
Spartan & Bulletproofs are
Simulation-Extractable (for Free!)

Quang Dao
CMU

Paul Grubbs
Michigan

Eurocrypt 2023

zkSNARKs: Security & Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

!"#$%"

(x, w) x

&%"'('%"
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

*For this talk, zkSNARKs may be without fast verification.

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

!"#$%"

(x, w) x

&%"'('%"
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If accepts, then
 must “know” .

&
! w

Zero-Knowledge: hides .π w

*For this talk, zkSNARKs may be without fast verification.

Applications in blockchains:

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

!"#$%"

(x, w) x

&%"'('%"
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If accepts, then
 must “know” .

&
! w

Zero-Knowledge: hides .π w

*For this talk, zkSNARKs may be without fast verification.

Applications in blockchains:

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

!"#$%"

(x, w) x

&%"'('%"
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If accepts, then
 must “know” .

&
! w

Zero-Knowledge: hides .π w

*For this talk, zkSNARKs may be without fast verification.

Applications in blockchains:

• Private smart contracts

• Private transactions

• ZK-Rollups

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

!"#$%"

(x, w) x

&%"'('%"
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If accepts, then
 must “know” .

&
! w

Zero-Knowledge: hides .π w

*For this talk, zkSNARKs may be without fast verification.

Applications in blockchains:

• Private smart contracts

• Private transactions

• ZK-Rollups

Other applications:

• Proof of solvency [DBBCB15]

• Image provenance [NT16], [BD22], [KHSS22]

• Content moderation [RMM22], [GAZBW22]

• And many more!

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)

zkSNARKs: Security & Use Cases

!"#$%"

(x, w) x

&%"'('%"
π

Short ()≪ |w |

(Fast)*

short, non-interactive proofs

Knowledge Soundness: If accepts, then
 must “know” .

&
! w

Zero-Knowledge: hides .π w

*For this talk, zkSNARKs may be without fast verification.

Standard ZKP security is not enough

Standard ZKP security is not enough
Adaptive attack: choose the statement
adaptively based on the proof

*! &
(x, π)

Accept on π xCompute and
simultaneously

π x

Standard ZKP security is not enough
Adaptive attack: choose the statement
adaptively based on the proof

Malleability attack: modify an existing proof
into a new proof without knowing the witness

*! &
(x, π)

Accept on π xCompute and
simultaneously

π x

*! &
(x′ , π′)

Accept on π′ x′ Maul on
to on

π x
π′ x′

Valid (x, π)

Standard ZKP security is not enough
Adaptive attack: choose the statement
adaptively based on the proof

Malleability attack: modify an existing proof
into a new proof without knowing the witness

Not ruled out by (non-adaptive) knowledge soundness & zero-knowledge!

*! &
(x, π)

Accept on π xCompute and
simultaneously

π x

*! &
(x′ , π′)

Accept on π′ x′ Maul on
to on

π x
π′ x′

Valid (x, π)

Standard ZKP security is not enough
Adaptive attack: choose the statement
adaptively based on the proof

Malleability attack: modify an existing proof
into a new proof without knowing the witness

Not ruled out by (non-adaptive) knowledge soundness & zero-knowledge!

*! &
(x, π)

Accept on π xCompute and
simultaneously

π x

*! &
(x′ , π′)

Accept on π′ x′ Maul on
to on

π x
π′ x′

Valid (x, π)

Standard ZKP security is not enough
Adaptive attack: choose the statement
adaptively based on the proof

Malleability attack: modify an existing proof
into a new proof without knowing the witness

 We need stronger security properties for deployment⟹

Not ruled out by (non-adaptive) knowledge soundness & zero-knowledge!

*! &
(x, π)

Accept on π xCompute and
simultaneously

π x

*! &
(x′ , π′)

Accept on π′ x′ Maul on
to on

π x
π′ x′

Valid (x, π)

Simulation Extractability

Simulation Extractability
SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when *
gets extra power.

!

(x′ , π′)
*! &

x π If accept on ,
then * knows some

& π′ x′

! w′

⋮ ⋮

Proof
Simulation

Oracle

Simulation Extractability
SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when *
gets extra power.

!

Rules out adaptive & malleability attacks.

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′)
*! &

x π If accept on ,
then * knows some

& π′ x′

! w′

⋮ ⋮

Proof
Simulation

Oracle

Simulation Extractability
Prior works:SIM-EXT (informal): [Sahai99], [DDOPS01]

Knowledge soundness holds even when *
gets extra power.

!

Rules out adaptive & malleability attacks.

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′)
*! &

x π If accept on ,
then * knows some

& π′ x′

! w′

⋮ ⋮

Proof
Simulation

Oracle

Simulation Extractability
Prior works:
• Constructing SIM-EXT zkSNARKs directly.

[GM17], [Lipmaa20]

• Achieving SIM-EXT via generic transformations.
[KZMQCP15], [ARS20], [BS21], [BKSV21]

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when *
gets extra power.

!

Rules out adaptive & malleability attacks.

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′)
*! &

x π If accept on ,
then * knows some

& π′ x′

! w′

⋮ ⋮

Proof
Simulation

Oracle

Simulation Extractability
Prior works:
• Constructing SIM-EXT zkSNARKs directly.

[GM17], [Lipmaa20]

• Achieving SIM-EXT via generic transformations.
[KZMQCP15], [ARS20], [BS21], [BKSV21]

• Proving certain zkSNARKs are SIM-EXT out-of-
the-box.

• Sonic, Plonk, Marlin [GKKNZ22] not
transparent

⟸

• Bulletproofs [GOPTT22] require stronger-
than-necessary assumption (AGM)

⟸

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when *
gets extra power.

!

Rules out adaptive & malleability attacks.

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′)
*! &

x π If accept on ,
then * knows some

& π′ x′

! w′

⋮ ⋮

Proof
Simulation

Oracle

Simulation Extractability
Prior works:
• Constructing SIM-EXT zkSNARKs directly.

[GM17], [Lipmaa20]

• Achieving SIM-EXT via generic transformations.
[KZMQCP15], [ARS20], [BS21], [BKSV21]

• Proving certain zkSNARKs are SIM-EXT out-of-
the-box.

• Sonic, Plonk, Marlin [GKKNZ22] not
transparent

⟸

• Bulletproofs [GOPTT22] require stronger-
than-necessary assumption (AGM)

⟸

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when *
gets extra power.

!

Rules out adaptive & malleability attacks.

Required for many applications. [KMSWP16], [BCG+20]

(x′ , π′)
*! &

x π If accept on ,
then * knows some

& π′ x′

! w′

⋮ ⋮

Proof
Simulation

Oracle

Can we show that transparent zkSNARKs satisfy SIM-EXT

under the same assumptions used to prove (knowledge) soundness?

Our Results

Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

To prove our results, we develop a few tools that might be of independent interest:

Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

To prove our results, we develop a few tools that might be of independent interest:

• A template for proving SIM-EXT from smaller properties
(building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu & Zajac [GKKNZ22])

Our Results
We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in
the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

To prove our results, we develop a few tools that might be of independent interest:

• A template for proving SIM-EXT from smaller properties
(building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu & Zajac [GKKNZ22])

• A more general tree extraction lemma for proving knowledge soundness
(building on the work of Attema, Fehr & Klooß [AFK22])

1. Breaking SIM-EXT into smaller properties

2. Instantiating SIM-EXT template for Bulletproofs

3. Knowledge Soundness via Generalized Tree Builder

Agenda

1. Breaking SIM-EXT into smaller properties

2. Instantiating SIM-EXT template for Bulletproofs

3. Knowledge Soundness via Generalized Tree Builder

Agenda

The Fiat-Shamir Transform & SIM-EXT Insight

• Construct an interactive, public-coin argument

The Fiat-Shamir Transform & SIM-EXT Insight

⋮

!

(x, w) x

a1

c1
a2

an+1

Accept /
Reject

(random)

c2 (random)

&

• Construct an interactive, public-coin argument

• Transform it into a non-interactive argument via Fiat-Shamir

The Fiat-Shamir Transform & SIM-EXT Insight

! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S

⋮

!

(x, w) x

a1

c1
a2

an+1

Accept /
Reject

(random)

c2 (random)

&

• Construct an interactive, public-coin argument

• Transform it into a non-interactive argument via Fiat-Shamir

The Fiat-Shamir Transform & SIM-EXT Insight

! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S

⋮

!

(x, w) x

a1

c1
a2

an+1

Accept /
Reject

(random)

c2 (random)

&

Insight: [GKKNZ22] Assuming 2 smaller properties, SIM-EXT of F-S
argument may be reduced to its knowledge soundness (KS).

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge and k-Unique Response
Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing ’s messages.!

k-Zero-Knowledge and k-Unique Response
Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing ’s messages.!

!

x

&

x

k-Zero-Knowledge and k-Unique Response
Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing ’s messages.!

! ⋮

x

⋮

c1 1st

cn 1st

&

x
ck 1st

k-Zero-Knowledge and k-Unique Response
Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing ’s messages.!

! ⋮

x

⋮

c1 1st

cn 1st

a1 2nd

ak 2nd

ak+1 2nd

an+1 2nd

&

x
ck 1st

k-Zero-Knowledge and k-Unique Response

&!

x x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&!

x x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&!

x
ck 1st

x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&!

x
ck 1st

a1 2nd

x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&!

x

c1 (query)

ck 1st

a1 2nd

x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&! ⋮

x

c1 (query)

ck 1st

a1 2nd

x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&! ⋮

x

c1 (query)

ck 1st

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&! ⋮

x

⋮

c1 (query)

ck 1st

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&! ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth

&! ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to
round , even given power to choose
statement and challenge .

!
π ≠ π′

k
x kth ck

&! ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to
round , even given power to choose
statement and challenge .

!
π ≠ π′

k
x kth ck

&

Accept
 on .π, π′ x

*! ⋮

a1

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

&! ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to
round , even given power to choose
statement and challenge .

!
π ≠ π′

k
x kth ck

&

Accept
 on .π, π′ x

*! ⋮

x

a1

ck

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

&! ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x

k-Zero-Knowledge and k-Unique Response
k-Zero-Knowledge (k-ZK): The simulator
Sim may only choose challenge, and
compute other messages in order.

k kth
k-Unique Response (k-UR): * cannot output
accepting proofs that agree up to
round , even given power to choose
statement and challenge .

!
π ≠ π′

k
x kth ck

&

Accept
 on .π, π′ x

*! ⋮

x

a1

ck

ak

ak+1

c1

a′ k+1

⋮ ⋮
cn c′ n

an+1 a′ n+1

&! ⋮

x

⋮

c1 (query)

ck 1st

cn (query)

a1 2nd

ak (k+1)-th

ak+1 (k+1)-th

an+1 (n+2)-th

π π′ ⏟ ⏟
x

Theorem (informal): SIM-EXT = KS + k-ZK + k-UR
(for the same round k)

1. SIM-EXT = KS + k-ZK + k-UR (for same k)

2. Instantiating SIM-EXT template for Bulletproofs

3. Knowledge Soundness via Generalized Tree Builder

Agenda

Bulletproofs Range Proof

Bulletproofs Range Proof

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Bulletproofs Range Proof

! &y, z

x

Accept if
IPA accepts and
evaluations are
correct

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Bulletproofs Range Proof

! &y, z

x

Accept if
IPA accepts and
evaluations are
correct

Recall: We need to show Bulletproofs
satisfy KS, -ZK, and -UR for the same
round .

k k
k

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Bulletproofs Range Proof

Recall: We need to show Bulletproofs
satisfy KS, -ZK, and -UR for the same
round .

k k
k

! &y, z

x

Accept if
IPA accepts and
evaluations are
correct

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

Q: Which round to prove -ZK and -UR?k k k

Recall: We need to show Bulletproofs
satisfy KS, -ZK, and -UR for the same
round .

k k
k

! &y, z

x

Accept if
IPA accepts and
evaluations are
correct

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

Q: Which round to prove -ZK and -UR?k k k

A: Choose the last round with ’s randomness.
(in this case)

!
k = 2

Recall: We need to show Bulletproofs
satisfy KS, -ZK, and -UR for the same
round .

k k
k

! &y, z

x

Accept if
IPA accepts and
evaluations are
correct

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private Com(): , Com(): a A s S

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Problem: How to simulate IPA?

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Problem: How to simulate IPA?

Idea:

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Problem: How to simulate IPA?

Idea:

1. Run the honest prover’s algorithm with a
“fake” witness.

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Problem: How to simulate IPA?

Idea:

1. Run the honest prover’s algorithm with a
“fake” witness.

2. Resolve contradiction via choosing
and message at the same time.

kth

(k + 1)th

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .2nd x

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .2nd x

2. Pick arbitrary witness , random blind .
Compute .

a s
A, S

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .2nd x

2. Pick arbitrary witness , random blind .
Compute .

a s
A, S

3. Pick random evaluations .
Choose consistent with evaluations.

̂t, βx, μ
T1, T2

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .2nd x

2. Pick arbitrary witness , random blind .
Compute .

a s
A, S

3. Pick random evaluations .
Choose consistent with evaluations.

̂t, βx, μ
T1, T2

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

(eval check)

g ̂t ⋅ hβx = Vz2 ⋅ gδ(y,z) ⋅ T1
x ⋅ T2

x2

Bulletproofs Range Proof

! &
Com(): , Com(): a A s S

y, z

Com(“cross terms”): T1, T2

“Evaluations” at : x ̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct

Inner Product Argument (IPA)
for .̂t = ⟨l, r⟩

⋮

2-ZK: Simulator can only choose first.x

1. Pick random challenge .

2. Pick arbitrary witness , random blind .
Compute .

3. Pick random evaluations .
Choose consistent with evaluations.

4. Execute IPA with satisfying witness
(derived from).

2nd x

a s
A, S

̂t, βx, μ
T1, T2

l, r
a, s

Relation: and V = gvhr 0 ≤ v ≤ 2n − 1
Public Private

Let .a = 3'45%6#78(v)

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

Accept if
IPA accepts and
evaluations are
correct

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

Accept if
IPA accepts and
evaluations are
correct

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

x

Accept if
IPA accepts and
evaluations are
correct

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

1. Use KS extractor for IPA to extract
from , from .

(l, r)
πIPA (l′ , r′) π′ IPA

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

1. Use KS extractor for IPA to extract
from , from .

(l, r)
πIPA (l′ , r′) π′ IPA

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

1. Use KS extractor for IPA to extract
from , from .

(l, r)
πIPA (l′ , r′) π′ IPA

2. If , we have a non-trivial
DLOG relation * breaks DLOG.

(̂t, βx) ≠ (̂t′ , β′ x)
⟹ !

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

1. Use KS extractor for IPA to extract
from , from .

(l, r)
πIPA (l′ , r′) π′ IPA

2. If , we have a non-trivial
DLOG relation * breaks DLOG.

(̂t, βx) ≠ (̂t′ , β′ x)
⟹ !

(eval check)

g ̂t ⋅ hβx = V z2 ⋅ gδ(y,z) ⋅ T1
x ⋅ T2

x2 = g ̂t′ ⋅ hβ′ x

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

1. Use KS extractor for IPA to extract
from , from .

(l, r)
πIPA (l′ , r′) π′ IPA

2. If , we have a non-trivial
DLOG relation * breaks DLOG.

(̂t, βx) ≠ (̂t′ , β′ x)
⟹ !

3. Else if , we also get a non-
trivial DLOG relation * breaks DLOG.

(l, r, μ) ≠ (l′ , r′ , μ′)
⟹ !

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

Bulletproofs Range Proof

1. Use KS extractor for IPA to extract
from , from .

(l, r)
πIPA (l′ , r′) π′ IPA

2. If , we have a non-trivial
DLOG relation * breaks DLOG.

(̂t, βx) ≠ (̂t′ , β′ x)
⟹ !

3. Else if , we also get a non-
trivial DLOG relation * breaks DLOG.

(l, r, μ) ≠ (l′ , r′ , μ′)
⟹ !

4. Else but *
breaks DLOG.

(l, r) = (l′ , r′) π=!> ≠ π′ =!> ⟹ !

2-UR: * cannot produce two accepting
proofs that agree on
(even if it can choose and).

!
π ≠ π′ A, S, T1, T2

V x

*! &y, z

Com(“cross terms”): T1, T2

̂t, βx, μ

x

Accept if
IPA accepts and
evaluations are
correct IPA for .̂t = ⟨l, r⟩

⋮

̂t′ , β′ x, μ′

IPA for .̂t′ = ⟨l′ , r′ ⟩

⋮

l, r l′ , r′

Let .a = 3'45%6#78(v)

Com(): , Com(): a A s S

V

1. SIM-EXT = KS + k-ZK + k-UR (for same k)

2. k-ZK and k-UR for Bulletproofs

3. Knowledge Soundness via Generalized Tree Builder

Agenda

Knowledge Soundness from Special Soundness

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1 … c′ 1 children}k1

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn

… … …

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

⋮

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓… … …

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

⋮

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

… … … …

an+1

cn children}kn
✓ ✓… … …

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

⋮

Knowledge Soundness from Special Soundness
F-S Argument:

-Tree of Accepting Transcripts(k1, …, kn)

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ R

Tree
Extractor

… … …

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

⋮

Knowledge Soundness from Special Soundness
F-S Argument:

Knowledge Soundness from Special Soundness

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S Argument:

Knowledge Soundness from Special Soundness

…

Tree
Builder

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S Argument:

Knowledge Soundness from Special Soundness
Attema et al. (TCC ’22): There exists a tree-
builder that builds a -tree of
accepting transcripts in expected poly-time.

A3 (k1, …, kn)

…

Tree
Builder

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S Argument:

Knowledge Soundness from Special Soundness
Attema et al. (TCC ’22): There exists a tree-
builder that builds a -tree of
accepting transcripts in expected poly-time.

A3 (k1, …, kn)

…

Tree
Builder

Combine with A3 AB

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S Argument:

Knowledge Soundness from Special Soundness
Attema et al. (TCC ’22): There exists a tree-
builder that builds a -tree of
accepting transcripts in expected poly-time.

A3 (k1, …, kn)

Corollary: If a proof system satisfies special
soundness, then it satisfies knowledge
soundness.

…

Tree
Builder

Combine with A3 AB

Special Soundness: There exists
such that a witness can be extracted from
any -tree of accepting transcripts.

k1, …, kn
w

(k1, …, kn)

*! &
, x π = (a1, …, an+1)

Accept /
Reject

./

Derive

c1 = ./(x, a1)
c2 = ./(x, a1, a2)

⋮
cn = ./(x, a1, …, an)

F-S Argument:

Generalized Special Soundness & Tree Building

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

Tree
Extractor

… … …

-Tree of Accepting Transcripts(k1, …, kn)

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

-Tree of Accepting Transcripts(k1, …, kn)

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

Break DLOG
or

-Tree of Accepting Transcripts(k1, …, kn)

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

• The tree of transcripts needs to satisfy
extra predicates on the challenges at
certain levels.

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

Break DLOG
or

-Tree of Accepting Transcripts(k1, …, kn)

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

• The tree of transcripts needs to satisfy
extra predicates on the challenges at
certain levels.

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

Break DLOG
or

Predicate

-Tree of Accepting Transcripts(k1, …, kn)

Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a
witness or a break of some
computational assumption (DLOG).

• The tree of transcripts needs to satisfy
extra predicates on the challenges at
certain levels.

We construct a generalized tree builder that can
handle these predicates (for Bulletproofs and Spartan).

a1
c1

a2

…

…
…

a′ 2

c′ 1

…

 children}k1

 children}k2c2

… … … …

an+1

cn children}kn
✓ ✓

 such that w
(x, w) ∈ RTree

Extractor

… … …

Break DLOG
or

Predicate

-Tree of Accepting Transcripts(k1, …, kn)

Summary

Summary
We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for
zkSNARKs that rules out most attacks in practice.

Summary
We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for
zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding

Summary
We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for
zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding

Open Questions:

• SIM-EXT for general classes of protocols:

• Polynomial IOPs [FFKRZ23]⟹
• Recursive SNARKs

• Tighter rewinding bounds

• UC security [GKOPTT23]⟹

Summary
We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for
zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding

Open Questions:

• SIM-EXT for general classes of protocols:

• Polynomial IOPs [FFKRZ23]⟹
• Recursive SNARKs

• Tighter rewinding bounds

• UC security [GKOPTT23]⟹

Read our paper!
(ePrint 2023/494)

Thank You!

