
Jack O'Connor

Joint work with Megan Chen, Alessandro Chiesa, Tom Gur and Nicholas Spooner

Eurocrypt 2023

Proof-Carrying Data From
Arithmetized Random Oracles

Thank you for many

of the slides!

Our setting: “streaming” verification of -step NP computations

Goal: Prove correctness of a -step non-deterministic computation:

Given ,

Option 1: Monolithic proof

Issues:

• (Typically) requires prover memory , where is the space needed to compute

• Proving steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [Val08]

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

Our setting: “streaming” verification of -step NP computations

-steps

Goal: Prove correctness of a -step non-deterministic computation:

Given , check that

Our setting: “streaming” verification of -step NP computations

-steps

Goal: Prove correctness of a -step non-deterministic computation:

Given , check that

Option 1: Monolithic proof

Issues:

• (Typically) requires prover memory , where is the space needed to compute

• Proving steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [Val08]

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

Our setting: “streaming” verification of -step NP computations

Incrementally verifiable computation (IVC) [Valiant08]

Goal: Prove correctness of a -step non-deterministic computation:

Given , check that

Option 1: Monolithic proof

Issues:

• (Typically) requires prover memory , where is the space needed to compute

• Proving steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [Val08]

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

Our setting: “streaming” verification of -step NP computations

Incrementally verifiable computation (IVC) [Valiant08]

Proof-carrying Data (PCD) [CT10, BCCT13] generalizes path graph to DAG.

IVC from SNARK
SNARK = Succinct Non-

interactive ARgument of

Knowledge

IVC from SNARK
SNARK = Succinct Non-

interactive ARgument of

Knowledge

IVC P

IVC from SNARK
SNARK = Succinct Non-

interactive ARgument of

Knowledge

SNARK P

IVC P

IVC from SNARK
SNARK = Succinct Non-

interactive ARgument of

Knowledge

SNARK P

IVC P

IVC from SNARK
SNARK = Succinct Non-

interactive ARgument of

Knowledge

SNARK P

SNARK

V

IVC P

Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;

BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

• Transparent / universal setup

• Efficiency improvements

Issues:

• SNARK verifier makes oracle queries, but

SNARK is for non-oracle computations.

Prior works: SNARKs

SNARK P

SNARK

V

IVC P

SNARK = Succinct Non-

interactive ARgument of

Knowledge

SNARK P

SNARK

V

IVC P
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;

BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

• Transparent / universal setup

• Efficiency improvements

Prior works: SNARKs
SNARK = Succinct Non-

interactive ARgument of

Knowledge

Issues with IVC from SNARKs in the ROM

SNARK P

SNARK

V

IVC P

Issues with IVC from SNARKs in the ROM

• SNARK verifier makes oracle

queries, but SNARK is for non-oracle

computations.

SNARK P

SNARK

V

IVC P

Issues with IVC from SNARKs in the ROM

• SNARK verifier makes oracle

queries, but SNARK is for non-oracle

computations.

• [COS20;,…] Heuristically instantiate .

SNARK P

SNARK

V

IVC P

SHA2

SHA2

Issues with heuristic RO instantiation

Theoretical:

• Requires non-blackbox use of oracle; this

breaks the RO abstraction.

• Security flaws may be in the heuristic step

[GoldwasserK03; CanettiGH04].

Practical:

• Flexibility: Oracle must be instantiated as a

circuit: can’t use MPC, hardware token.

• Efficiency: SNARKs about SHA2, BLAKE

are expensive!

SNARK P

SNARK

V

IVC P

SHA2

SHA2

Issues with heuristic RO instantiation

Theoretical:

• Requires non-blackbox use of oracle; this

breaks the RO abstraction.

• Security flaws may be in the heuristic step

[GoldwasserK03; CanettiGH04].

Practical:

• No flexibility: Oracle must be instantiated

as a circuit: can’t use MPC, hardware

token.

• Inefficient: SNARKs about SHA2, BLAKE

are expensive!

SNARK P

SNARK

V

IVC P

SHA2

SHA2

Issues with heuristic RO instantiation

Theoretical:

• Requires non-blackbox use of oracle; this

breaks the RO abstraction.

• Security flaws may be in the heuristic step

[GoldwasserK03; CanettiGH04].

Practical:

• Flexibility: Oracle must be instantiated as a

circuit: can’t use MPC, hardware token.

• Efficiency: SNARKs about SHA2, BLAKE

are expensive!

SNARK P

SNARK

V

IVC P

SHA2

SHA2

Issues with heuristic RO instantiation

Theoretical:

• Requires non-blackbox use of oracle; this

breaks the RO abstraction.

• Security flaws may be in the heuristic step

[GoldwasserK03; CanettiGH04].

Practical:

• No flexibility: Oracle must be instantiated

as a circuit: can’t use MPC, hardware

token.

• Inefficient: SNARKs about SHA2, BLAKE

are expensive!

SNARK P

SNARK

V

IVC P

SHA2

SHA2

Theoretical:

• Requires non-blackbox use of oracle; this

breaks the RO abstraction.

• Security flaws may be in the heuristic step

[GoldwasserK03; CanettiGH04].

Practical:

• No flexibility: Oracle must be instantiated

as a circuit: can’t use MPC, hardware

token.

• Inefficient: SNARKs about SHA2, BLAKE

are expensive!

Issues with heuristic RO instantiation

SNARK P

SNARK

V

IVC P

SHA2

SHA2

Theoretical:

• Requires non-blackbox use of oracle; this

breaks the RO abstraction.

• Security flaws may be in the heuristic step

[GoldwasserK03; CanettiGH04].

Practical:

• No flexibility: Oracle must be instantiated

as a circuit: can’t use MPC, hardware

token.

• Inefficient: SNARKs about SHA2, BLAKE

are expensive!

Issues with heuristic RO instantiation

SNARK P

SNARK

V

IVC P

SHA2

SHA2

IVC from additional oracle structure

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Random oracle signs

responses using a signature

scheme.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Random oracle signs

responses using a signature

scheme.

We obtain IVC in the signed

random oracle model.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Random oracle signs

responses using a signature

scheme.

We obtain IVC in the signed

random oracle model.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Low-Degree Random

Oracle Model [CCS22]

Random oracle signs

responses using a signature

scheme.

Random oracle is extended to a

low-degree multivariate

polynomial.

We obtain IVC in the signed

random oracle model.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Low-Degree Random

Oracle Model [CCS22]

Random oracle signs

responses using a signature

scheme.

Random oracle is extended to a

low-degree multivariate

polynomial.

We obtain IVC in the signed

random oracle model.
We obtain IVC in the low-

degree random oracle model.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Low-Degree Random

Oracle Model [CCS22]

Random oracle signs

responses using a signature

scheme.

Random oracle is extended to a

low-degree multivariate

polynomial.

We obtain IVC in the signed

random oracle model.
We obtain IVC in the low-

degree random oracle model.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Low-Degree Random

Oracle Model [CCS22]

Random oracle signs

responses using a signature

scheme.

Random oracle is extended to a

low-degree multivariate

polynomial.

We obtain IVC in the signed

random oracle model.
We obtain IVC in the low-

degree random oracle model.

We don't know of any software-

only instantiation of the model.

IVC from additional oracle structure
It is unknown whether we can obtain IVC in the ROM.

Signed Random

Oracle Model [CT10]

Low-Degree Random

Oracle Model [CCS22]

Random oracle signs

responses using a signature

scheme.

Random oracle is extended to a

low-degree multivariate

polynomial.

We obtain IVC in the signed

random oracle model.
We obtain IVC in the low-

degree random oracle model.

We don't know of any software-

only instantiation of the model.

The question

Is there an oracle model for which:

1. There exists a PCD scheme in this model under standard

assumptions; and

2. The oracle can be heuristically instantiated in software?

Our results
Yes!

We propose a new oracle model, the arithmetized random oracle

model (AROM), which has a plausible heuristic instantiation.

Our results
Yes!

We propose a new oracle model, the arithmetized random oracle

model (AROM), which has a plausible heuristic instantiation.

Theorem: There exists PCD/IVC in the AROM,

assuming the existence of collision-resistant hash functions in

the standard model.

Our results
Yes!

We propose a new oracle model, the arithmetized random oracle

model (AROM), which has a plausible heuristic instantiation.

Theorem: There exists PCD/IVC in the AROM,

assuming the existence of collision-resistant hash functions in

the standard model.

Secure to arbitrary

depth t

Low-degree random oracle [CCS22]

Low-degree random oracle [CCS22]

Random such that:

• Points in Boolean hypercube agree with the

random oracle.

• Is low-degree (e.g.).

• Can query ANY point in .

Low-degree random oracle [CCS22]

Random such that:

• Points in Boolean hypercube agree with the

random oracle.

• Is low-degree (e.g.).

• Can query ANY point in .

P V

• [CCS22] give a non-interactive

query-reduction protocol in the

LDRO.

• This allows V to verify n queries

to with a single query to !

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Arithmetization of hash functions

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Arithmetization of hash functions

Hash function

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Arithmetization of hash functions

Hash function

Arithmetic circuit

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Polynomial of

degree

Arithmetization of hash functions

Hash function

Arithmetic circuit

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Polynomial of

degree

Arithmetization of hash functions

Hash function

Arithmetic circuit

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Polynomial of

degree

Arithmetization of hash functions

Hash function

Arithmetic circuit

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Polynomial of

degree

Arithmetization of hash functions

Hash function

Arithmetic circuit

• Let's try to instantiate the low-degree random oracle...

• The IVC verifier for the low-degree random oracle runs in time at least .

• For widely used hash functions, .

• We need to reduce the depth of this circuit.

Polynomial of

degree

Arithmetization of hash functions

Hash function

Arithmetic circuit

Degree reduction

Degree reduction

Degree reduction

Efficiently computable

Polynomial of

degree

Degree reduction

Efficiently computable

• This is not a low-degree extension of , so we can't instantiate the LDRO this
way.

Polynomial of

degree

Degree reduction

Efficiently computable

Arithmetized Random Oracle Model

Hash

function

Witness

function

Verification polynomial

Arithmetized Random Oracle Model

Hash

function

Witness

function

Verification polynomial

Random oracle

Arithmetized Random Oracle Model

Hash

function

Witness

function

Verification polynomial

Random oracle

Witness oracle

Arithmetized Random Oracle Model

Hash

function

Witness

function

Verification polynomial

Random oracle

Witness oracle

Extended verification

oracle

low-degree extension of

.......

Modelling Challenges

Modelling Challenges
1. How do we define ?

Modelling Challenges
1. How do we define ?

 is an adversarially chosen PPT-computable function.

Modelling Challenges
1. How do we define ?

2. How do we define ?

 is an adversarially chosen PPT-computable function.

Modelling Challenges
1. How do we define ?

2. How do we define ?

• If , an efficient adversary can invert [JKRS09].

 is an adversarially chosen PPT-computable function.

Modelling Challenges
1. How do we define ?

2. How do we define ?

• If , an efficient adversary can invert [JKRS09].

• If is adversarially chosen, an efficient adversary can invert .

 is an adversarially chosen PPT-computable function.

Modelling Challenges
1. How do we define ?

2. How do we define ?

• If , an efficient adversary can invert [JKRS09].

• If is adversarially chosen, an efficient adversary can invert .

 is an adversarially chosen PPT-computable function.

 is a uniformly random low-degree extension of with .

Modelling Challenges
1. How do we define ?

2. How do we define ?

• If , an efficient adversary can invert [JKRS09].

• If is adversarially chosen, an efficient adversary can invert .

• Weakening this choice is a question for future work.

 is an adversarially chosen PPT-computable function.

 is a uniformly random low-degree extension of with .

The question

Is there an oracle model for which:

1. There exists a PCD scheme in this model under standard

assumptions; and

2. The oracle can be heuristically instantiated in software?

The question

Is there an oracle model for which:

1. There exists a PCD scheme in this model under standard

assumptions; and

2. The oracle can be heuristically instantiated in software?

Overview of construction

Overview of construction

PCD in the

AROM.

Overview of construction

Security in

ROM =>

Security in

AROM.

PCD in the

AROM.

Via the combinatorial nullstellensatz

[Alo99] and results from algebraic query

complexity [AW09].

Overview of construction

Security in

ROM =>

Security in

AROM.

Query

reduction in the

AROM.

PCD in the

AROM.

Via the combinatorial nullstellensatz

[Alo99] and results from algebraic query

complexity [AW09].

By constructing an accumulation

scheme [BCMS20] for the arithmetized

random oracle.

The question

Is there an oracle model for which:

1. There exists a PCD scheme in this model under standard

assumptions; and

2. The oracle can be heuristically instantiated in software?

The question

Is there an oracle model for which:

1. There exists a PCD scheme in this model under standard

assumptions; and

2. The oracle can be heuristically instantiated in software?

Thanks!

Emulation of the ARO

Lemma: There exists a probabilistic algorithm such that for every security
parameter , query bound , and -query adversary:

	Slide 1: Proof-Carrying Data From Arithmetized Random Oracles
	Slide 2: Our setting: “streaming” verification of t-step NP computations
	Slide 3: Our setting: “streaming” verification of t-step NP computations
	Slide 4: Our setting: “streaming” verification of t-step NP computations
	Slide 5: Our setting: “streaming” verification of t-step NP computations
	Slide 6: Our setting: “streaming” verification of t-step NP computations
	Slide 7: IVC from SNARK
	Slide 8: IVC from SNARK
	Slide 9: IVC from SNARK
	Slide 10: IVC from SNARK
	Slide 11: IVC from SNARK
	Slide 12: Prior works: SNARKs
	Slide 13: Prior works: SNARKs
	Slide 14: Issues with IVC from SNARKs in the ROM
	Slide 15: Issues with IVC from SNARKs in the ROM
	Slide 16: Issues with IVC from SNARKs in the ROM
	Slide 17: Issues with heuristic RO instantiation
	Slide 18: Issues with heuristic RO instantiation
	Slide 19: Issues with heuristic RO instantiation
	Slide 20: Issues with heuristic RO instantiation
	Slide 21: Issues with heuristic RO instantiation
	Slide 22: Issues with heuristic RO instantiation
	Slide 23: IVC from additional oracle structure
	Slide 24: IVC from additional oracle structure
	Slide 25: IVC from additional oracle structure
	Slide 26: IVC from additional oracle structure
	Slide 27: IVC from additional oracle structure
	Slide 28: IVC from additional oracle structure
	Slide 29: IVC from additional oracle structure
	Slide 30: IVC from additional oracle structure
	Slide 31: IVC from additional oracle structure
	Slide 32: IVC from additional oracle structure
	Slide 33: IVC from additional oracle structure
	Slide 34: The question
	Slide 35: Our results
	Slide 36: Our results
	Slide 37: Our results
	Slide 38: Low-degree random oracle [CCS22]
	Slide 39: Low-degree random oracle [CCS22]
	Slide 40: Low-degree random oracle [CCS22]
	Slide 41: Arithmetization of hash functions
	Slide 42: Arithmetization of hash functions
	Slide 43: Arithmetization of hash functions
	Slide 44: Arithmetization of hash functions
	Slide 45: Arithmetization of hash functions
	Slide 46: Arithmetization of hash functions
	Slide 47: Arithmetization of hash functions
	Slide 48: Arithmetization of hash functions
	Slide 49: Degree reduction
	Slide 50: Degree reduction
	Slide 51: Degree reduction
	Slide 52: Degree reduction
	Slide 53: Degree reduction
	Slide 55: Arithmetized Random Oracle Model
	Slide 56: Arithmetized Random Oracle Model
	Slide 57: Arithmetized Random Oracle Model
	Slide 58: Arithmetized Random Oracle Model
	Slide 59: Modelling Challenges
	Slide 60: Modelling Challenges
	Slide 61: Modelling Challenges
	Slide 62: Modelling Challenges
	Slide 63: Modelling Challenges
	Slide 64: Modelling Challenges
	Slide 65: Modelling Challenges
	Slide 66: Modelling Challenges
	Slide 67: The question
	Slide 68: The question
	Slide 69: Overview of construction
	Slide 70: Overview of construction
	Slide 71: Overview of construction
	Slide 72: Overview of construction
	Slide 73: The question
	Slide 74: The question
	Slide 75: Thanks!
	Slide 76
	Slide 77: Emulation of the ARO

