KULEUVEN

On Polynomial Functions Modulo p^{e} and Faster Bootstrapping for Homomorphic Encryption

Robin Geelen ${ }^{1}$, Ilia Iliashenko ${ }^{2}$, Jiayi Kang ${ }^{1}$, and Frederik Vercauteren ${ }^{1}$
${ }^{1}$ imec-COSIC, KU Leuven, and ${ }^{2}$ CipherMode Labs
Eurocrypt 2023, April 24

Fully Homomorphic Encryption

- Addition and multiplication over ciphertext space
- $\operatorname{Enc}(a+b)=\operatorname{Enc}(a)+\operatorname{Enc}(b)$
- $\operatorname{Enc}(a \cdot b)=\operatorname{Enc}(a) \cdot \operatorname{Enc}(b)$
- BGV and BFV scheme: $a+b$ and $a \cdot b$ computed over $\mathbb{Z}_{p^{e}}$
- Prime number p and positive integer e
- Complicated functions evaluated as polynomials

Ciphertext Noise

- FHE ciphertexts are noisy
- Noise grows with homomorphic operations

	n	a

Multiply

	n^{\prime}	b

Ciphertext Noise

- FHE ciphertexts are noisy
- Noise grows with homomorphic operations

- Bootstrapping reduces noise

Bootstrapping

Two core components of BGV and BFV bootstrapping:

- Linear transformations
- Digit removal procedure
- Bottleneck in terms of speed and noise: $3 \times$ to $50 \times$ more expensive
- Repeated polynomial evaluation

Some Terminology

Polyfunctions

Function $f: \mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p^{e}}$ is a polyfunction if there exists $F(X) \in \mathbb{Z}[X]$ s.t.

$$
F(a)=f(a)\left(\bmod p^{e}\right)
$$

for each $a \in \mathbb{Z}$. We call $F(X)$ a representation of f.

Some Terminology

Polyfunctions

Function $f: \mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p^{e}}$ is a polyfunction if there exists $F(X) \in \mathbb{Z}[X]$ s.t.

$$
F(a)=f(a)\left(\bmod p^{e}\right)
$$

for each $a \in \mathbb{Z}$. We call $F(X)$ a representation of f.
If $e=1$

- $\mathbb{Z}_{p^{e}}$ is a field
- Every function is a polyfunction
- Unique lowest-degree representation
- Interpolation gives $F(X)$

Some Terminology

Polyfunctions

Function $f: \mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p^{e}}$ is a polyfunction if there exists $F(X) \in \mathbb{Z}[X]$ s.t.

$$
F(a)=f(a)\left(\bmod p^{e}\right)
$$

for each $a \in \mathbb{Z}$. We call $F(X)$ a representation of f.
If $e=1$
If $e>1$
$-\mathbb{Z}_{p^{e}}$ is a field

- Every function is a polyfunction
- Unique lowest-degree representation
- Interpolation gives $F(X)$
$-\mathbb{Z}_{p^{e}}$ is not a field
- Not every function is a polyfunction
- No unique representation

Objectives of This Work

- Systematic study of polyfunctions
- How to determine whether a function is a polyfunction?
- How to obtain a representation of a polyfunction?
- How to find FHE-friendly representations?
- Less noise growth
- Fewer scalar and non-scalar multiplications
- Accelerate bootstrapping for BGV and BFV
- Focus on digit removal procedure

Digit Extraction Function

- Digit removal procedure is built from digit extraction function

Digit Extraction Function

Denote by w_{0} the least significant digit of $w \in \mathbb{Z}_{p^{e}}$ in its base- p expansion, then digit extraction is the map

$$
\begin{aligned}
& g_{e}: \mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p^{e}}: w \mapsto w_{0} \\
& \underbrace{\square \cdots \square}_{e \text { digits }} \mapsto \underbrace{0 \cdots 0 \square}_{e \text { digits }}
\end{aligned}
$$

Digit Extraction Function

- Digit removal procedure is built from digit extraction function

Digit Extraction Function

Denote by w_{0} the least significant digit of $w \in \mathbb{Z}_{p^{e}}$ in its base- p expansion, then digit extraction is the map

$$
\begin{aligned}
& g_{e}: \mathbb{Z}_{p^{e}} \rightarrow \mathbb{Z}_{p^{e}}: w \\
& \underbrace{\square \cdots}_{e \text { digits }} \mapsto \underbrace{0 \cdots 0 \square \square}_{e \text { digits }}
\end{aligned}
$$

- Digit extraction g_{e} is a polyfunction with representation $G_{e}(X)$

Representations of the Digit Extraction Function

Representations of g_{e} for $p=2$ and $e=8$

- Halevi and Shoup perform repeated squaring and find

$$
G_{8}^{H S}(X)=X^{2^{7}}\left(\bmod 2^{8}\right)
$$

- Chen and Han find a lowest degree representation

$$
G_{8}^{C H}(X)=13 X^{8}+96 X^{7}+84 X^{6}+32 X^{5}+32 X^{4}\left(\bmod 2^{8}\right)
$$

Representations of the Digit Extraction Function

Representations of g_{e} for $p=2$ and $e=8$

- Halevi and Shoup perform repeated squaring and find

$$
G_{8}^{H S}(X)=X^{2^{7}}\left(\bmod 2^{8}\right)
$$

- Chen and Han find a lowest degree representation

$$
G_{8}^{C H}(X)=13 X^{8}+96 X^{7}+84 X^{6}+32 X^{5}+32 X^{4}\left(\bmod 2^{8}\right)
$$

Their difference satisfies $\underbrace{G_{8}^{H S}(X)-G_{8}^{C H}(X)}_{\text {Null polynomial }} \equiv 0\left(\bmod 2^{8}\right)$

Null Polynomials and Equivalent Representations

- Polynomial $O(X)$ that evaluates the zero function modulo p^{e} is called a null polynomial:

$$
g_{e} \Longleftrightarrow\left\{G_{e}(X)+O(X)\right\}
$$

Null Polynomials and Equivalent Representations

- Polynomial $O(X)$ that evaluates the zero function modulo p^{e} is called a null polynomial:

$$
g_{e} \Longleftrightarrow\left\{G_{e}(X)+O(X)\right\}
$$

Observation: obtain equivalent representations by adding null polynomials \Rightarrow Select FHE-friendly representation

But how to find these null polynomials?

Finding Null Polynomials

- Trivial for $e=1$: Fermat's little theorem states that $X^{p}-X$ is a null polynomial modulo p

Finding Null Polynomials

- Trivial for $e=1$: Fermat's little theorem states that $X^{p}-X$ is a null polynomial modulo p
- More complicated for $e>1$:
- Define falling factorial polynomials: $(X)_{i}=X(X-1) \cdot \ldots \cdot(X-i+1)$
- Evaluation of $(X)_{i}$ at any integer is divisible by i !

Finding Null Polynomials

- Trivial for $e=1$: Fermat's little theorem states that $X^{p}-X$ is a null polynomial modulo p
- More complicated for $e>1$:
- Define falling factorial polynomials: $(X)_{i}=X(X-1) \cdot \ldots \cdot(X-i+1)$
- Evaluation of $(X)_{i}$ at any integer is divisible by i !
- The set of all null polynomials includes
- $(X)_{i}$ if $i!$ is divisible by p^{e}
- $p^{e-\nu_{p}(i!)} \cdot(X)_{i}$ otherwise
- Linear combinations of the above

Lowest Degree Representation

- Let $O(X)$ be a monic null polynomial of the lowest degree
- Apply Euclidean division on any representation $G_{e}(X)$:

$$
G_{e}(X)=O(X) \cdot Q(X)+G_{e}^{\prime}(X)
$$

- Gives another representation $G_{e}^{\prime}(X)$ of degree less than $\operatorname{deg}(O(X)) \leqslant p \cdot e$

Lowest Degree Representation

- Let $O(X)$ be a monic null polynomial of the lowest degree
- Apply Euclidean division on any representation $G_{e}(X)$:

$$
G_{e}(X)=O(X) \cdot Q(X)+G_{e}^{\prime}(X)
$$

- Gives another representation $G_{e}^{\prime}(X)$ of degree less than $\operatorname{deg}(O(X)) \leqslant p \cdot e$

Chen/Han representation of g_{e}

- Chen/Han representation $G_{e}^{C H}(X)$ has minimal degree $(p-1) \cdot(e-1)+1$
- Still we can search for even better representations

Improvement I: Parity

- Digit extraction is a symmetric function
- If $p=2: g_{e}(-a)=g_{e}(a)$
- If $p>2: g_{e}(-a)=-g_{e}(a)$

Improvement I: Parity

- Digit extraction is a symmetric function
- If $p=2: g_{e}(-a)=g_{e}(a)$
- If $p>2: g_{e}(-a)=-g_{e}(a)$
- Choose representation with only even- or odd-exponent terms
- For $p>2: G_{e}(X)=\left(G_{e}^{C H}(X)-G_{e}^{C H}(-X)\right) / 2$
- The case $p=2$ is more tricky: see paper

Improvement I: Parity

- Digit extraction is a symmetric function
- If $p=2: g_{e}(-a)=g_{e}(a)$
- If $p>2: g_{e}(-a)=-g_{e}(a)$
- Choose representation with only even- or odd-exponent terms
- For $p>2: G_{e}(X)=\left(G_{e}^{C H}(X)-G_{e}^{C H}(-X)\right) / 2$
- The case $p=2$ is more tricky: see paper
- Compared to Chen/Han, we have the following complexity gain:
- $\times 1 / \sqrt{2}$ non-scalar multiplications
- $\times 1 / 2$ scalar multiplications

Improvement II: Lattice

- Interpreting polynomials as coefficient vectors, null polynomials with degree bound n form an $n+1$-dimensional lattice
- Solve closest vector problem: $G_{e}^{\prime}(X)=G_{e}(X)-O(X)$

Example

Representations of g_{e} for $p=2$ and $e=8$

- Recall that Chen and Han find a lowest degree representation

$$
G_{8}^{C H}(X)=13 X^{8}+96 X^{7}+84 X^{6}+32 X^{5}+32 X^{4}\left(\bmod 2^{8}\right)
$$

- Improvement I and II result in

$$
G_{8}(X)=13 X^{8}-12 X^{6}\left(\bmod 2^{8}\right)
$$

Improvement III: Function Composition

Idea: decompose digit extraction function as $g_{e}=g_{e, e^{\prime}} \circ g_{e^{\prime}}$ for some $e^{\prime}<e$

$$
g_{e}: \underbrace{\square \cdots \square \square \square \square}_{e \text { digits }} \stackrel{g_{e^{\prime}}}{\longmapsto} * \cdots * \underbrace{0 \cdots 0 \square}_{e^{\prime} \text { digits }}
$$

Improvement III: Function Composition

Idea: decompose digit extraction function as $g_{e}=g_{e, e^{\prime}} \circ g_{e^{\prime}}$ for some $e^{\prime}<e$

$$
g_{e}: \underbrace{\square \cdots \square \ldots \square}_{e \text { digits }} \stackrel{g_{e^{\prime}}}{\longrightarrow} * \cdots * \underbrace{0 \cdots 0 \square}_{e^{\prime} \text { digits }} \stackrel{g_{e, e^{\prime}}}{\stackrel{m}{\longrightarrow}} 0 \cdots 00 \cdots 0 \square
$$

- Relevant domain of $g_{e, e^{\prime}}$ is Range $\left(g_{e^{\prime}}\right) \subset \mathbb{Z}_{p^{e}}$ \Rightarrow More null polynomials defined over this range

Improvement III: Function Composition

Idea: decompose digit extraction function as $g_{e}=g_{e, e^{\prime}} \circ g_{e^{\prime}}$ for some $e^{\prime}<e$

$$
g_{e}: \underbrace{\square \cdots \square \ldots \square}_{e \text { digits }} \stackrel{g_{e^{\prime}}}{\longrightarrow} * \cdots * \underbrace{0 \cdots 0 \square}_{e^{\prime} \text { digits }} \stackrel{g_{e, e^{\prime}}}{\stackrel{m}{\longrightarrow}} 0 \cdots 00 \cdots 0 \square
$$

- Relevant domain of $g_{e, e^{\prime}}$ is Range $\left(g_{e^{\prime}}\right) \subset \mathbb{Z}_{p^{e}}$ \Rightarrow More null polynomials defined over this range
- Compared to Chen/Han, we have the following complexity gain:
- Non-scalar multiplications: $\mathcal{O}(\sqrt{p e}) \Rightarrow \mathcal{O}(\sqrt{p} \sqrt[4]{e})$
- Scalar multiplications: $\mathcal{O}(p e) \Rightarrow \mathcal{O}(p \sqrt{e})$
- Total degree increases with roughly a factor p

Example

Function composition for $p=2, e=25$ and $e^{\prime}=8$

- Recall that improvement I and II result in

$$
G_{8}(X)=13 X^{8}-12 X^{6}\left(\bmod 2^{8}\right)
$$

- Starting from $G_{8}(X)$, digit extraction modulo 2^{25} can be done with

$$
G_{25,8}(X)=6 X^{5}-15 X^{4}+10 X^{3}\left(\bmod 2^{25}\right)
$$

\Rightarrow The composition $G_{25,8}\left(G_{8}(X)\right)$ gives g_{25}

The Digit Removal Procedure
Consider $w \in \mathbb{Z}_{p^{e}}$:

$$
w=\underbrace{\square \cdots \square \square \square \square \square \square}_{e \text { digits }}
$$

Goal of digit removal:

The Digit Removal Procedure

Consider $w \in \mathbb{Z}_{p^{e}}$:

$$
w=\underbrace{\square \cdots \square \square \square \square \square \square}_{e \text { digits }}
$$

Goal of digit removal:

This requires

$$
\begin{aligned}
& \left.w_{0}=0 \begin{array}{lllll}
\cdots & 0 & 0 & \cdots & 0 \\
w_{1}=0 & \cdots & 0 & 0 & \cdots
\end{array}\right]
\end{aligned}
$$

$$
w_{v-1}=0 \cdots 0
$$

Minimizing the Noise Growth

Besides from

$$
w_{0}=0 \cdots \cdots 000 \square
$$

One also needs to compute

$$
\begin{aligned}
w_{0,1} & =* \cdots \cdots * * 0 \square \\
w_{0,2} & =* \cdots \cdots * 00 \square \\
& \vdots \\
w_{0, v-1} & =* \cdots * 0 \cdots 0 \square
\end{aligned}
$$

Three Versions of Digit Removal

Halevi/Shoup

- Only use $G_{e}^{H S}(X)$
- Degree p^{e-1}

Chen/Han

- Use $G_{e}^{H S}(X)$ and $G_{e}^{C H}(X)$
- Degree $(e-v) \cdot p^{v}$

Our approach

- Only use our optimized representations $G_{e}(X)$
- Reuse polynomial evaluations while keeping the same degree as the Chen/Han version
- Evaluate multiple polynomials simultaneously in the same point using the baby-step/giant-step technique

Experimental Results for Packed Bootstrapping

Original method / Our method

Cyclotomic index m	$127 \cdot 337$	$101 \cdot 451$	$43 \cdot 757$
Params (p, v, e)	$(2,7,15)$	$(17,2,6)$	$(127,2,4)$
Number of digit removals	21	40	14
Remaining capacity (bits)		$744 / 753$	$448 / 475$
Execution time (sec)	Linear maps	134	150
	Digit extract	$2014 / 743$	$2665 / 1879$
	Total	$2248 / 877$	$2815 / 2029$
Bootstrapping speedup		$\mathbf{2 . 6 \times}$	$1697 / 1153$

Experimental Results for Digit Removal

Original method / No function composition / Function composition

Cyclotomic index m	42799	63973
Params $\left(p, v, e, e^{\prime}\right)$	$(2,8,59,16)$	$(3,5,37,6)$
Used capacity (bits)	$1049 / 991 / 1006$	$1142 / 1047 / 1170$
Execution time (sec)	$180 / 100 / 64$	$191 / 151 / 119$
Digit removal speedup	$\mathbf{1 . 8} \times / \mathbf{2 . 8 \times}$	$\mathbf{1 . 3 \times / \mathbf { 1 . 6 } \times}$

Conclusion

- Speed up bootstrapping for BGV and BFV up to $2.6 \times$
- Better understanding of polyfunctions modulo p^{e}
- Optimizations due to the existence of non-trivial null polynomials
- Also of independent interest in cryptography

Thank you for your attention!

