
Half-Tree: Halving the Cost of Tree
Expansion in COT and DPF

Xiaojie Guo1,2 Kang Yang1 Xiao Wang3 Wenhao Zhang3

Xiang Xie4,5 Jiang Zhang1 Zheli Liu2

1 2 3 4 5

Motivation

• GGM tree is used to generate correlated randomness with communication
sublinear in randomness length [SGRR19, BCG+19, BGI16, BCG+21, ...]

• However, GGM tree has no algebraic structure for efficiency improvement

2 / 22

Useful Correlated Randomness from GGM Tree

Correlated Randomness Applications

Correlated OT (COT) /
Subfield Vector-OLE (sVOLE)

Generic MPC [GMW87, ...],
VOLE-based ZK [WYKW21, DIO21, BMRS21],

PSI [GPR+21, RS21], ...

Distributed Point
Function (DPF)

RAM-based MPC [Ds17],
Two-server PIR [GI14, BGI16],
Private heavy hitters [BBC+21],

OLE extension [BCG+20], ...

Distributed Comparison
Function (DCF)

Mixed-mode MPC [BGI19, BCG+21],
Secure machine learning inference [GKCG22]

3 / 22

This Work

• More efficient COT / sVOLE / DPF / DCF protocols
• Core idea

− Introducing extra correlation to GGM tree so that some nodes are
summed to a global offset

− If this global offset corresponds to the global key Δ of COT / sVOLE
⇒ More efficient COT / sVOLE with global-key queries

− If this global offset is only for internal nodes and not a part of output
⇒ More efficient sVOLE / DPF / DCF

• Our settings
− Semi-honest security in the UC framework [Can01]
− Random permutation model (RPM) ⇒ fixed-key AES

• Malicious security can be obtained by adding corresponding consistency
check [YWL+20, WYKW21, BCG+20, BCG+21]

4 / 22

Our Results

Protocols
Asymptotic improvements

Computation Communication # Rounds

COT 2× 2× −
sVOLE ver. 1 2× 1 ∼ 2× −
sVOLE ver. 2 1.33× 2× −

DPF 1.33× 3× 2×
DCF 1.6× 2 ∼ 3× 2×

• Computation is measured in # AES calls for tree expansion and does not
count Learning Parity with Noise (LPN) encoding for COT / sVOLE

• This computation for tree expansion can be significant [Ds17, CRR21]
5 / 22

Comparison with Concurrent Work [BCG+22]1

Assump. Corr. Computation
Communication (bits)b

Sender → Receiver Receiver → Sender

ROM sVOLE m RO calls
[BCG+22] Ad-hoca sVOLE m RP calls

+ 0.5m RO calls
2t(log m

t − 1)_ + 3t log |K| t log |F|

COT m RP calls t(log m
t − 1)_ + _ −

This
work

RPM sVOLE m RP calls t(log m
t − 1) log |K| + _ t(log m

t + 1) log |F|
sVOLE 1.5m RP calls t(log m

t − 2)_ + 3t log |K| + _ t log |F|
a Based on the conjecture that the punctured result of the RPM-based UPF is unpredictable. This UPF uses

GGM-style tree expansion G(x) := H0(x) ∥ H1(x) for H0(x) := H(x) ⊕ x and H1(x) := H(x) + x mod 2_.
b t: Hamming weight of regular LPN noise. m: Correlation length. (F,K): Base field and extension field of

general sVOLE. Assume the two parties have access to random preprocessed COT / sVOLE tuples.

1Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, Peter
Scholl: Correlated Pseudorandomness from Expand-Accumulate Codes. CRYPTO 2022.

6 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...]

• sVOLE parameters: field F and its extension field K
− COT is a special case for F = F2 and K = F2_

• Correlation: ®w = ®v + ®u · Δ (with length m > 0)
− Sender outputs (Δ, ®v) ∈ K × Km

− Receiver outputs (®u, ®w) ∈ Fm × Km

• Blueprint: single-point sVOLE︸ ︷︷ ︸
®u has Hamming weight 1

+ LPN encoding = sVOLE

7 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)

• Example: regular LPN noise ®e + dual-LPN assumption︸ ︷︷ ︸
Given public H, ®e · H is pseudorandom

[BCG+19]

Sender
with global key

A single-point sVOLE
Receiver

8 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)

• Example: regular LPN noise ®e + dual-LPN assumption︸ ︷︷ ︸
Given public H, ®e · H is pseudorandom

[BCG+19]

Sender
with global key

A single-point sVOLE
Receiver

regular LPN noise

Local linear LPN
encoding

Local linear LPN
encoding

Local linear LPN
encoding

8 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)

• Example: regular LPN noise ®e + dual-LPN assumption︸ ︷︷ ︸
Given public H, ®e · H is pseudorandom

[BCG+19]

Sender
with global key

A single-point sVOLE
Receiver

regular LPN noise

Local linear LPN
encoding

Local linear LPN
encoding

Local linear LPN
encoding

Output sVOLE 8 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)
• How to set up a single-point COT / sVOLE?

OT

OT

OT

Sender Receiver

9 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)
• How to set up a single-point COT / sVOLE?

OT

OT

OT

Sender Receiver

9 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)
• How to set up a single-point COT / sVOLE?

OT

OT

OT

Sender Receiver

9 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)
• How to set up a single-point COT / sVOLE?

OT

OT

OT

Sender Receiver

In single-point COT

9 / 22

Revisiting COT / sVOLE [SGRR19, BCG+19, ...] (cont.)
• How to set up a single-point COT / sVOLE?

OT

OT

OT

Sender Receiver

In single-point sVOLE

One preprocessed (random) sVOLE

9 / 22

Correlated GGM (cGGM) Tree

"root"Global offset

Hash function [GKWY20]

 is modeled as random permutation
 is an efficiently computable linear orthomorphism

 and are permutations,
Candidates in [GKWY20]: ① , , ② if ,

10 / 22

Single-point COT from cGGM Tree

-COT

Random , e.g., Sender Receiver

-COT

-COT

11 / 22

Single-point COT from cGGM Tree

-COT

Random , e.g., Sender Receiver

-COT

-COT

-COT
One preprocessed (random) COT

Instead of -bit OT messages
(also with preprocessed COT [IKNP03, Bea95])

11 / 22

Security of cGGM-based Single-point COT

• Straightforward for corrupted sender
• Corrupted receiver: environment learns Δ from the honest sender’s output

− E.g., for the first two levels
Real world

Random

Ideal world

Random

12 / 22

Security of cGGM-based Single-point COT

• Straightforward for corrupted sender
• Corrupted receiver: environment learns Δ from the honest sender’s output

− E.g., for the first two levels
Real world

Random

Ideal world

Random

① Relax single-point COT functionality to allow guesses on
② Sim can extract every possible from queries to , and guess each extracted
③ Sim programs on the correct in the ideal world

12 / 22

Extension: Single-point sVOLE from cGGM Tree

One preprocessed (random) sVOLE

Sender Receiver

13 / 22

Extension: Single-point sVOLE from cGGM Tree

Random , e.g., Sender Receiver

-sVOLE

-sVOLE

-sVOLE

13 / 22

Extension: Single-point sVOLE from cGGM Tree

Random , e.g., Sender Receiver

-sVOLE
One preprocessed sVOLE

 s.t.

-sVOLE

-sVOLE

-sVOLE

13 / 22

Single-point sVOLE from Pseudorandom cGGM
(pcGGM) Tree
• Using single-point sVOLE blueprint [SGRR19, BCG+19, ...]

− Pseudorandom off-path nodes & the punctured leaf are required

Same as cGGM tree
(for)

Pseudorandom cGGM tree (for)

14 / 22

Single-point sVOLE from Pseudorandom cGGM
(pcGGM) Tree
• Using single-point sVOLE blueprint [SGRR19, BCG+19, ...]

− Pseudorandom off-path nodes & the punctured leaf are required

Same as cGGM tree
(for)

Pseudorandom cGGM tree (for)

, , have (CCR) form

14 / 22

Single-point sVOLE from Pseudorandom cGGM
(pcGGM) Tree
• Using single-point sVOLE blueprint [SGRR19, BCG+19, ...]

− Pseudorandom off-path nodes & the punctured leaf are required

Same as cGGM tree
(for)

Pseudorandom cGGM tree (for)

, , have (CCR) form

Global offset, but
NOT global key of
single-point sVOLE
(i.e., hidden from
environment)

14 / 22

Revisiting DPF & Its Protocol [BGI16, Ds17]

• Point function f •
𝛼,𝛽

(x) :=
{

𝛽, x = 𝛼

0, x ≠ 𝛼
with domain {0, 1}n and range G

• Distributed Point Function: Function Secret Sharing (FSS) of f •
𝛼,𝛽

(x)

FSS keygen of

Party Party

+

Using GGM tree
with correction

FSS full-domain
evaluation

FSS full-domain
evaluation

• FSS keygen protocol is based on 2PC and the technique [Ds17]
15 / 22

Revisiting DPF & Its Protocol [BGI16, Ds17] (cont.)

-bit PRG seed control bit

Correction with correction word
 ()

E.g., , Party with

Output correction with correction word

Pseudorandom conditioned on LSB = 1
Zero

16 / 22

Revisiting DPF & Its Protocol [BGI16, Ds17] (cont.)

-bit PRG seed control bit

Correction with correction word
 ()

E.g., , Party with

Output correction with correction word
Require 2-round OT-based 2PC in distributed keygen
protcol [Ds17] (where each is XOR-shared)

 = upper bits of

Pseudorandom conditioned on LSB = 1
Zero

16 / 22

Using pcGGM-style Technique in DPF & Its Protocol

Simpler correction with ()

Global offset
with LSB = 1

cGGM / pcGGM-style
tree expansion
for the first levels

E.g., , Party with

Pseudorandom conditioned on LSB = 1
Zero

17 / 22

Using pcGGM-style Technique in DPF & Its Protocol

Simpler correction with ()

Can be shared in parallel
for all XOR-shared 's

Global offset
with LSB = 1

cGGM / pcGGM-style
tree expansion
for the first levels Locally shared by summing all previous-level hashes [Ds17]

 () can be computed in (amortized) one round, and has CCR form

E.g., , Party with

Pseudorandom conditioned on LSB = 1
Zero

17 / 22

Revisiting DCF & Its Protocol [BCG+21]

• Comparison function f <
𝛼,𝛽

(x) :=
{

𝛽, x < 𝛼

0, x ≥ 𝛼
with domain {0, 1}n and range G

• Distributed Comparison Function: Function Secret Sharing (FSS) of f <
𝛼,𝛽

(x)
• f <

𝛼,𝛽
(x) = f •

𝛼,−𝛼n·𝛽 (x) + 𝛼h+1 · 𝛽, where h ∈ [0, n] corresponds to the longest
common prefix 𝛼1...𝛼h = x1...xh, and 𝛼n+1 := 𝛼n

− This common prefix is implicitly computed in DPF for f •
𝛼,−𝛼n·𝛽 (x)− f •

𝛼,−𝛼n·𝛽 (x) and 𝛼h+1 · 𝛽 can be computed at the same time using
extended tree structure

18 / 22

Revisiting DCF & Its Protocol [BCG+21] (cont.)

Zero

E.g., , Party with

Per-level correction with ()

Pseudorandom conditioned on LSB = 1
Non-zero

 depends on

Also require 2-round OT-based 2PC in distributed keygen protocol 19 / 22

Optimized DCF & Its Protocol

• First optimization: using our optimized DPF & its protocol for DPF part
• Second optimization: simpler correction for DCF part

20 / 22

Optimized DCF & Its Protocol: Second Optimization

 () depends on
Also in CCR form

E.g., , Party with

Per-level correction with ()

Locally shared by summing all previous-level hashes [Ds17] 21 / 22

Thank You

Full version: eprint.iacr.org/2022/1431

22 / 22

eprint.iacr.org/2022/1431

