Actively Secure Half-Gates with Minimum Overhead under Duplex Networks

Hongrui Cui

Shanghai Jiao Tong University

Kang Yang State Key Laboratory of Cryptology

Xiao Wang

Northwestern University

Yu Yu Shanghai Jiao Tong University Shanghai Qi Zhi Institute

1 Apr. 25, 2023 · Eurocrypt 2023

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2 <i>ĸ</i>	AND: 3κ			

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8 <i>ĸ</i>	AND: 4κ	AND: 3κ	AND: 2 <i>ĸ</i>	AND: 3κ			

What about the malicious world?

Cut-and-Choose [LP07,NO09,HKE13,NST17,...]

 $O(\rho\kappa)$ or $O(\frac{\rho\kappa}{\log C})$

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Checking

+

TinyO

Cut-and-Choose	Authenticated Garbling	
[LP07,NO09,HKE13,NST17,]	[WRK17,KRRW18]	
$O(\rho\kappa)$ or $O(\frac{\rho\kappa}{\log C})$	$\Pi_{\sf pre}$: 13 κ + 8 $ ho$	
	Π_{online} : 2 $\kappa+1$	
	Actively-secure	

constant-round

2PC

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2 <i>ĸ</i>	AND: 3κ			

What about the malicious world?

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2 <i>ĸ</i>	AND: 3κ			

What about the malicious world?

Cut-and-Choose	Authenticated Garbling	PCGs	AG from PCG
[LP07,NO09,HKE13,NST17,]	[WRK17,KRRW18]	[BCG+19,	[DILO22]
$O(ho\kappa)$ or $O(rac{ ho\kappa}{\log C})$	$egin{array}{l} \Pi_{pre}\colon 13\kappa+8 ho\ \Pi_{online}\colon 2\kappa+1 \end{array}$	YWL+20, CRR21,]	\mathcal{F}_{VOLE} -hyb. $2\kappa+8 ho$ \mathcal{F}_{DAMT} -hyb. $2\kappa+4 ho$

Can we close the gap?

Our Contributions

Authenticated garbling with one-way comm. as small as semi-honest half-gates

2PC	Rounds		Communication per AND gate			
2. 0	Prep.	Online	one-way (bits)	two-way (bits)		
Half-gates	1	2	2κ	2κ		
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)		
KRRW-PCG	4	4	$5\kappa+7$ (2.53 $ imes$)	$8\kappa+14$ (4.05 $ imes$)		
DILO	7	2	$2\kappa+8 ho+1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)		
This work	8	3	$2\kappa+5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)		
This work+DILO	8	2	$2\kappa+3 ho+2$ (1.48 $ imes$)	$2\kappa+3 ho+4$ ($pprox {f 1.48 imes}$)		

	🧯 со	ntro)	s garbling so it can
	۸ _i	\wedge_j		Masked L $_{k,\Lambda_k}$
-	0	0		$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
	0	1		$L_{k,0} \oplus (\underline{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A}$
	1	0		$L_{k,0} \oplus (\underline{\lambda}_i \cdot \underline{\lambda}_j \oplus \lambda_k) \Delta_A$
	1	1		$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$

■ selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$

garble different logic \Rightarrow Add IT-MAC, equality check, etc.

📀 со	ntro	ls garbli	ng so it can	selective-failu	ire on Λ :=	= z \oplus λ \Rightarrow Secret sha	$re\; \lambda := a \oplus b$
۸ _i	۸ _j	Mask	ed L $_{k,\Lambda_k}$	garble differe	nt logic \Rightarrow	Add IT-MAC, equality	y check, etc.
0 0 1 1	0 1 0	$L_{k,0} \oplus (\lambda_i)$ $L_{k,0} \oplus (\lambda_i)$ $L_{k,0} \oplus (\bar{\lambda}_i)$ $L_{k,0} \oplus (\bar{\lambda}_i)$	$\begin{array}{c} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A} \\ \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A} \\ \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A} \\ \cdot \bar{\lambda}_{i} \oplus \lambda_{k}) \Delta_{A} \end{array}$	We need prep We need prep	processing	; information to comp	lete garbling
a	Δ _B		$= \mathbf{a} \cdot \Delta_{B}$	a, \hat{a}, Δ_A	\mathcal{F}_{pre} $\hat{a}_k \oplus \hat{b}_k$ =	samples [a], [â], [b], [b̂] Δ_A, Δ_B = $\lambda_i \cdot \lambda_i$ for (<i>i</i> , <i>j</i> , <i>k</i> , \land)	b , $\hat{\mathbf{b}}$, Δ_{B}

Controls garbling so it can	selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus$) b
$\Lambda_i \Lambda_j \mid Masked L_{k,\Lambda_k}$	a garble different logic \Rightarrow Add IT-MAC, equality check, etc	۲. ۲. •
$\begin{array}{c ccccc} 0 & 0 & & L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \\ 0 & 1 & & L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_{A} \\ 1 & 0 & & L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A} \\ 1 & 1 & & L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_i \oplus \lambda_k) \Delta_{A} \end{array}$	We need preprocessing information to complete garblin	ıg
$a \oplus a = a \cdot \Delta_{B}$	$\begin{array}{c c} & samples \\ \hline \boldsymbol{\mathcal{F}}_{pre} & [\mathbf{a}], [\mathbf{\hat{a}}], [\mathbf{b}], [\mathbf{\hat{b}}] \\ \mathbf{a}, \mathbf{\hat{a}}, \Delta_{A} & \Delta_{A}, \Delta_{B} \end{array} \begin{array}{c} \boldsymbol{\mathcal{S}} \\ \mathbf{b}, \mathbf{\hat{b}}, \Delta_{B} \end{array}$	
Δ_{B} Δ_{B}	a $\hat{\mathbf{a}}$ b $\hat{\mathbf{b}}$ $\hat{a}_k \oplus \hat{b}_k = \lambda_i \cdot \lambda_j$ for (i, j, k, \wedge) a $\hat{\mathbf{a}}$ b	ĥ

۸ _i	\wedge_j	Alice's GC	Bob's GC
0	0	$L_{k,0} \oplus K[\Lambda_{00}]$	Μ[Λ ₀₀]
0	1	$L_{k,0} \oplus K[\Lambda_{01}]$	Μ[Λ ₀₁]
1	0	$L_{k,0} \oplus K[\Lambda_{10}]$	Μ[Λ ₁₀]
1	1	$L_{k,0} \oplus K[\Lambda_{11}]$	$M[\Lambda_{11}]$

$$\begin{split} \wedge_k \cdot \Delta_{\mathsf{A}} &:= \lambda_k \cdot \Delta_{\mathsf{A}} \oplus (\Lambda_j \oplus \lambda_j) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{A}} \\ &= \lambda_k \cdot \Delta_{\mathsf{A}} \oplus ... \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{\mathsf{A}} \end{split}$$

D

Free-XOR GC \Rightarrow $|\Delta_{\mathsf{A}}| = \kappa \approx 128$

controls garbling so it can				ng so it can	selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$			
	۸ _i	^ _j	Mask	ed L $_{k,\Lambda_k}$	garble differe	nt logic \Rightarrow	Add IT-MAC, equality	y check, etc.
	0 0 1	0 1 0 1	$L_{k,0} \oplus (\lambda_i)$ $L_{k,0} \oplus (\lambda_i)$ $L_{k,0} \oplus (\bar{\lambda}_i)$ $L_{k,0} \oplus (\bar{\lambda}_i)$	$\begin{array}{c} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A} \\ \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A} \\ \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A} \\ \cdot \bar{\lambda}_{i} \oplus \lambda_{k}) \Delta_{A} \end{array}$	We need prep We need prep	processing	g information to comp	lete garbling
	a		- _{k,0} ⊕ ($= \mathbf{a} \cdot \Delta_{\mathrm{B}}$	a, \hat{a}, Δ_A	\mathcal{F}_{pre} $\hat{a}_{\iota} \oplus \hat{b}_{\iota}$	samples [a], [â], [b], [b̂] Δ_A, Δ_B = $\lambda_i \cdot \lambda_i$ for (<i>i</i> , <i>i</i> , <i>k</i> , \wedge)	$\hat{\mathbf{b}}, \hat{\mathbf{b}}, \Delta_{B}$

۸ _i	Λ_j Alice's GC Bob's GC	$\wedge_k \cdot \Delta_{A} := \lambda_k \cdot \Delta_{A} \oplus (\wedge_i \oplus \lambda_i) \cdot (\wedge_j \oplus \lambda_j) \cdot \Delta_{A}$	$\Lambda_i \qquad \Lambda_j Alice's AuthGC Bob's AuthGC$	
0 0 1	$\begin{array}{c c c} 0 & L_{k,0} \oplus K[\Lambda_{00}] & M[\Lambda_{00}] \\ 1 & L_{k,0} \oplus K[\Lambda_{01}] & M[\Lambda_{01}] \\ 0 & L_{k,0} \oplus K[\Lambda_{10}] & M[\Lambda_{10}] \end{array}$	$= \lambda_k \cdot \Delta_{A} \oplus \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{A}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1	$1 \qquad \begin{array}{c c} \mathbf{K}, 0 \oplus \mathbf{L} & 101 \\ \mathbf{L}_{k,0} \oplus \mathbf{K}[\Lambda_{11}] & \mathbf{M}[\Lambda_{11}] \end{array}$	$ \land_{k} \cdot \Delta_{B} := \lambda_{k} \cdot \Delta_{B} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{i} \oplus \lambda_{i}) \cdot \Delta_{B} $	$1 \qquad 1 \qquad \begin{bmatrix} K, O \oplus I & IO \\ L_{k, O} \oplus M[A_{11}] \end{bmatrix} \qquad K[A_{11}]$	
	Free-XOR GC \Rightarrow	$= \lambda_k \cdot \Delta_{B} \oplus \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{B}$	IT-MAC Soundness \Rightarrow	

D

IT-MAC Soundness \Rightarrow $|\Delta_{\mathsf{B}}| =
ho \approx 40$

Hongrui Cui · Actively Secure Half-Gates with Minimum Overhead under Duplex Networks

â

b

h

 $|\Delta_{\mathsf{A}}| = \kappa \approx 128$

KRRW18: Distributed Half-Gates Garbling + Equality Checking

Distributed half-gates garbling is fully compatible with \mathcal{F}_{pre}

$$\Lambda_{k} \cdot \Delta_{A} := \lambda_{k} \cdot \Delta_{A} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{A}$$

$$= \underbrace{(\lambda_{k} \oplus \lambda_{i}\lambda_{j}) \cdot \Delta_{A}}_{\text{already shared}} \oplus \underbrace{\Lambda_{i}\lambda_{j} \cdot \Delta_{A}}_{G_{k,0}} \oplus \underbrace{\Lambda_{j}(\Lambda_{i} \oplus \lambda_{i}) \cdot \Delta_{A}}_{G_{k,1}}$$

$$4\kappa \text{ bits/AND}_{WRK17} \implies \frac{2\kappa + 1 \text{ bits/AND}}{KRRW18}$$

KRRW18: Distributed Half-Gates Garbling + Equality Checking

$\Lambda_{k} \cdot \Delta_{A} := \lambda_{k} \cdot \Delta_{A} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{A}$ $= (\lambda_{k} \oplus \lambda_{i}\lambda_{j}) \cdot \Delta_{A} \oplus \Lambda_{i}\lambda_{j} \cdot \Delta_{A} \oplus \Lambda_{j}(\Lambda_{i} \oplus \lambda_{i}) \cdot \Delta_{A}$							
already shared	$G_{k,0}$ $G_{k,1}$						
$ \begin{array}{r} 4\kappa \text{ bits/AND} \\ WRK17 \end{array} = $	$ ightarrow 2\kappa + 1$ bits/AND $ ightarrow$ KRRW18						

b-mask removes selective failure, now only need to check correct AND correlation

Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
 - We refer the $\mathbb{F}_p = \mathbb{F}_2$ variant of \mathcal{F}_{sVOLE} as \mathcal{F}_{COT}

Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]

We refer the $\mathbb{F}_p = \mathbb{F}_2$ variant of \mathcal{F}_{sVOLE} as \mathcal{F}_{COT}

Derandomization operation: Fix $\delta := \mathbf{x} \oplus \mathbf{u}$ $\mathbf{x} := \mathbf{u}$ $\mathbf{x} := \mathbf{u}$ $\mathbf{x} := \mathbf{u}$ $\mathbf{x} := \mathbf{u}$ $\mathbf{x} := \mathbf{u}$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
 - We refer the $\mathbb{F}_p = \mathbb{F}_2$ variant of \mathcal{F}_{sVOLE} as \mathcal{F}_{COT}

Efficient proof for deg-*d* relations on **u** [DIO21, YSWW21, ...]

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
 - We refer the $\mathbb{F}_p = \mathbb{F}_2$ variant of \mathcal{F}_{sVOLE} as \mathcal{F}_{COT}

Efficient proof for deg-*d* relations on **u** [DIO21, YSWW21, ...]

- In DILO, those PCG correlations are called "simple correlations"
- Unfortunately, we still don't have an efficient direct \mathcal{F}_{pre} PCG construction
- The closest is the $\mathcal{F}_{\text{DAMT}}$ correlation generated from Ring-LPN, but with ρ -time overhead

Prior Art: DILO

- Garbler can only guess once
- If **b** is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from b

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from b

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

#Guess ≤ ρ: Abort is input-independent
 #Guess > ρ: Abort is overwhelming

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from b

It suffices for **b** to be ρ -wise independent

DILO Oberservation 2

We can construct ρ -wise independent **b** by linear expansion

#Guess ≤ ρ: Abort is input-independent
 #Guess > ρ: Abort is overwhelming

 $\label{eq:constraint} \text{Hongrui} \ \text{Cui} \cdot \text{Actively Secure Half-Gates with Minimum Overhead under Duplex Networks}$

DILO Implementation of \mathcal{F}_{cpre} : Encoding **b**^{*} as Global Keys

DILO Implementation of \mathcal{F}_{cpre} : Encoding **b**^{*} as Global Keys

Hongrui Cui · Actively Secure Half-Gates with Minimum Overhead under Duplex Networks

DILO Implementation of \mathcal{F}_{cpre} : Authenticating \hat{b}_k (Under Δ_A) It suffices to compute \tilde{b}_k since $[\hat{b}_k]_{\Delta_A} = [\tilde{b}_k]_{\Delta_A} \oplus [b_i b_j]_{\Delta_A}$

DILO Implementation of \mathcal{F}_{cpre} : Authenticating \hat{b}_k (Under Δ_A) It suffices to compute \tilde{b}_k since $[\hat{b}_k]_{\Delta_A} = [\tilde{b}_k]_{\Delta_A} \oplus [b_i b_j]_{\Delta_A}$

DILO Implementation of \mathcal{F}_{cpre} : Authenticating \hat{b}_k (Under Δ_A) It suffices to compute \tilde{b}_k since $[\hat{b}_k]_{\Delta_A} = [\tilde{b}_k]_{\Delta_A} \oplus [b_i b_j]_{\Delta_A}$

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check

Use random linear combination to reduce comm.

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

 $\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}}$

 $\lambda_k \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \Lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_j \lambda_i \cdot \Delta_{\mathsf{B}} \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{\mathsf{B}}$

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

 $\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \quad \left[\Lambda_i(a_j \oplus b_j) \Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j] \right]$

 $=\lambda_k\cdot\Delta_{\mathsf{B}}\oplus\Lambda_i\Lambda_j\cdot\Delta_{\mathsf{B}}\oplus\Lambda_i\lambda_j\cdot\Delta_{\mathsf{B}}\oplus\Lambda_j\lambda_i\cdot\Delta_{\mathsf{B}}\oplus(\hat{a}_k\oplus\hat{b}_k)\cdot\Delta_{\mathsf{B}}$

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

 $\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_i \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \quad \big| \Lambda_i(a_j \oplus b_j) \Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j]$

 $=\lambda_k\cdot \Delta_{\mathsf{B}}\oplus \Lambda_i\Lambda_j\cdot \Delta_{\mathsf{B}}\oplus \Lambda_i\lambda_i\cdot \Delta_{\mathsf{B}}\oplus \Lambda_i\lambda_i\cdot \Delta_{\mathsf{B}}\oplus (\hat{a}_k\oplus \hat{b}_k)\cdot \Delta_{\mathsf{B}}$

 3ρ bits/AND

The overhead of DILO is $5\rho + 2$ bits per AND gate

$$\begin{array}{c}
\rho + 1 \text{ bits} \\
Fix(\{a_i a_j\}) \\
m_{k,1} := M[\tilde{b}_k] \\
\end{array}$$

$$\begin{array}{c}
\left(4\rho \text{ bits} \right) \\
\text{Fix} \left(\begin{cases} a_i a_j \Delta_A \\ \{\hat{a}_k \Delta_A \} \\ \mathbf{a} \Delta_A \end{cases} \right) \\
m_{k,2} := \mathsf{M}[\mathsf{v}_k]
\end{array}$$

We need to detect against dishonest Fix() input

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input

► [
$$\mathbf{a}\Delta_{A}$$
] $_{\Delta_{B}} \equiv [\mathbf{a}]_{\Delta_{A}} \cdot \Delta_{B}$
■ M[$\mathbf{a}\Delta_{A}$] \oplus K[$\mathbf{a}\Delta_{A}$] = $\mathbf{a}\Delta_{A}\Delta_{B}$
■ We denote it as $\langle \mathbf{a} \rangle$

We denote it as $\langle \mathbf{a}
angle$

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input

► [
$$\mathbf{a}\Delta_{A}$$
] $_{\Delta_{B}} \equiv [\mathbf{a}]_{\Delta_{A}} \cdot \Delta_{B}$
■ M[$\mathbf{a}\Delta_{A}$] \oplus K[$\mathbf{a}\Delta_{A}$] = $\mathbf{a}\Delta_{A}\Delta_{B}$
■ We denote it as $\langle \mathbf{a} \rangle$

Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for &) can open $y := \sum_k \chi^k \cdot \tilde{b}_k \oplus r$ and convince calls Fix (\tilde{b}_k) and checks $\sum_k \chi^k [\tilde{b}_k] \oplus [r] \oplus y = 0$

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input

► [
$$\mathbf{a}\Delta_{A}$$
] $_{\Delta_{B}} \equiv [\mathbf{a}]_{\Delta_{A}} \cdot \Delta_{B}$
■ M[$\mathbf{a}\Delta_{A}$] \oplus K[$\mathbf{a}\Delta_{A}$] = $\mathbf{a}\Delta_{A}\Delta_{B}$
■ We denote it as $\langle \mathbf{a} \rangle$

Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for &) can open $y := \sum_k \chi^k \cdot \tilde{b}_k \oplus r$ and convince calls Fix (\tilde{b}_k) and checks $\sum_k \chi^k [\tilde{b}_k] \oplus [r] \oplus y = 0$

If so we can reduce 4ρ bits to 1 bit

Our goal is to generate $\langle \tilde{b}_k \rangle := \langle \hat{a}_k \rangle \oplus \langle a_i a_j \rangle \oplus \langle a_i b_j \rangle \oplus \langle a_j b_i \rangle$

- D_A[â_k] ⊕ D_B[â_k] = â_k △_A △_B
 D_A[a_ib_j] ⊕ D_B[a_ib_j] = a_ib_j △_A △_B

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

- D_A[â_k] ⊕ D_B[â_k] = â_k △_A △_B
 D_A[a_ib_j] ⊕ D_B[a_ib_j] = a_ib_j △_A △_B

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys $\overbrace{\mathcal{F}_{cOT}}$ $\overbrace{\mathcal{F}_{ix}(\{\Delta_{B}, \mathbf{b}^{*} \Delta_{B}\})}^{\mathbf{F}_{ix}(\{\Delta_{B}, \mathbf{b}^{*} \Delta_{B}\})} = \Delta_{A} \Delta_{B}$ $b_{i}^{*} \Delta_{B} \qquad \oplus \qquad b_{i}^{*} \Delta_{B} \qquad = b_{i}^{*} \Delta_{A} \Delta_{B}$

- $\langle \tilde{b}_k \rangle := \langle \hat{a}_k \rangle \oplus \langle a_i a_i \rangle \oplus \langle a_i b_i \rangle \oplus \langle a_i b_i \rangle$
- $\square D_{\mathsf{A}}[\hat{a}_{k}] \oplus D_{\mathsf{B}}[\hat{a}_{k}] = \hat{a}_{k} \Delta_{\mathsf{A}} \Delta_{\mathsf{B}}$ $D_A[a_ib_i] \oplus D_B[a_ib_i] = a_i b_i \Delta_A \Delta_B$

 \oplus

 $lpha_0$

 α_i

D_A[â_k] ⊕ D_B[â_k] = â_k∆_A∆_B
D_A[a_ib_j] ⊕ D_B[a_ib_j] = a_ib_j∆_A∆_B

[DIO21] gives a modular way of proving equality under independent keys

 $\begin{bmatrix} \mathcal{F}_{bCOT}^2 \\ \hat{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{a}} \\ \hat{\mathbf{a}} \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{a}} \\ \hat{\mathbf{a}} \end{bmatrix} \times [\beta_0, \Delta_B]$

$$\fbox{Π_{Samp}} \Delta_{\mathsf{A}}, \Delta_{\mathsf{B}} \leftarrow \$ \text{ s.t. } \mathsf{lsb}(\Delta_{\mathsf{A}} \Delta_{\mathsf{B}}) = 1$$

Optimizing the One-way Communication Via Dual Execution

- Optimized \mathcal{F}_{cpre} + DILO-WRK = $\mathcal{S} \rightarrow \mathcal{S}: 2\kappa + 3\rho + 2$ bits, $\mathcal{S} \rightarrow \mathcal{S}: 2$ bits
- How about optimizing one-way communication? Maybe dual execution?

Optimizing the One-way Communication Via Dual Execution

Optimizing the One-way Communication Via Dual Execution

$$\begin{array}{c} \overbrace{\mathcal{F}_{cpre}} & \overbrace{\mathcal{F}_{cpre}}$$

Conclusion

- Further optimization on the compression technique of [DILO22]
- Dual-key authentication and efficient generation
- Dual execution upon distribution garbling eliminates 1-bit leakage
- Malicious 2PC with one-way comm. of $2\kappa + 5$ bits, two way comm. of $2\kappa + 3\rho + 4$ bits

2PC	Rounds		Communication per AND gate		
•	Prep.	Online	one-way (bits)	two-way (bits)	
Half-gates	1	2	2к	2κ	
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)	
KRRW-PCG	4	4	$5\kappa+7$ (2.53 $ imes$)	$8\kappa+14$ (4.05 $ imes$)	
DILO	7	2	$2\kappa+8 ho+1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)	
This work	8	3	$2\kappa+5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)	
This work+DILO	8	2	$2\kappa+3 ho+2$ (1.48 $ imes$)	$2\kappa+3 ho+4$ ($pprox {f 1.48 imes}$)	

Thanks for your listening

Merci beaucoup