reports can be
fabricated to frame an honest sender.

Background: Security properties of MF – Accountability II
In [TGL+19], accountability is formalized with two special
properties: sender binding and receiver binding.

1 Sender binding (s-bind) guarantees that any sender should
not be able to trick receivers into accepting unreportable
messages.

2 Receiver binding (r-bind) guarantees that any receivers
cannot deceive the judge (to frame the innocent sender).

Figure 1: Attack on s-bind Figure 2: Attack on r-bind

Background: Security properties of MF – Deniability I

Deniability: Informally, deniability ensures that when the receiver
reports some malicious messages, only the moderator is able to
validate the report. In other words, after a compromise, the
sender can deny sending the messages technically, in order to avoid
backlash or embarrassment.

Background: Security properties of MF – Deniability II

Deniability is formalized with three special properties: universal
deniability, receiver compromise deniability and judge compromise
deniability.

Background: SMF vs. AMF

There are mainly two kinds of message franking:
1 symmetric message franking (SMF), e.g., [Fac16, GLR17]
2 asymmetric message franking (AMF), e.g., [TGL+19]

Differences:
Compared with SMF [Fac16, GLR17], AMF [TGL+19] supports
third-party moderation, decoupling the platform and the
moderator. AMF is advantageous if the platform cannot
adequately moderate messages, or if sub-communities want to
enforce their own content policies.

Motivation: message franking in group communication scenarios

However, the existing AMF [TGL+19] only considers the case of
1-1 communication. As for another common scenarios, group
communications, no works have ever related to this topic.

1 Background & Motivation

2 Contributions

3 AGMF primitive

4 AGMF construction

5 References

Contributions

In this paper, we systematically explore message franking in group
communication scenarios. The contributions are listed as follows.
• We introduce a new primitive called asymmetric group

message franking (AGMF), and formalize its security notions.
• We present a variant of key encapsulation mechanism (KEM),

called HPS-based KEM supporting Sigma protocols
(HPS-KEMΣ), and provide a construction based on the
decisional Diffie-Hellman (DDH) assumption. The
construction can be extended to be built based on the
k-Linear assumption.

• We provide a framework of constructing AGMF from
HPS-KEMΣ, and show that it achieves the required security
properties. Actually, we also obtain a framework of
constructing AMF from HPS-KEMΣ (i.e., when the size of the
receiver set is 1).

Comparison on AMF[TGL+19] and AGMF

Here, we make a comparison on AMF[TGL+19] and our AGMF.

Differences AMF[TGL+19] Our AGMF

Corrupted receivers |Scor| = 1 |Scor| ≥ 1
Receiver anonymity − ✓

Assumptions
Non-standard: KEA Standard:

or Gap Diffie-Hellman DDH or k-Lin

0|Scor| is the number of corrupted receivers.

1 Background & Motivation

2 Contributions

3 AGMF primitive

4 AGMF construction

5 References

Algorithms/definition

AGMF = (Setup,KGJ,KGu,Frank,Verify, Judge,Forge,RForge, JForge)

Security requirements I

We consider three kinds of security requirements for AGMF:
accountability, deniability, and receiver anonymity. Since some of
them are similar to those of AMF [TGL+19], here we show the
differences.

1 Corruption of multiple receivers.
• Receiver binding for AGMF requires that

any corrupted receivers cannot deceive the judge or
the other honest receivers to frame the innocent sender.

Security requirements II

• Receiver compromise deniability for AGMF requires that
any corrupted users in the receiver set are able to create a
signature, such that for other parties with access to
these corrupted users’ secret keys, it is indistinguishable from
honestly-generated signatures.

Security requirements III

2 Receiver anonymity requires that any one (except for the
receivers in the receiver set), including the judge, cannot tell
which receiver set a signature is generated for.

Security requirements IV

3 Adaptive security. In all our proposed security models, the
adversary is allowed to corrupt the receivers adaptively. In
other words, how many and whose secret keys are
compromised is unpredictable in practical scenarios, which is
greatly different from that in AMF (i.e., only one receiver’s
secret key is compromised).

1 Background & Motivation

2 Contributions

3 AGMF primitive

4 AGMF construction

5 References

Building block: HPS-KEMΣ

In order to provide a framework of constructing AGMF, we
introduce a new primitive. This primitive is a variant of key
encapsulation mechanism (KEM) satisfying that
(i) it can be interpreted from the perspective of hash proof

system (HPS) [CS02],
(ii) for some special relations (about the public/secret keys, the

encapsulated keys and ciphertexts), there exist corresponding
Sigma protocols.

We call this primitive HPS-based KEM supporting Sigma protocols
(HPS-KEMΣ).

Definition of HPS-KEMΣ I

HPS-KEMΣ = (KEMSetup,KG, encapc, encap∗c , encapk,
decap,CheckKey,CheckCwel)
• pp ← KEMSetup(1λ): it outputs a public parameter pp.
• (pk, sk)← KG(pp): it outputs a key pairs (pk, sk).
• c ← encapc(pp; r): it outputs a well-formed ciphertext c.
• c ← encap∗c(pp; r∗):
• k ← encapk(pp, pk; r): it outputs an encapsulated key k ∈ K.

it outputs a ciphertext c.
• k ′ ← decap(pp, sk, c): it outputs an encapsulated key k ′ ∈ K.
• b ← CheckKey(pp, sk, pk): it checks whether the keys are

well-formed.
• b ← CheckCwel(pp, c, r∗): it checks whether the ciphertext is

well-formed.

Definition of HPS-KEMΣ II

For any pp generated by KEMSetup(1λ), we define some relations
as follows and we require there exists a Sigma protocol for each
relation:
Rs = {(sk, pk) : CheckKey(pp, sk, pk) = 1}
Rc,k = {(r , (c, k, pk)) : c = encapc(pp; r) ∧ k = encapk(pp, pk; r)}
R∗c = {(r∗, c) : c = encap∗c(pp; r∗)}

where
• Rs is a relation proving that the keys are valid,
• Rc,k is a relation proving that (c, k) are generated via encapc

and encapk,
• R∗c is a relation proving that c is a ciphertext output by

encap∗c .

Definition of HPS-KEMΣ III

We also require the properties:
• universality,
• unexplainability,
• indistinguishability,
• SK-second-preimage resistance(SK-2PR),
• smoothness.

Due to the limitation of time, please refer to the definitions of
these properties and a concrete construction based on DDH in our
paper [LZH+23].

AGMF from HPS-KEMΣ: setup and key generation algorithms

Taking HPS-KEMΣ as a building block, we can construct AGMF
as follows.

Setup(λ): pp← KEMSetup(1λ); Return pp

KGJ(pp): (pkJ, skJ)← KG(pp); Return (pkJ, skJ)

KGu(pp): (pk, sk)← KG(pp); Return (pk, sk)

AGMF from HPS-KEMΣ: Franking and verification algorithms

Frank(pp, sks,S , pkJ,m):
r ←RS; c ← encapc(pp; r); kJ ← encapk(pp, pkJ; r)
For pkri ∈ S :

kri ← encapk(pp, pkri ; r)
x ← (sks, r ,⊥); y ← (pp, pks, pkJ, c, kJ)
m ← (m||{kri}pkri ∈S); π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri ∈S)

Verify(pp, pks, skr, pkJ,m, σ):
(π, c, kJ, {kri}pkri ∈S)← σ; y ← (pp, pks, pkJ, c, kJ)

m ← (m||{kri}pkri ∈S)

If NIZKR.PoKVer(m, π, y) = 0: Return 0
If decap(pp, skr, c) ∈ {kri}pkri ∈S : Return 1
Return 0

Judge(pp, pks, skJ,m, σ):
(π, c, kJ, {kri}pkri ∈S)← σ; y ← (pp, pks, pkJ, c, kJ)

m ← (m||{kri}pkri ∈S)

If NIZKR.PoKVer(m, π, y) = 0: Return 0
If decap(pp, skJ, c) ̸= kJ: Return 0
Return 1

AGMF from HPS-KEMΣ: Forging algorithms

Forge(pp, pks,S , pkJ,m):
r∗ ←RS∗; c ← encap∗

c (pp; r∗); kJ ← K
For pkri ∈ S : kri ← K
x ← (⊥,⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m ← (m||{kri}pkri ∈S)

π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri ∈S)

RForge(pp, pks, {pkri , skri}pkri ∈Scor ,S , pkJ,m):�Scor here is the set of corrupted receivers
r∗ ←RS∗; c ← encap∗

c (pp; r∗); kJ ← K
For pkri ∈ S\Scor: kri ← K
For pkri ∈ Scor: kri ← decap(pp, skri , c)
x ← (⊥,⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m ← (m||{kri}pkri ∈S)

π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri ∈S)

JForge(pp, pks,S , skJ,m):
r∗ ←RS∗; c ← encap∗

c (pp; r∗); kJ ← decap(pp, skJ, c)
For pkri ∈ S : kri ← K
x ← (⊥,⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m ← (m||{kri}pkri ∈S)

π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri ∈S)

AGMF from HPS-KEMΣ: NIZK

Applying Fait-Shamir transform to the Sigma protocols for the
following relation, we can get a NIZK scheme NIZKR.
R = { ((sks, r , r∗), (pp, pks, pkJ, c, kJ)) :

((sks, pks) ∈ Rs ∧ (r , (c, kJ, pkJ)) ∈ Rc,k)� For normal case, the clause is true when invoking Frank
∨ ((r∗, c) ∈ R∗c)� For deniability, the clause is true when invoking the forging� algorithms: Forge, RForge and JForge

}
• Rs is a relation proving that the sender’s public/secret keys

are valid. (⇒ accountability)
• Rc,k is a relation proving that a with the same randomness r .

(⇒ accountability)
• R∗c is a relation proving that c is a ciphertext output by

encap∗c with randomness r∗. (⇒ deniability)

Security analysis and lower bound I

For the security of AGMF, we have the following theorem.

Theorem 1

If a HPS-KEMΣ scheme HPS-KEMΣ is universal, unexplainable,
indistinguishble, SK-second-preimage resistant and smooth, and
NIZKR = (PoK, PoKVer) is a Fiat-Shamir NIZK proof system for
R, then our scheme AGMF achieves the accountability (receiver
binding and sender binding), deniability (universal deniability,
receiver compromise deniability, and judge compromise deniability)
and receiver anonymity simultaneously.

Due to the limitation of time, please refer to the proof for
Theorem 1 in our paper [LZH+23].

Security analysis and lower bound II

Following we present a lower bound of the size of AGMF signature.

Theorem 2
Any AGMF with receiver binding and receiver compromise
deniability must have signature size Ω(n), where n is the number
of the members in S .

Due to the limitation of time, please refer to the proof for
Theorem 2 in our paper [LZH+23].

1 Background & Motivation

2 Contributions

3 AGMF primitive

4 AGMF construction

5 References

References

[CS02] Ronald Cramer and Victor Shoup.
Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption.
In EUROCRYPT, pages 45–64. Springer, 2002.

[Fac16] Facebook.
Messenger secret conversations technical whitepaper.
2016.
https:
//fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart.
Message franking via committing authenticated encryption.
In CRYPTO 2017, pages 66–97. Springer, 2017.

[LZH+23] Junzuo Lai, Gongxian Zeng, Zhengan Huang, Siu Ming Yiu, Xin Mu, and Jian Weng.
Asymmetric group message franking: Definitions and constructions.
In EUROCRYPT 2023, pages 67–97. Springer, 2023.

[TGL+19] Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart.
Asymmetric message franking: Content moderation for metadata-private end-to-end encryption.
In CRYPTO 2019, pages 222–250. Springer, 2019.

https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf

	Background & Motivation
	Contributions
	AGMF primitive
	AGMF construction
	References

