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Our setting: “streaming” verification of -step NP computations



Goal: Prove correctness of a -step non-deterministic computation:

Given  ,

Option 1: Monolithic proof

Issues:

• (Typically) requires prover memory , where  is the space needed to compute 

• Proving  steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [Val08]

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG
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Approach 1: CRS + knowledge (extraction) 

assumptions 

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14; 

BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM 

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

• Transparent / universal setup

• Efficiency improvements

Issues:

• SNARK verifier makes oracle queries, but 

SNARK is for non-oracle computations.

Prior works: SNARKs

SNARK P

SNARK

V

IVC P

SNARK = Succinct Non-

interactive ARgument of 

Knowledge



SNARK P

SNARK

V

IVC P
Approach 1: CRS + knowledge (extraction) 

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14; 

BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

• Transparent / universal setup

• Efficiency improvements

Prior works: SNARKs
SNARK = Succinct Non-

interactive ARgument of 

Knowledge



Issues with IVC from SNARKs in the ROM

SNARK P

SNARK

V

IVC P



Issues with IVC from SNARKs in the ROM

• SNARK verifier makes oracle 

queries, but SNARK is for non-oracle 

computations.

SNARK P

SNARK

V

IVC P



Issues with IVC from SNARKs in the ROM

• SNARK verifier makes oracle 

queries, but SNARK is for non-oracle 

computations.

• [COS20;,…] Heuristically instantiate   .

SNARK P

SNARK

V

IVC P

SHA2

SHA2



Issues with heuristic RO instantiation

Theoretical:

• Requires non-blackbox use of oracle; this 

breaks the RO abstraction. 

• Security flaws may be in the heuristic step 

[GoldwasserK03; CanettiGH04].

Practical:

• Flexibility: Oracle must be instantiated as a 

circuit: can’t use MPC, hardware token.

• Efficiency: SNARKs about SHA2, BLAKE 

are expensive!
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Random                     such that:

• Points in Boolean hypercube agree with the 

random oracle.

• Is low-degree (e.g.         ).

• Can query ANY point in    .

P V

• [CCS22] give a non-interactive 

query-reduction protocol in the 

LDRO.

• This allows V to verify n queries 

to   with a single query to  !
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• This is not a low-degree extension of   , so we can't instantiate the LDRO this 
way.

Polynomial of 

degree       

Degree reduction

Efficiently computable
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Hash 

function
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function     

Verification polynomial

          

Random oracle

Witness oracle

Extended verification 

oracle          

low-degree extension of

         
.......
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2. How do we define   ?

• If      , an efficient adversary can invert  [JKRS09].

• If    is adversarially chosen, an efficient adversary can invert   .

• Weakening this choice is a question for future work.

  is an adversarially chosen PPT-computable function.

  is a uniformly random low-degree extension of    with     .
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Thanks!





Emulation of the ARO

Lemma: There exists a probabilistic algorithm    such that for every security 
parameter      , query bound       , and  -query adversary:
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