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Fully Homomorphic Encryption
▶ Addition and multiplication over ciphertext space

• Enc(a + b) = Enc(a) + Enc(b)
• Enc(a · b) = Enc(a) · Enc(b)

▶ BGV and BFV scheme: a + b and a · b computed over Zpe

• Prime number p and positive integer e

▶ Complicated functions evaluated as polynomials
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Ciphertext Noise

▶ FHE ciphertexts are noisy
▶ Noise grows with homomorphic operations

an

bn′

Multiply
a · bn′′

▶ Bootstrapping reduces noise

a · bn′′
Bootstrap

a · bn′′′

2 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Ciphertext Noise

▶ FHE ciphertexts are noisy
▶ Noise grows with homomorphic operations

an

bn′

Multiply
a · bn′′

▶ Bootstrapping reduces noise

a · bn′′
Bootstrap

a · bn′′′

2 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Bootstrapping

Two core components of BGV and BFV bootstrapping:
▶ Linear transformations
▶ Digit removal procedure

• Bottleneck in terms of speed and noise: 3× to 50× more expensive
• Repeated polynomial evaluation
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Some Terminology

Polyfunctions
Function f : Zpe → Zpe is a polyfunction if there exists F (X) ∈ Z[X] s.t.

F (a) = f(a) (mod pe)

for each a ∈ Z. We call F (X) a representation of f .

If e = 1
▶ Zpe is a field
▶ Every function is a polyfunction
▶ Unique lowest-degree representation

• Interpolation gives F (X)

If e > 1
▶ Zpe is not a field
▶ Not every function is a

polyfunction
▶ No unique representation

4 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Some Terminology

Polyfunctions
Function f : Zpe → Zpe is a polyfunction if there exists F (X) ∈ Z[X] s.t.

F (a) = f(a) (mod pe)

for each a ∈ Z. We call F (X) a representation of f .

If e = 1
▶ Zpe is a field
▶ Every function is a polyfunction
▶ Unique lowest-degree representation

• Interpolation gives F (X)

If e > 1
▶ Zpe is not a field
▶ Not every function is a

polyfunction
▶ No unique representation

4 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Some Terminology

Polyfunctions
Function f : Zpe → Zpe is a polyfunction if there exists F (X) ∈ Z[X] s.t.

F (a) = f(a) (mod pe)

for each a ∈ Z. We call F (X) a representation of f .

If e = 1
▶ Zpe is a field
▶ Every function is a polyfunction
▶ Unique lowest-degree representation

• Interpolation gives F (X)

If e > 1
▶ Zpe is not a field
▶ Not every function is a

polyfunction
▶ No unique representation

4 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Objectives of This Work
▶ Systematic study of polyfunctions

• How to determine whether a function is a polyfunction?
• How to obtain a representation of a polyfunction?
• How to find FHE-friendly representations?

- Less noise growth
- Fewer scalar and non-scalar multiplications

▶ Accelerate bootstrapping for BGV and BFV
• Focus on digit removal procedure
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Digit Extraction Function

▶ Digit removal procedure is built from digit extraction function

Digit Extraction Function
Denote by w0 the least significant digit of w ∈ Zpe in its base-p expansion,
then digit extraction is the map

ge : Zpe → Zpe : w 7→ w0

■ · · ·■■︸ ︷︷ ︸
e digits

7→ 0 · · · 0■︸ ︷︷ ︸
e digits

▶ Digit extraction ge is a polyfunction with representation Ge(X)
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Representations of the Digit Extraction Function

Representations of ge for p = 2 and e = 8

▶ Halevi and Shoup perform repeated squaring and find

GHS
8 (X) = X27

(mod 28)

▶ Chen and Han find a lowest degree representation

GCH
8 (X) = 13X8 + 96X7 + 84X6 + 32X5 + 32X4 (mod 28)

Their difference satisfies GHS
8 (X) − GCH

8 (X)︸ ︷︷ ︸
Null polynomial

≡ 0 (mod 28)
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Null Polynomials and Equivalent Representations

▶ Polynomial O(X) that evaluates the zero function modulo pe is called
a null polynomial:

ge ⇐⇒
{
Ge(X) + O(X)

}

Observation: obtain equivalent representations by adding null polynomials
⇒ Select FHE-friendly representation

But how to find these null polynomials?
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Finding Null Polynomials

▶ Trivial for e = 1: Fermat’s little theorem states that Xp − X is a null
polynomial modulo p

▶ More complicated for e > 1:
• Define falling factorial polynomials: (X)i = X(X − 1) · . . . · (X − i + 1)
• Evaluation of (X)i at any integer is divisible by i!
• The set of all null polynomials includes

- (X)i if i! is divisible by pe

- pe−νp(i!) · (X)i otherwise
- Linear combinations of the above

9 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Finding Null Polynomials

▶ Trivial for e = 1: Fermat’s little theorem states that Xp − X is a null
polynomial modulo p

▶ More complicated for e > 1:
• Define falling factorial polynomials: (X)i = X(X − 1) · . . . · (X − i + 1)
• Evaluation of (X)i at any integer is divisible by i!

• The set of all null polynomials includes
- (X)i if i! is divisible by pe

- pe−νp(i!) · (X)i otherwise
- Linear combinations of the above

9 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Finding Null Polynomials

▶ Trivial for e = 1: Fermat’s little theorem states that Xp − X is a null
polynomial modulo p

▶ More complicated for e > 1:
• Define falling factorial polynomials: (X)i = X(X − 1) · . . . · (X − i + 1)
• Evaluation of (X)i at any integer is divisible by i!
• The set of all null polynomials includes

- (X)i if i! is divisible by pe

- pe−νp(i!) · (X)i otherwise
- Linear combinations of the above

9 On Polynomial Functions Modulo pe and Faster Bootstrapping for HE



Lowest Degree Representation

▶ Let O(X) be a monic null polynomial of the lowest degree
▶ Apply Euclidean division on any representation Ge(X):

Ge(X) = O(X) · Q(X) + G′
e(X)

▶ Gives another representation G′
e(X) of degree less than deg(O(X)) ⩽ p · e

Chen/Han representation of ge

▶ Chen/Han representation GCH
e (X) has minimal degree (p − 1) · (e − 1) + 1

▶ Still we can search for even better representations
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Improvement I: Parity
▶ Digit extraction is a symmetric function

• If p = 2: ge(−a) = ge(a)
• If p > 2: ge(−a) = −ge(a)

▶ Choose representation with only even- or odd-exponent terms
• For p > 2: Ge(X) = (GCH

e (X) − GCH
e (−X))/2

• The case p = 2 is more tricky: see paper
▶ Compared to Chen/Han, we have the following complexity gain:

• ×1/
√

2 non-scalar multiplications
• ×1/2 scalar multiplications
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Improvement II: Lattice

▶ Interpreting polynomials as coefficient vectors, null polynomials with
degree bound n form an n + 1-dimensional lattice

▶ Solve closest vector problem: G′
e(X) = Ge(X) − O(X)

Ge

O

G′
e
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Example

Representations of ge for p = 2 and e = 8

▶ Recall that Chen and Han find a lowest degree representation

GCH
8 (X) = 13X8 + 96X7 + 84X6 + 32X5 + 32X4 (mod 28)

▶ Improvement I and II result in

G8(X) = 13X8 − 12X6 (mod 28)
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Improvement III: Function Composition

Idea: decompose digit extraction function as ge = ge,e′ ◦ ge′ for some e′ < e

ge : ■ · · ·■■ · · ·■■︸ ︷︷ ︸
e digits

ge′7−→ ∗ · · · ∗ 0 · · · 0■︸ ︷︷ ︸
e′ digits

ge,e′
7−−→ 0 · · · 0 0 · · · 0■

▶ Relevant domain of ge,e′ is Range(ge′) ⊂ Zpe

⇒ More null polynomials defined over this range
▶ Compared to Chen/Han, we have the following complexity gain:

• Non-scalar multiplications: O(√pe) ⇒ O(√p
4√

e)
• Scalar multiplications: O(pe) ⇒ O(p

√
e)

▶ Total degree increases with roughly a factor p
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Example

Function composition for p = 2, e = 25 and e′ = 8

▶ Recall that improvement I and II result in

G8(X) = 13X8 − 12X6 (mod 28)

▶ Starting from G8(X), digit extraction modulo 225 can be done with

G25,8(X) = 6X5 − 15X4 + 10X3 (mod 225)

⇒ The composition G25,8(G8(X)) gives g25
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The Digit Removal Procedure
Consider w ∈ Zpe:

w = ■ · · ·■■ · · ·■■︸ ︷︷ ︸
e digits

Goal of digit removal:
■ · · ·■ 0 · · · 0 0︸ ︷︷ ︸

v digits

This requires
w0 = 0 · · · 0 0 · · · 0■
w1 = 0 · · · 0 0 · · ·■

...

wv−1 = 0 · · · 0■
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Minimizing the Noise Growth

Besides from
w0 = 0 · · · · · · 0 0 0■

One also needs to compute
w0,1 = ∗ · · · · · · ∗ ∗ 0■
w0,2 = ∗ · · · · · · ∗ 0 0■

...

w0,v−1 = ∗ · · · ∗ 0 · · · 0■
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Three Versions of Digit Removal

Halevi/Shoup

▶ Only use GHS
e (X)

▶ Degree pe−1

Chen/Han

▶ Use GHS
e (X) and GCH

e (X)
▶ Degree (e − v) · pv

Our approach

▶ Only use our optimized representations Ge(X)
▶ Reuse polynomial evaluations while keeping the same degree as the

Chen/Han version
▶ Evaluate multiple polynomials simultaneously in the same point using the

baby-step/giant-step technique
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Experimental Results for Packed Bootstrapping

Original method / Our method
Cyclotomic index m 127 · 337 101 · 451 43 · 757
Params (p, v, e) (2, 7, 15) (17, 2, 6) (127, 2, 4)
Number of digit removals 21 40 14
Remaining capacity (bits) 744/753 448/475 323/282

Execution
time (sec)

Linear maps 134 150 290
Digit extract 2014/743 2665/1879 1407/863
Total 2248/877 2815/2029 1697/1153

Bootstrapping speedup 2.6× 1.4× 1.5×
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Experimental Results for Digit Removal

Original method / No function composition / Function composition
Cyclotomic index m 42799 63973
Params (p, v, e, e′) (2, 8, 59, 16) (3, 5, 37, 6)
Used capacity (bits) 1049/991/1006 1142/1047/1170
Execution time (sec) 180/100/64 191/151/119
Digit removal speedup 1.8×/2.8× 1.3×/1.6×
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Conclusion
▶ Speed up bootstrapping for BGV and BFV up to 2.6×
▶ Better understanding of polyfunctions modulo pe

• Optimizations due to the existence of non-trivial null polynomials
• Also of independent interest in cryptography
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Thank you for your attention!


