Spartan \& Bulletproofs are

Simulation-Extractable (for Free!)

Paul Grubbs
Michigan

Eurocrypt 2023

zkSNARKs: Security \& Use Cases

zkSNARKs: Security \& Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)
short, non-interactive proofs

zkSNARKs: Security \& Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)
short, non-interactive proofs

Knowledge Soundness: If V accepts, then
P must "know" w.

Zero-Knowledge: π hides w.

zkSNARKs: Security \& Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)
short, non-interactive proofs

Knowledge Soundness: If V accepts, then P must "know" w.

Zero-Knowledge: π hides w.

Applications in blockchains:

zkSNARKs: Security \& Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)
short, non-interactive proofs

Knowledge Soundness: If V accepts, then P must "know" w.

Zero-Knowledge: π hides w.

Applications in blockchains:

zkSNARKs: Security \& Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)
short, non-interactive proofs

Knowledge Soundness: If V accepts, then P must "know" w.

Zero-Knowledge: π hides w.

Applications in blockchains:

- Private smart contracts
- Private transactions
- ZK-Rollups

zkSNARKs: Security \& Use Cases

(Zero-knowledge Succinct Non-interactive ARguments of Knowledge)
short, non-interactive proofs

Knowledge Soundness: If V accepts, then P must "know" w.

Zero-Knowledge: π hides w.

Applications in blockchains:

- Private smart contracts
- Private transactions
- ZK-Rollups

Other applications:

- Proof of solvency [DBBCB15]
- Image provenance [NT16], [BD22], [KHSS22]
- Content moderation [RMM22], [GAZBW22]
- And many more!

Standard ZKP security is not enough

Standard ZKP security is not enough

Adaptive attack: choose the statement adaptively based on the proof

Compute π and x
Accept π on x
simultaneously

Standard ZKP security is not enough

Adaptive attack: choose the statement adaptively based on the proof

Malleability attack: modify an existing proof into a new proof without knowing the witness

Standard ZKP security is not enough

Adaptive attack: choose the statement adaptively based on the proof
 simultaneously

Malleability attack: modify an existing proof into a new proof without knowing the witness

$$
\text { Valid }(x, \pi)
$$

Not ruled out by (non-adaptive) knowledge soundness \& zero-knowledge!

Standard ZKP security is not enough

Adaptive attack: choose the statement adaptively based on the proof

Malleability attack: modify an existing proof into a new proof without knowing the witness

Not ruled out by (non-adaptive) knowledge soundness \& zero-knowledge!

Standard ZKP security is not enough

Adaptive attack: choose the statement adaptively based on the proof

Malleability attack: modify an existing proof into a new proof without knowing the witness

Not ruled out by (non-adaptive) knowledge soundness \& zero-knowledge!
\Longrightarrow We need stronger security properties for deployment

Simulation Extractability

Simulation Extractability

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when P* gets extra power.

[^0]
Simulation Extractability

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when P* gets extra power.

Proof
Simulation
Oracle
Rules out adaptive \& malleability attacks.
Required for many applications. [KMSWP16], [BCG+20]

Simulation Extractability

SIM-EXT (informal): [Sahai99], [DDOPS01]
Prior works:
Knowledge soundness holds even when P* gets extra power.

Proof
Simulation
Oracle
Rules out adaptive \& malleability attacks.
Required for many applications. [KMSWP16], [BCG+20]

Simulation Extractability

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when P* gets extra power.

Prior works:

- Constructing SIM-EXT zkSNARKs directly. [GM17], [Lipmaa20]
- Achieving SIM-EXT via generic transformations. [KZMOCP15], [ARS20], [BS21], [BKSV21]

Rules out adaptive \& malleability attacks.
Required for many applications. [KMSWP16], [BCG+20]

Simulation Extractability

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when P^{*} gets extra power.

Rules out adaptive \& malleability attacks.
Required for many applications. [KMSWP16], [BCG+20]

Prior works:

- Constructing SIM-EXT zkSNARKs directly. [GM17], [Lipmaa20]
- Achieving SIM-EXT via generic transformations. [KZMOCP15], [ARS20], [BS21], [BKSV21]
- Proving certain zkSNARKs are SIM-EXT out-of-the-box.
- Sonic, Plonk, Marlin [GKKNZ22] \Longleftarrow not transparent
- Bulletproofs [GOPTT22] \Longleftarrow require stronger-than-necessary assumption (AGM)

Simulation Extractability

SIM-EXT (informal): [Sahai99], [DDOPS01]
Knowledge soundness holds even when P* gets extra power.

under | Proof |
| :---: |
| Simulation |
| Oracle |

Rules out adaptive \& malleability attacks.
Required for many applications. [KMSWP16], [BCG+20]

Simulation
Oracle

Prior works:

- Constructing SIM-EXT zkSNARKs directly. [GM17], [Lipmaa20]
- Achieving SIM-EXT via generic transformations.

Can we show that transparent zkSNARKs satisfy SIM-EXT
under the same assumptions used to prove (knowledge) soundness?

- Sonic, Plonk, Marlin [GKKNZ22] \Longleftarrow not transparent
- Bulletproofs [GOPTT22] \Longleftarrow require stronger-than-necessary assumption (AGM)

Our Results

Our Results

We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

- Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.
- Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

Our Results

We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

- Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.
- Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.

Our Results

We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

- Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.
- Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.
To prove our results, we develop a few tools that might be of independent interest:

Our Results

We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

- Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.
- Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.
To prove our results, we develop a few tools that might be of independent interest:

- A template for proving SIM-EXT from smaller properties (building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu \& Zajac [GKKNZ22])

Our Results

We show that Spartan and Bulletproofs, two transparent zkSNARKs, satisfy SIM-EXT in the random oracle model (ROM) assuming the discrete log assumption (DLOG) holds.

- Bulletproofs [BBBPWM18] has seen deployment in Monero, MimbleWimble, etc.
- Spartan [Setty20] is a state-of-the-art zkSNARK for prover time.

These assumptions (DLOG + ROM) are the minimal ones used to prove their soundness.
To prove our results, we develop a few tools that might be of independent interest:

- A template for proving SIM-EXT from smaller properties (building on the work of Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu \& Zajac [GKKNZ22])
- A more general tree extraction lemma for proving knowledge soundness (building on the work of Attema, Fehr \& Klooß [AFK22])

Agenda

1. Breaking SIM-EXT into smaller properties
2. Instantiating SIM-EXT template for Bulletproofs
3. Knowledge Soundness via Generalized Tree Builder

Agenda

1. Breaking SIM-EXT into smaller properties
2. Instantiating SIM-EXT template for Bulletproofs
3. Knowledge Soundness via Generalized Tree Builder

The Fiat-Shamir Transform \& SIM-EXT Insight

The Fiat-Shamir Transform \& SIM-EXT Insight

- Construct an interactive, public-coin argument

The Fiat-Shamir Transform \& SIM-EXT Insight

- Construct an interactive, public-coin argument
- Transform it into a non-interactive argument via Fiat-Shamir

The Fiat-Shamir Transform \& SIM-EXT Insight

- Construct an interactive, public-coin argument
- Transform it into a non-interactive argument via Fiat-Shamir

Insight: [GKkNz2z] Assuming 2 smaller properties, SIM-EXT of F-S argument may be reduced to its knowledge soundness (KS).

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge and k-Unique Response

Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing P's messages.

k-Zero-Knowledge and k-Unique Response

Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing P's messages.

k-Zero-Knowledge and k-Unique Response

Zero-Knowledge (ZK): The simulator Sim
may choose all challenges before
computing P's messages.

k-Zero-Knowledge and k-Unique Response

Zero-Knowledge (ZK): The simulator Sim may choose all challenges before computing P's messages.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator
Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

x

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator
Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator
Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator
Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator
Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator
Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{t h}$ challenge, and compute other messages in order.

k-Unique Response (k-UR): P^{*} cannot output accepting proofs $\pi \neq \pi^{\prime}$ that agree up to round k, even given power to choose statement x and $k^{\text {th }}$ challenge c_{k}.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{\text {th }}$ challenge, and compute other messages in order.

k-Unique Response (k-UR): P^{*} cannot output accepting proofs $\pi \neq \pi^{\prime}$ that agree up to round k, even given power to choose statement x and $k^{\text {th }}$ challenge c_{k}.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{\text {th }}$ challenge, and compute other messages in order.

k-Unique Response (k-UR): P^{*} cannot output accepting proofs $\pi \neq \pi^{\prime}$ that agree up to round k, even given power to choose statement x and $k^{\text {th }}$ challenge c_{k}.

k-Zero-Knowledge and k-Unique Response

k-Zero-Knowledge ($k-Z K$): The simulator Sim $_{k}$ may only choose $k^{\text {th }}$ challenge, and compute other messages in order.
k-Unique Response (k-UR): P^{*} cannot output accepting proofs $\pi \neq \pi^{\prime}$ that agree up to round k, even given power to choose statement x and $k^{\text {th }}$ challenge c_{k}.

 (for the same round k)

x

Accept π, π^{\prime} on x.

Agenda

1. $\operatorname{SIM}-E X T=K S+k-Z K+k-U R$ (for same k)
2. Instantiating SIM-EXT template for Bulletproofs
3. Knowledge Soundness via Generalized Tree Builder

Bulletproofs Range Proof

Bulletproofs Range Proof

Public Private

Relation: $(V)=g^{(v i v}$ and $0 \leq v \leq 2^{n}-1$

Bulletproofs Range Proof

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

Recall: We need to show Bulletproofs satisfy KS, k-ZK, and k-UR for the same round k.

"Evaluations" at $x: \hat{t}, \beta_{x}, \mu$
Inner Product Argument (IPA)

Accept if

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

Recall: We need to show Bulletproofs satisfy KS, $k-\mathbf{Z K}$, and k - UR for the same round k.

$\xrightarrow[\text { "Evaluations" at } x: \hat{t}, \beta_{x}, \mu]{\substack{x \\ \text { Inner Product Argument (IPA) } \\ \text { for } \hat{t}=\langle\mathbf{l}, \mathbf{r}\rangle .}} \begin{aligned} & \text { Accept if } \\ & \text { IPA accepts and } \\ & \text { evaluations are } \\ & \text { correct }\end{aligned}$

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

Recall: We need to show Bulletproofs satisfy KS, k-ZK, and k-UR for the same round k.

Q: Which round k to prove $k-Z K$ and $k-U R$?

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

Recall: We need to show Bulletproofs satisfy KS, k-ZK, and k-UR for the same round k.

Q: Which round k to prove $k-Z K$ and k-UR?

A: Choose the last round with P's randomness.
($k=2$ in this case)

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.
Problem: How to simulate IPA?

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.
Problem: How to simulate IPA?

Idea:

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.
Problem: How to simulate IPA?

Idea:

1. Run the honest prover's algorithm with a "fake" witness.

Bulletproofs Range Proof

Public Private
Relation: $(V)=g^{v} h^{v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.
Problem: How to simulate IPA?

Idea:

1. Run the honest prover's algorithm with a "fake" witness.
2. Resolve contradiction via choosing $k^{\text {th }}$ and $(k+1)^{t h}$ message at the same time.

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

1. Pick random $2^{\text {nd }}$ challenge x.

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

1. Pick random $2^{\text {nd }}$ challenge x.
2. Pick arbitrary witness \mathbf{a}, random blind \mathbf{s}. Compute A, S.

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

1. Pick random $2^{\text {nd }}$ challenge x.
2. Pick arbitrary witness \mathbf{a}, random blind \mathbf{s}. Compute A, S.
3. Pick random evaluations \hat{t}, β_{x}, μ. Choose T_{1}, T_{2} consistent with evaluations.

Inner Product Argument (IPA)

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

1. Pick random $2^{\text {nd }}$ challenge x.
2. Pick arbitrary witness \mathbf{a}, random blind \mathbf{s}. Compute A, S.
3. Pick random evaluations \hat{t}, β_{x}, μ. Choose T_{1}, T_{2} consistent with evaluations.

Inner Product Argument (IPA)

$$
\begin{aligned}
g^{\hat{t}} \cdot h^{\beta_{x}=} & V^{z^{2}} \cdot g^{\delta(y, z)} \cdot T_{1}^{x} \cdot T_{2}^{x^{2}} \\
& \text { (eval check) }
\end{aligned}
$$

Bulletproofs Range Proof

Public Private
Relation: $V=g^{v i v}$ and $0 \leq v \leq 2^{n}-1$

2-ZK: Simulator can only choose x first.

1. Pick random $2^{\text {nd }}$ challenge x.
2. Pick arbitrary witness \mathbf{a}, random blind \mathbf{s}. Compute A, S.
3. Pick random evaluations \hat{t}, β_{x}, μ. Choose T_{1}, T_{2} consistent with evaluations.
4. Execute IPA with satisfying witness I, r (derived from \mathbf{a}, \mathbf{s}).

Bulletproofs Range Proof

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

1. Use KS extractor for IPA to extract (\mathbf{l}, \mathbf{r}) from $\pi_{I P A}\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ from $\pi_{I P A}^{\prime}$.

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

1. Use KS extractor for IPA to extract (\mathbf{l}, \mathbf{r}) from $\pi_{I P A}\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ from $\pi_{I P A}^{\prime}$.

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

1. Use KS extractor for IPA to extract (\mathbf{l}, \mathbf{r}) from $\pi_{I P A^{\prime}}\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ from $\pi_{I P A}^{\prime}$.
2. If $\left(\hat{t}, \beta_{x}\right) \neq\left(\hat{t}^{\prime}, \beta_{x}^{\prime}\right)$, we have a non-trivial DLOG relation $\Longrightarrow \mathrm{P}^{*}$ breaks DLOG.

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

1. Use KS extractor for IPA to extract (\mathbf{l}, \mathbf{r}) from $\pi_{I P A^{\prime}}\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ from $\pi_{I P A}^{\prime}$.
2. If $\left(\hat{t}, \beta_{x}\right) \neq\left(\hat{t}^{\prime}, \beta_{x}^{\prime}\right)$, we have a non-trivial DLOG relation $\Longrightarrow \mathrm{P}^{*}$ breaks DLOG.

$$
\begin{aligned}
& g^{\hat{t}} \cdot h^{\beta_{x}}=V^{z^{2}} \cdot g^{\delta(y, z)} \cdot T_{1}^{x} \cdot T_{2}^{x^{2}}=g^{\hat{t}^{\prime}} \cdot h^{\beta_{x}^{\prime}} \\
& \text { (eval check) }
\end{aligned}
$$

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

1. Use KS extractor for IPA to extract (\mathbf{l}, \mathbf{r})

V from $\pi_{I P A}\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ from $\pi_{I P A}^{\prime}$.
2. If $\left(\hat{t}, \beta_{x}\right) \neq\left(\hat{t}^{\prime}, \beta_{x}^{\prime}\right)$, we have a non-trivial DLOG relation $\Longrightarrow \mathrm{P}^{*}$ breaks DLOG.
3. Else if $(\mathbf{l}, \mathbf{r}, \mu) \neq\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}, \mu\right)$, we also get a nontrivial DLOG relation $\Longrightarrow P^{*}$ breaks DLOG.

Bulletproofs Range Proof

2-UR: P^{*} cannot produce two accepting proofs $\pi \neq \pi^{\prime}$ that agree on A, S, T_{1}, T_{2} (even if it can choose V and x).

1. Use KS extractor for IPA to extract (\mathbf{l}, \mathbf{r})

V from $\pi_{I P A}\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ from $\pi_{I P A}^{\prime}$.
2. If $\left(\hat{t}, \beta_{x}\right) \neq\left(\hat{t}^{\prime}, \beta_{x}^{\prime}\right)$, we have a non-trivial DLOG relation $\Longrightarrow \mathrm{P}^{*}$ breaks DLOG.
3. Else if $(\mathbf{l}, \mathbf{r}, \mu) \neq\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}, \mu\right)$, we also get a nontrivial DLOG relation $\Longrightarrow P^{*}$ breaks DLOG.
4. Else $(\mathbf{l}, \mathbf{r})=\left(\mathbf{l}^{\prime}, \mathbf{r}^{\prime}\right)$ but $\pi_{\mathrm{IPA}} \neq \pi_{\mathrm{IPA}}^{\prime} \Longrightarrow \mathrm{P}^{*}$ breaks DLOG.

Agenda

1. $\operatorname{SIM}-E X T=K S+k-Z K+k-U R$ (for same k)
2. $k-Z K$ and $k-U R$ for Bulletproofs
3. Knowledge Soundness via Generalized Tree Builder

Knowledge Soundness from Special Soundness

Knowledge Soundness from Special Soundness

F-S Argument:

Knowledge Soundness from Special Soundness

F-S Argument:

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.
$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.
$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.

Attema et al. (TCC '22): There exists a treebuilder TB that builds a (k_{1}, \ldots, k_{n})-tree of accepting transcripts in expected poly-time.

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.

Attema et al. (TCC '22): There exists a treebuilder TB that builds a (k_{1}, \ldots, k_{n})-tree of accepting transcripts in expected poly-time.

Knowledge Soundness from Special Soundness

F-S Argument:

Special Soundness: There exists k_{1}, \ldots, k_{n} such that a witness w can be extracted from any (k_{1}, \ldots, k_{n})-tree of accepting transcripts.

Attema et al. (TCC '22): There exists a treebuilder TB that builds a (k_{1}, \ldots, k_{n})-tree of accepting transcripts in expected poly-time.

Corollary: If a proof system satisfies special soundness, then it satisfies knowledge soundness.

Generalized Special Soundness \& Tree Building

Generalized Special Soundness \& Tree Building

Observation: Spartan and Bulletproofs do not satisfy special soundness.

Generalized Special Soundness \& Tree Building

Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

Generalized Special Soundness \& Tree Building

Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).

Generalized Special Soundness \& Tree Building

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts
Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).

Generalized Special Soundness \& Tree Building

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts
Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).

Generalized Special Soundness \& Tree Building

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts
Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).

Generalized Special Soundness \& Tree Building

$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts
Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).
- The tree of transcripts needs to satisfy extra predicates on the challenges at certain levels.

Generalized Special Soundness \& Tree Building

Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).
- The tree of transcripts needs to satisfy extra predicates on the challenges at certain levels.

Generalized Special Soundness \& Tree Building

Observation: Spartan and Bulletproofs do not satisfy special soundness.

However, they satisfy a generalized notion:

- Tree extraction can either output a witness or a break of some computational assumption (DLOG).
- The tree of transcripts needs to satisfy extra predicates on the challenges at certain levels.
$\left(k_{1}, \ldots, k_{n}\right)$-Tree of Accepting Transcripts

We construct a generalized tree builder that can handle these predicates (for Bulletproofs and Spartan).

Summary

Summary

We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for zkSNARKs that rules out most attacks in practice.

Summary

We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding

Summary

We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding Open Questions:

- SIM-EXT for general classes of protocols:
- Polynomial IOPs \Longrightarrow [FFKRZ23]
- Recursive SNARKs
- Tighter rewinding bounds
- UC security \Longrightarrow [GKOPTT23]

Summary

We show that Bulletproofs and Spartan satisfies SIM-EXT, a strong security notion for zkSNARKs that rules out most attacks in practice.

Limitation: bounds for knowledge soundness are non-tight due to rewinding

Open Questions:

- SIM-EXT for general classes of protocols:
- Polynomial IOPs \Longrightarrow [FFKRZ23]
- Recursive SNARKs
- Tighter rewinding bounds

> Read our paper!
(ePrint 2023/494)

- UC security \Longrightarrow [GKOPTT23]

Thank You!

[^0]: Proof
 Simulation
 Oracle

