

# On Polynomial Functions Modulo $p^e$ and Faster Bootstrapping for Homomorphic Encryption

**Robin Geelen**<sup>1</sup>, Ilia Iliashenko<sup>2</sup>, Jiayi Kang<sup>1</sup>, and Frederik Vercauteren<sup>1</sup> <sup>1</sup>imec-COSIC, KU Leuven, and <sup>2</sup>CipherMode Labs Eurocrypt 2023, April 24

## **Fully Homomorphic Encryption**

- Addition and multiplication over ciphertext space
  - $\operatorname{Enc}(a+b) = \operatorname{Enc}(a) + \operatorname{Enc}(b)$
  - $\operatorname{Enc}(a \cdot b) = \operatorname{Enc}(a) \cdot \operatorname{Enc}(b)$
- ▶ BGV and BFV scheme: a + b and  $a \cdot b$  computed over  $\mathbb{Z}_{p^e}$ 
  - Prime number p and positive integer e
- Complicated functions evaluated as polynomials

## **Ciphertext Noise**

- ► FHE ciphertexts are noisy
- Noise grows with homomorphic operations



## **Ciphertext Noise**

- FHE ciphertexts are noisy
- Noise grows with homomorphic operations



Bootstrapping reduces noise

## Bootstrapping

Two core components of BGV and BFV bootstrapping:

Linear transformations

#### Digit removal procedure

- Bottleneck in terms of speed and noise:  $3\times$  to  $50\times$  more expensive
- Repeated polynomial evaluation

## Some Terminology

Polyfunctions

Function  $f : \mathbb{Z}_{p^e} \to \mathbb{Z}_{p^e}$  is a *polyfunction* if there exists  $F(X) \in \mathbb{Z}[X]$  s.t.

 $F(a) = f(a) \pmod{p^e}$ 

for each  $a \in \mathbb{Z}$ . We call F(X) a *representation* of f.

## Some Terminology

#### Polyfunctions

Function  $f : \mathbb{Z}_{p^e} \to \mathbb{Z}_{p^e}$  is a *polyfunction* if there exists  $F(X) \in \mathbb{Z}[X]$  s.t.

 $F(a) = f(a) \pmod{p^e}$ 

for each  $a \in \mathbb{Z}$ . We call F(X) a *representation* of f.

If e = 1

- $\blacktriangleright \mathbb{Z}_{p^e}$  is a field
- Every function is a polyfunction
- Unique lowest-degree representation
  - Interpolation gives F(X)

## Some Terminology

#### Polyfunctions

Function  $f : \mathbb{Z}_{p^e} \to \mathbb{Z}_{p^e}$  is a *polyfunction* if there exists  $F(X) \in \mathbb{Z}[X]$  s.t.

 $F(a) = f(a) \pmod{p^e}$ 

for each  $a \in \mathbb{Z}$ . We call F(X) a *representation* of f.

If e = 1

- $\blacktriangleright \mathbb{Z}_{p^e}$  is a field
- Every function is a polyfunction
- Unique lowest-degree representation
  - Interpolation gives F(X)

 ${\sf If}\; e>1$ 

- $\blacktriangleright \mathbb{Z}_{p^e}$  is not a field
- Not every function is a polyfunction
- No unique representation

## **Objectives of This Work**

- Systematic study of polyfunctions
  - How to determine whether a function is a polyfunction?
  - How to obtain a representation of a polyfunction?
  - How to find FHE-friendly representations?
    - Less noise growth
    - Fewer scalar and non-scalar multiplications
- Accelerate bootstrapping for BGV and BFV
  - Focus on digit removal procedure

## **Digit Extraction Function**

Digit removal procedure is built from digit extraction function

#### Digit Extraction Function

Denote by  $w_0$  the least significant digit of  $w \in \mathbb{Z}_{p^e}$  in its base-p expansion, then *digit extraction* is the map

$$g_e \colon \mathbb{Z}_{p^e} \to \mathbb{Z}_{p^e} \colon w \mapsto w_0$$
$$\underbrace{\blacksquare \cdots \blacksquare}_{e \text{ digits}} \mapsto \underbrace{0 \cdots 0}_{e \text{ digits}}$$

## **Digit Extraction Function**

Digit removal procedure is built from digit extraction function

#### Digit Extraction Function

Denote by  $w_0$  the least significant digit of  $w \in \mathbb{Z}_{p^e}$  in its base-p expansion, then *digit extraction* is the map

$$g_e \colon \mathbb{Z}_{p^e} \to \mathbb{Z}_{p^e} \colon w \mapsto w_0$$

$$\underbrace{\blacksquare \cdots \blacksquare}_{e \text{ digits}} \mapsto \underbrace{0 \cdots 0}_{e \text{ digits}}$$

▶ Digit extraction  $g_e$  is a polyfunction with representation  $G_e(X)$ 

## **Representations of the Digit Extraction Function**

Representations of  $g_e$  for p = 2 and e = 8

Halevi and Shoup perform repeated squaring and find

$$G_8^{HS}(X) = X^{2^7} \pmod{2^8}$$

Chen and Han find a lowest degree representation

$$G_8^{CH}(X) = 13X^8 + 96X^7 + 84X^6 + 32X^5 + 32X^4 \pmod{2^8}$$

## **Representations of the Digit Extraction Function**

Representations of  $g_e$  for p = 2 and e = 8

Halevi and Shoup perform repeated squaring and find

$$G_8^{HS}(X) = X^{2^7} \pmod{2^8}$$

Chen and Han find a lowest degree representation

$$G_8^{CH}(X) = 13X^8 + 96X^7 + 84X^6 + 32X^5 + 32X^4 \pmod{2^8}$$

Their difference satisfies 
$$\underbrace{G_8^{HS}(X) - G_8^{CH}(X)}_{\text{Null polynomial}} \equiv 0 \pmod{2^8}$$

## **Null Polynomials and Equivalent Representations**

Polynomial O(X) that evaluates the zero function modulo p<sup>e</sup> is called a null polynomial:

$$g_e \iff \left\{ G_e(X) + O(X) \right\}$$

## Null Polynomials and Equivalent Representations

Polynomial O(X) that evaluates the zero function modulo p<sup>e</sup> is called a null polynomial:

$$g_e \iff \left\{G_e(X) + O(X)\right\}$$

Observation: obtain equivalent representations by adding null polynomials  $\Rightarrow$  Select FHE-friendly representation

But how to find these null polynomials?

## **Finding Null Polynomials**

▶ Trivial for e = 1: Fermat's little theorem states that  $X^p - X$  is a null polynomial modulo p

## **Finding Null Polynomials**

- ▶ Trivial for e = 1: Fermat's little theorem states that  $X^p X$  is a null polynomial modulo p
- More complicated for e > 1:
  - Define falling factorial polynomials:  $(X)_i = X(X-1) \cdot \ldots \cdot (X-i+1)$
  - Evaluation of  $(X)_i$  at any integer is divisible by i!

## **Finding Null Polynomials**

- ▶ Trivial for e = 1: Fermat's little theorem states that  $X^p X$  is a null polynomial modulo p
- More complicated for e > 1:
  - Define falling factorial polynomials:  $(X)_i = X(X-1) \cdot \ldots \cdot (X-i+1)$
  - Evaluation of  $(X)_i$  at any integer is divisible by i!
  - The set of all null polynomials includes
    - $(X)_i$  if i! is divisible by  $p^e$
    - $p^{e-\nu_p(i!)} \cdot (X)_i$  otherwise
    - Linear combinations of the above

## Lowest Degree Representation

Let O(X) be a monic null polynomial of the lowest degree
 Apply Euclidean division on any representation G<sub>e</sub>(X):

 $G_e(X) = O(X) \cdot Q(X) + G'_e(X)$ 

• Gives another representation  $G'_e(X)$  of degree less than  $\deg(O(X)) \leq p \cdot e$ 

## Lowest Degree Representation

• Let O(X) be a monic null polynomial of the lowest degree

• Apply **Euclidean division** on any representation  $G_e(X)$ :

$$G_e(X) = O(X) \cdot Q(X) + G'_e(X)$$

• Gives another representation  $G'_e(X)$  of degree less than  $\deg(O(X)) \leq p \cdot e$ 

#### Chen/Han representation of $g_e$

- Chen/Han representation  $G_e^{CH}(X)$  has minimal degree  $(p-1) \cdot (e-1) + 1$
- Still we can search for even better representations

## **Improvement I: Parity**

- Digit extraction is a symmetric function
  - If p = 2:  $g_e(-a) = g_e(a)$
  - If p > 2:  $g_e(-a) = -g_e(a)$

## **Improvement I: Parity**

- Digit extraction is a symmetric function
  - If p = 2:  $g_e(-a) = g_e(a)$
  - If p > 2:  $g_e(-a) = -g_e(a)$
- Choose representation with only even- or odd-exponent terms
  - For  $p>2{:}~G_e(X)=(G_e^{CH}(X)-G_e^{CH}(-X))/2$
  - The case p = 2 is more tricky: see paper

## **Improvement I: Parity**

- Digit extraction is a symmetric function
  - If p = 2:  $g_e(-a) = g_e(a)$
  - If p > 2:  $g_e(-a) = -g_e(a)$
- Choose representation with only even- or odd-exponent terms
  - For p > 2:  $G_e(X) = (G_e^{CH}(X) G_e^{CH}(-X))/2$
  - The case p = 2 is more tricky: see paper
- Compared to Chen/Han, we have the following complexity gain:
  - $\times 1/\sqrt{2}$  non-scalar multiplications
  - $\times 1/2$  scalar multiplications

## **Improvement II: Lattice**

- lnterpreting polynomials as coefficient vectors, null polynomials with degree bound n form an n + 1-dimensional lattice
- Solve closest vector problem:  $G'_e(X) = G_e(X) O(X)$



## Example

Representations of  $g_e$  for p = 2 and e = 8

Recall that Chen and Han find a lowest degree representation

$$G_8^{CH}(X) = 13X^8 + 96X^7 + 84X^6 + 32X^5 + 32X^4 \pmod{2^8}$$

Improvement I and II result in

$$G_8(X) = 13X^8 - 12X^6 \pmod{2^8}$$

## **Improvement III: Function Composition**

Idea: decompose digit extraction function as  $g_e = g_{e,e'} \circ g_{e'}$  for some e' < e





## **Improvement III: Function Composition**

Idea: decompose digit extraction function as  $g_e = g_{e,e'} \circ g_{e'}$  for some e' < e

$$g_e: \underbrace{\blacksquare \cdots \blacksquare}_{e \text{ digits}} \xrightarrow{g_{e'}} * \cdots * \underbrace{0 \cdots 0}_{e' \text{ digits}} \xrightarrow{g_{e,e'}} 0 \cdots 0 0 \cdots 0 \blacksquare$$

▶ Relevant domain of g<sub>e,e'</sub> is Range(g<sub>e'</sub>) ⊂ Z<sub>p<sup>e</sup></sub>
 ⇒ More null polynomials defined over this range

## Improvement III: Function Composition

Idea: decompose digit extraction function as  $g_e = g_{e,e'} \circ g_{e'}$  for some e' < e

$$g_e: \underbrace{\blacksquare \cdots \blacksquare}_{e \text{ digits}} \xrightarrow{g_{e'}} * \cdots * \underbrace{0 \cdots 0}_{e' \text{ digits}} \xrightarrow{g_{e,e'}} 0 \cdots 0 0 \cdots 0 \blacksquare$$

Compared to Chen/Han, we have the following complexity gain:

- Non-scalar multiplications:  $\mathcal{O}(\sqrt{pe}) \Rightarrow \mathcal{O}(\sqrt{p}\sqrt[4]{e})$
- Scalar multiplications:  $\mathcal{O}(pe) \Rightarrow \mathcal{O}(p\sqrt{e})$
- $\blacktriangleright$  Total degree increases with roughly a factor p

## Example

Function composition for p = 2, e = 25 and e' = 8

Recall that improvement I and II result in

$$G_8(X) = 13X^8 - 12X^6 \pmod{2^8}$$

Starting from  $G_8(X)$ , digit extraction modulo  $2^{25}$  can be done with

$$G_{25,8}(X) = 6X^5 - 15X^4 + 10X^3 \pmod{2^{25}}$$

 $\Rightarrow$  The composition  $G_{25,8}(G_8(X))$  gives  $g_{25}$ 

## The Digit Removal Procedure

Consider  $w \in \mathbb{Z}_{p^e}$ :



Goal of digit removal:





## The Digit Removal Procedure

Consider  $w \in \mathbb{Z}_{p^e}$ :  $w = \underbrace{\blacksquare \cdots \blacksquare}_{e \text{ digits}}$ Goal of digit removal:  $\blacksquare \cdots \blacksquare \underbrace{0 \cdots 0 \ 0}_{0 \cdots 0 \ 0}$ v digits This requires  $w_0 = 0 \cdots 0 0 \cdots 0$  $w_1 = 0 \cdots 0 0 \cdots$ 

 $w_{v-1} = 0 \cdots 0$ 

## Minimizing the Noise Growth

Besides from

$$w_0 = 0 \cdots \cdots 0 \ 0 \ 0 \blacksquare$$

One also needs to compute



## **Three Versions of Digit Removal**

### Halevi/Shoup

▶ Only use 
$$G_e^{HS}(X)$$

▶ Degree  $p^{e-1}$ 

#### $\mathsf{Chen}/\mathsf{Han}$

• Use 
$$G_e^{HS}(X)$$
 and  $G_e^{CH}(X)$ 

• Degree 
$$(e - v) \cdot p^v$$

#### Our approach

- Only use our optimized representations  $G_e(X)$
- Reuse polynomial evaluations while keeping the same degree as the Chen/Han version
- Evaluate multiple polynomials simultaneously in the same point using the baby-step/giant-step technique

## **Experimental Results for Packed Bootstrapping**

| Cyclotomic index m        |               | $127 \cdot 337$ | $101 \cdot 451$ | $43 \cdot 757$ |
|---------------------------|---------------|-----------------|-----------------|----------------|
| Params $(p, v, e)$        |               | (2,7,15)        | (17, 2, 6)      | (127, 2, 4)    |
| Number of digit removals  |               | 21              | 40              | 14             |
| Remaining capacity (bits) |               | 744/753         | 448/475         | 323/282        |
| Execution                 | Linear maps   | 134             | 150             | 290            |
| time (sec)                | Digit extract | 2014/743        | 2665/1879       | 1407/863       |
| time (sec)                | Total         | 2248/877        | 2815/2029       | 1697/1153      |
| Bootstrapping speedup     |               | 2.6	imes        | 1.4 	imes       | 1.5	imes       |

#### Original method / Our method

## **Experimental Results for Digit Removal**

Original method / No function composition / Function composition

| ${\sf Cyclotomic\ index}\ m$ | 42799                 | 63973                 |
|------------------------------|-----------------------|-----------------------|
| Params $(p, v, e, e')$       | (2, 8, 59, 16)        | (3, 5, 37, 6)         |
| Used capacity (bits)         | 1049/991/1006         | 1142/1047/1170        |
| Execution time (sec)         | 180/100/64            | 191/151/119           |
| Digit removal speedup        | 1.8 	imes / 2.8 	imes | 1.3 	imes / 1.6 	imes |

## Conclusion

- $\blacktriangleright$  Speed up bootstrapping for BGV and BFV up to  $2.6\times$
- $\blacktriangleright$  Better understanding of polyfunctions modulo  $p^e$ 
  - Optimizations due to the existence of non-trivial null polynomials
  - Also of independent interest in cryptography

## Thank you for your attention!