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Applications in blockchains:

• Private smart contracts

• Private transactions

• ZK-Rollups

Other applications:

• Proof of solvency [DBBCB15]

• Image provenance [NT16], [BD22], [KHSS22]

• Content moderation [RMM22], [GAZBW22]

• And many more!
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Malleability attack: modify an existing proof 
into a new proof without knowing the witness

 We need stronger security properties for deployment⟹

Not ruled out by (non-adaptive) knowledge soundness & zero-knowledge!
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Can we show that transparent zkSNARKs satisfy SIM-EXT 

under the same assumptions used to prove (knowledge) soundness?
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• Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.

• Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

To prove our results, we develop a few tools that might be of independent interest:

• A template for proving SIM-EXT from smaller properties 
(building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu & Zajac [GKKNZ22])

• A more general tree extraction lemma for proving knowledge soundness 
(building on the work of Attema, Fehr & Klooß [AFK22])
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Insight: [GKKNZ22] Assuming 2 smaller properties, SIM-EXT of F-S 
argument may be reduced to its knowledge soundness (KS).
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Generalized Special Soundness & Tree Building

Observation: Spartan and Bulletproofs do 
not satisfy special soundness.

However, they satisfy a generalized notion:

• Tree extraction can either output a 
witness or a break of some 
computational assumption (DLOG).

• The tree of transcripts needs to satisfy 
extra predicates on the challenges at 
certain levels.

We construct a generalized tree builder that can 
handle these predicates (for Bulletproofs and Spartan).
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Read our paper! 
(ePrint 2023/494)
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