Efficient FHEW Bootstrapping with Small Evaluation Keys, and Applications to Threshold Homomorphic Encryption

Yongwoo Lee^{1,3} Daniele Micciancio² Andrey Kim¹ Rakyong Choi¹ Maxim Deryabin¹ Jieun Eom¹ Donghoon Yoo^{1,4}

¹Samsung Advanced Institute of Technology

²University of California, San Diego

³Inha University

⁴Desilo

Eurocrypt 2023 Apr. 24 2023

Outline

Preliminaries

- 2 New Blind Rotation
- 3 Analysis and Implementation
- 4 FHEW-like Threshold Homomorphic Encryption

Outline

Preliminaries

- 2 New Blind Rotation
- 3 Analysis and Implementation
- 4 FHEW-like Threshold Homomorphic Encryption

5 Conclusion

FHEW-like Fully Homomorphic Encryption

• FHEW-like [DM15] schemes are the best-known bit-level HE

- Small parameter size
- Fastest bootstrapping (≤ 100 ms)
- Two competing approaches:
 - AP/FHEW/DM:
 - all secret keys, large boot key [DM15, AP14]
 - GINX/TFHE/CGGI: limited secret key distribution, small boot key [GINX16, CGGI17]

FHEW-like Fully Homomorphic Encryption

- FHEW-like [DM15] schemes are the best-known bit-level HE
- Small parameter size
- Fastest bootstrapping (≤ 100 ms)
- Two competing approaches:
 - AP/FHEW/DM:
 - all secret keys, large boot key [DM15, AP14]
 - GINX/TFHE/CGGI: limited secret key distribution, small boot key [GINX16, CGGI17]

FHEW-like Fully Homomorphic Encryption

- FHEW-like [DM15] schemes are the best-known bit-level HE
- Small parameter size
- Fastest bootstrapping (≤ 100ms)
- Two competing approaches:
 - AP/FHEW/DM: all secret keys, large boot key [DM15, AP14]
 - GINX/TFHE/CGGI: limited secret key distribution, small boot key [GINX16, CGGI17]

The third bootstrapping offering the best of both approaches

- Additional benefit: smaller noise growth
- Efficient FHEW-like threshold HE
- Source code available at OpenFHE²

¹Modification for arbitrary distribution is proposed in [MP21, JP22], and another variant for ternary keys is in [KDE⁺21, BIP⁺22] ²https://github.com/openfheorg/openfhe-development/tree/278-new-lmkcdevs

• The third bootstrapping offering the best of both approaches

Method	Arbitrary secret	Boot key size
AP	\bigcirc	large
GINX	$\times (\triangle)^{1}$	small
Proposed	\bigcirc	small

- Additional benefit: smaller noise growth
- Efficient FHEW-like threshold HE
- Source code available at OpenFHE²

¹Modification for arbitrary distribution is proposed in [MP21, JP22], and another variant for ternary keys is in [KDE⁺21, BIP⁺22]

²https://github.com/openfheorg/openfhe-development/tree/278-new-lmkcdeys

• The third bootstrapping offering the best of both approaches

Method	Arbitrary secret	Boot key size
AP	\bigcirc	large
GINX	$\times (\triangle)^{1}$	small
Proposed	\bigcirc	small

- Additional benefit: smaller noise growth
- Efficient FHEW-like threshold HE
- Source code available at OpenFHE²

¹Modification for arbitrary distribution is proposed in [MP21, JP22], and another variant for ternary keys is in [KDE⁺21, BIP⁺22]

²https://github.com/openfheorg/openfhe-development/tree/278-new-Imkcdeys

• The third bootstrapping offering the best of both approaches

Method	Arbitrary secret	Boot key size
AP	\bigcirc	large
GINX	$\times (\triangle)^{1}$	small
Proposed	\bigcirc	small

- Additional benefit: smaller noise growth
- Efficient FHEW-like threshold HE
- Source code available at OpenFHE²

¹Modification for arbitrary distribution is proposed in [MP21, JP22], and another variant for ternary keys is in [KDE⁺21, BIP⁺22] ²https://github.com/openfheorg/openfhe-development/tree/278-new-lmkcdeys

FHEW Bootstrapping

FHEW Bootstrapping

FHEW Bootstrapping

Definition (Blind Rotation)

A blind rotation is an algorithm that takes as input a ring element $f \in \mathcal{R}_Q$, an LWE_{2N,s} ciphertext $(\vec{\alpha}, \beta) \in \mathbb{Z}_{2N}^{n+1}$, and blind rotation keys $\operatorname{brk}_{z,s}$ corresponding to secrets z and \vec{s} . It outputs an RLWE ciphertext of the form:

$$\mathsf{RLWE}_{Q,\boldsymbol{z}}\left(\boldsymbol{f}\cdot X^{\beta+\langle \vec{\alpha}, \vec{s} \rangle}\right) \in \mathcal{R}_Q^2.$$

- A crucial component of bootstrapping for FHEW-like HE
- It enables decryption of LWE ciphertext in the exponent of the output
- The constant term of the output is f_{-u} , where $u=eta+\langleec{lpha},ec{s}
 angle$

Bootstrapping for FHEW-like HE

- Machine Learning [LHH⁺21]
- Sign function [LMP22]
- Modular reduction for CKKS/BGV/BFV bootstrapping [KDE⁺21]

- Bootstrapping for FHEW-like HE
- Machine Learning [LHH⁺21]
- Sign function [LMP22]
- Modular reduction for CKKS/BGV/BFV bootstrapping [KDE⁺21]

- Bootstrapping for FHEW-like HE
- Machine Learning [LHH⁺21]
- Sign function [LMP22]
- Modular reduction for CKKS/BGV/BFV bootstrapping [KDE⁺21]

- Bootstrapping for FHEW-like HE
- Machine Learning [LHH⁺21]
- Sign function [LMP22]
- Modular reduction for CKKS/BGV/BFV bootstrapping [KDE⁺21]

\circledast : RLWE \times RGSW \rightarrow RLWE

 $\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1) \circledast \mathsf{RGSW}_{\boldsymbol{z}}(\boldsymbol{m}_2) = \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1 \cdot \boldsymbol{m}_2 + \boldsymbol{e}_1 \cdot \boldsymbol{m}_2) \in \mathcal{R}^2_Q$

- ullet When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial X^k == adding k in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $\alpha_i \Rightarrow$ many RGSW keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

\circledast : RLWE \times RGSW \rightarrow RLWE

 $\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1) \circledast \mathsf{RGSW}_{\boldsymbol{z}}(\boldsymbol{m}_2) = \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1 \cdot \boldsymbol{m}_2 + \boldsymbol{e}_1 \cdot \boldsymbol{m}_2) \in \mathcal{R}^2_Q$

- When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial $X^k =$ adding k in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $\alpha_i \Rightarrow$ many RGSW keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

\circledast : RLWE \times RGSW \rightarrow RLWE

 $\mathsf{RLWE}_{\bm{z}}(\bm{m}_1) \circledast \overline{\mathsf{RGSW}_{\bm{z}}(\bm{m}_2)} = \mathsf{RLWE}_{\bm{z}}(\bm{m}_1 \cdot \bm{m}_2 + \bm{e}_1 \cdot \bm{m}_2) \in \mathcal{R}^2_Q$

- When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial $X^k =$ adding k in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $\alpha_i \Rightarrow$ many RGSW keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

$\circledast: \textbf{RLWE} \times \textbf{RGSW} \rightarrow \textbf{RLWE}$

 $\mathsf{RLWE}_{\bm{z}}(\bm{m}_1) \circledast \overline{\mathsf{RGSW}_{\bm{z}}(\bm{m}_2)} = \mathsf{RLWE}_{\bm{z}}(\bm{m}_1 \cdot \bm{m}_2 + \bm{e}_1 \cdot \bm{m}_2) \in \mathcal{R}^2_Q$

- When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial $X^k =$ adding k in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $lpha_i \Rightarrow$ many RGSW keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

$\circledast: \textbf{RLWE} \times \textbf{RGSW} \rightarrow \textbf{RLWE}$

 $\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1) \circledast \mathsf{RGSW}_{\boldsymbol{z}}(\boldsymbol{m}_2) = \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1 \cdot \boldsymbol{m}_2 + \boldsymbol{e}_1 \cdot \boldsymbol{m}_2) \in \mathcal{R}^2_Q$

- When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial $X^k =$ adding k in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $\alpha_i \Rightarrow$ many RGSW keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

\circledast : RLWE \times RGSW \rightarrow RLWE

 $\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1) \circledast \mathsf{RGSW}_{\boldsymbol{z}}(\boldsymbol{m}_2) = \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1 \cdot \boldsymbol{m}_2 + \boldsymbol{e}_1 \cdot \boldsymbol{m}_2) \in \mathcal{R}^2_Q$

- When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial $X^k = adding k$ in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $\alpha_i \Rightarrow \text{many RGSW}$ keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

\circledast : RLWE \times RGSW \rightarrow RLWE

 $\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1) \circledast \mathsf{RGSW}_{\boldsymbol{z}}(\boldsymbol{m}_2) = \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}_1 \cdot \boldsymbol{m}_2 + \boldsymbol{e}_1 \cdot \boldsymbol{m}_2) \in \mathcal{R}^2_Q$

- When m_2 is small (e.g., monomial) noise is only additive
- Note: Multiplying monomial $X^k = adding k$ in exponent
- RGSW encryptions of partial secret key as blind rotation keys

- AP: decompose $\alpha_i \Rightarrow \text{many RGSW}$ keys required
- GINX: decompose $s_i \Rightarrow$ distribution of s_i limited

Outline

1 Preliminaries

2 New Blind Rotation

3 Analysis and Implementation

4 FHEW-like Threshold Homomorphic Encryption

5 Conclusion

Another Building Block: Ring Automorphisms

- We use ring automorphism as another building block³
- Constant multiplication in the exponent
- EvalAuto $_t(\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}), \mathtt{ak}_t)$:

 $\begin{aligned} \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}(X)) &= (\boldsymbol{a}(X), \boldsymbol{b}(X)) \xrightarrow{\psi_t} \mathsf{RLWE}_{\boldsymbol{z}(X^t)}(\boldsymbol{m}(X^t)) = (\boldsymbol{a}(X^t), \boldsymbol{b}(X^t)) \\ \mathsf{KS}_{\boldsymbol{z}(X^t) \to \boldsymbol{z}(X)}\left(\mathsf{RLWE}_{\boldsymbol{z}(X^t)}(\boldsymbol{m}(X^t))\right) &= \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}(X^t)) \end{aligned}$

³Bonnoron et al. first used automorphisms to reduce the key size of a variant of the FHEW cryptosystem [BDF18].

Another Building Block: Ring Automorphisms

- We use ring automorphism as another building block³
- Constant multiplication in the exponent
- EvalAuto_t ($\mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}), \mathsf{ak}_t$):

 $\begin{aligned} \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}(X)) &= (\boldsymbol{a}(X), \boldsymbol{b}(X)) \xrightarrow{\psi_t} \mathsf{RLWE}_{\boldsymbol{z}(X^t)}(\boldsymbol{m}(X^t)) = (\boldsymbol{a}(X^t), \boldsymbol{b}(X^t)) \\ \mathsf{KS}_{\boldsymbol{z}(X^t) \to \boldsymbol{z}(X)}\left(\mathsf{RLWE}_{\boldsymbol{z}(X^t)}(\boldsymbol{m}(X^t))\right) &= \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}(X^t)) \end{aligned}$

³Bonnoron et al. first used automorphisms to reduce the key size of a variant of the FHEW cryptosystem [BDF18].

Another Building Block: Ring Automorphisms

- We use ring automorphism as another building block³
- Constant multiplication in the exponent
- EvalAuto_t ($\mathsf{RLWE}_{z}(m), \mathtt{ak}_{t}$):

$$\begin{split} \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}(X)) &= (\boldsymbol{a}(X), \boldsymbol{b}(X)) \xrightarrow{\psi_t} \mathsf{RLWE}_{\boldsymbol{z}(X^t)}(\boldsymbol{m}(X^t)) = (\boldsymbol{a}(X^t), \boldsymbol{b}(X^t)) \\ \mathsf{KS}_{\boldsymbol{z}(X^t) \to \boldsymbol{z}(X)} \left(\mathsf{RLWE}_{\boldsymbol{z}(X^t)}(\boldsymbol{m}(X^t))\right) &= \mathsf{RLWE}_{\boldsymbol{z}}(\boldsymbol{m}(X^t)) \end{split}$$

³Bonnoron et al. first used automorphisms to reduce the key size of a variant of the FHEW cryptosystem [BDF18].

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- acc = RLWE(f')
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak₅)
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto $_5(\texttt{acc}, \texttt{ak}_5)$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

$$\triangleright \mathbf{f'} = \mathbf{f}(X^{-25})$$

- $\triangleright \text{ acc} = \mathsf{RLWE}(\boldsymbol{f'} \cdot X^{s_1})$
- $\mathsf{acc} = \mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{5s_1})$

> acc =
$$\mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0+5s_1})$$

 \triangleright acc = RLWE($f'(X^5) \cdot X^{s_0+5s_1+s_2}$)

> acc =
$$\mathsf{RLWE}(f'(X^{25}) \cdot X^{5s_0 + 25s_1 + 5s_2})$$

▷ acc = RLWE(
$$f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3}$$
)

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(\boldsymbol{f'})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak₅)
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $acc \leftarrow acc \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

 $\triangleright \boldsymbol{f'} = \boldsymbol{f}(X^{-25})$

- $\triangleright \ \mathtt{acc} = \mathsf{RLWE}(\boldsymbol{f'} \cdot X^{s_1})$
- > acc = $\mathsf{RLWE}(oldsymbol{f'}(X^5) \cdot X^{5s_1})$
- $> ext{ acc} = \mathsf{RLWE}(oldsymbol{f'}(X^5) \cdot X^{s_0+5s_1})$
- $\triangleright \mathsf{ acc} = \mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0 + 5s_1 + s_2})$
- > acc = $\mathsf{RLWE}(f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2})$
- ▷ acc = RLWE($f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3}$)

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(\boldsymbol{f'})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

- $\triangleright \boldsymbol{f'} = \boldsymbol{f}(X^{-25})$
- $\triangleright \ \mathtt{acc} = \mathsf{RLWE}(\boldsymbol{f'} \cdot X^{s_1})$

$$\triangleright \ \mathtt{acc} = \mathsf{RLWE}(m{f'}(X^5) \cdot X^{5s_1})$$

> acc =
$$\mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0+5s_1})$$

 $\triangleright \mathsf{ acc} = \mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0 + 5s_1 + s_2})$

> acc =
$$\mathsf{RLWE}(f'(X^{25}) \cdot X^{5s_0 + 25s_1 + 5s_2})$$

▷ acc = RLWE(
$$f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3}$$
)

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(\boldsymbol{f'})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

- $\triangleright \mathbf{f'} = \mathbf{f}(X^{-25})$
- $\triangleright \text{ acc} = \mathsf{RLWE}(\boldsymbol{f'} \cdot X^{s_1})$

$$>$$
 acc = $\mathsf{RLWE}(oldsymbol{f'}(X^5) \cdot X^{5s_1})$

$$> ext{ acc} = \mathsf{RLWE}(oldsymbol{f'}(X^5) \cdot X^{s_0+5s_1})$$

> acc = $\mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0+5s_1+s_2})$

$$\mathsf{A} \mathsf{acc} = \mathsf{RLWE}(\boldsymbol{f'}(X^{25}) \cdot X^{5s_0 + 25s_1 + 5s_2})$$

▷ acc = RLWE(
$$f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3}$$
)

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(f')$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

- $\triangleright \mathbf{f'} = \mathbf{f}(X^{-25})$
- \triangleright acc = RLWE($\boldsymbol{f'} \cdot X^{s_1}$)
- \triangleright acc = RLWE $(f'(X^5) \cdot X^{5s_1})$
- \triangleright acc = RLWE $(f'(X^5) \cdot X^{s_0+5s_1})$
- \triangleright acc = RLWE($f'(X^5) \cdot X^{s_0+5s_1+s_2}$)
 - > acc = $\mathsf{RLWE}(f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2})$
- ▷ acc = RLWE($f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3}$)

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(f')$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $acc \leftarrow acc \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

> acc =
$$\mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0+5s_1})$$

$$\triangleright \mathsf{acc} = \mathsf{RLWE}(\boldsymbol{f'}(X^5) \cdot X^{s_0 + 5s_1 + s_2})$$

▷ acc =
$$\mathsf{RLWE}(f'(X^{25}) \cdot X^{5s_0 + 25s_1 + 5s_2})$$

$$\triangleright$$
 acc = RLWE($f'(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3}$)

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(f')$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\boldsymbol{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(\boldsymbol{f'})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- acc = RLWE $(\mathbf{f} \cdot X^{\beta + \langle \vec{\alpha}, \vec{s} \rangle})$

$$\mathbf{f'} = \mathbf{f}(X^{-25})$$

$$acc = \mathsf{RLWE}(\mathbf{f'} \cdot X^{s_1})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^5) \cdot X^{5s_1})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^5) \cdot X^{s_0+5s_1})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^5) \cdot X^{s_0+5s_1+s_2})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^{25}) \cdot X^{5s_0+25s_1+5s_2})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3})$$

•
$$\vec{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) = (5, 25, 5, 1)$$

- $acc = \mathsf{RLWE}(\boldsymbol{f'})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_1})$
- EvalAuto₅(acc, ak_5)
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_0})$
- $\texttt{acc} \leftarrow \texttt{acc} \circledast \mathsf{RGSW}(X^{s_2})$
- EvalAuto₅(acc, ak_5)
- $\operatorname{acc} \leftarrow \operatorname{acc} \circledast \mathsf{RGSW}(X^{s_3})$
- $\operatorname{acc} = X^{\beta} \cdot \operatorname{acc}$
- $acc = \mathsf{RLWE}(\boldsymbol{f} \cdot X^{\beta + \langle \vec{lpha}, \vec{s} \rangle})$

$$\mathbf{f'} = \mathbf{f}(X^{-25})$$

$$acc = \mathsf{RLWE}(\mathbf{f'} \cdot X^{s_1})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^5) \cdot X^{5s_1})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^5) \cdot X^{s_0+5s_1})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^5) \cdot X^{s_0+5s_1+s_2})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^{25}) \cdot X^{5s_0+25s_1+5s_2})$$

$$acc = \mathsf{RLWE}(\mathbf{f'}(X^{25}) \cdot X^{5s_0+25s_1+5s_2+s_3})$$

In the toy example:

- $\mathsf{RGSW}(X^{s_i})$ to add s_i to the exponent
- EvalAuto to multiply $lpha_i$ in the exponent
- Only one automorphism key ak₅ is required,
 - as 5 and 25 are powers of 5
- Let's extend it to full blind rotation
 - $\{5,-1\}$ generates \mathbb{Z}_{2N}^{*} (say, g=5)
 - Only \mathtt{ak}_g and \mathtt{ak}_{-1} is required: O(1) automorphism keys⁴
 - Computations:
 - n multiplication of RGSW (X^{s_i})
 - (at most) N EvalAutos

In the toy example:

- $\mathsf{RGSW}(X^{s_i})$ to add s_i to the exponent
- EvalAuto to multiply α_i in the exponent
- Only one automorphism key ak₅ is required,
 - $\bullet~$ as $5~{\rm and}~25~{\rm are}~{\rm powers}~{\rm of}~5$
- Let's extend it to full blind rotation
 - $\{5,-1\}$ generates \mathbb{Z}_{2N}^{*} (say, g=5)
 - Only \mathtt{ak}_g and \mathtt{ak}_{-1} is required: O(1) automorphism keys⁴
 - Computations:
 - n multiplication of RGSW (X^{s_i})
 - (at most) N EvalAutos

In the toy example:

- $\mathsf{RGSW}(X^{s_i})$ to add s_i to the exponent
- EvalAuto to multiply α_i in the exponent
- Only one automorphism key ak₅ is required,
 - ${\ensuremath{\,\bullet\,}}$ as 5 and 25 are powers of 5

Let's extend it to full blind rotation

- $\{5,-1\}$ generates \mathbb{Z}_{2N}^* (say, g=5)
- Only ak_g and ak_{-1} is required: O(1) automorphism keys⁴
- Computations:
 - n multiplication of RGSW (X^{s_i})
 - (at most) N EvalAutos

In the toy example:

- $\mathsf{RGSW}(X^{s_i})$ to add s_i to the exponent
- EvalAuto to multiply $lpha_i$ in the exponent
- Only one automorphism key ak₅ is required,
 - as 5 and 25 are powers of 5

Let's extend it to full blind rotation

- $\{5,-1\}$ generates \mathbb{Z}_{2N}^* (say, g=5)
- Only \mathtt{ak}_g and \mathtt{ak}_{-1} is required: O(1) automorphism keys⁴
- Computations:
 - n multiplication of RGSW (X^{s_i})
 - (at most) N EvalAutos

In the toy example:

- $\mathsf{RGSW}(X^{s_i})$ to add s_i to the exponent
- EvalAuto to multiply α_i in the exponent
- Only one automorphism key ak₅ is required,
 - as 5 and 25 are powers of 5

Let's extend it to full blind rotation

- $\{5,-1\}$ generates \mathbb{Z}_{2N}^* (say, g=5)
- Only ak_g and ak_{-1} is required: O(1) automorphism keys⁴
- Computations:
 - n multiplication of RGSW (X^{s_i})
 - (at most) N EvalAutos

⁴In practice, using ak_{-g} instead of ak_{-1} improves the performance

Efficient FHEW Bootstrapping and Applications to Threshold HE

In the toy example:

- $\mathsf{RGSW}(X^{s_i})$ to add s_i to the exponent
- EvalAuto to multiply α_i in the exponent
- Only one automorphism key ak₅ is required,
 - as 5 and 25 are powers of 5

Let's extend it to full blind rotation

- $\{5,-1\}$ generates \mathbb{Z}_{2N}^* (say, g=5)
- Only ak_g and ak_{-1} is required: O(1) automorphism keys⁴
- Computations:
 - n multiplication of RGSW (X^{s_i})
 - (at most) N EvalAutos

⁴In practice, using ak_{-g} instead of ak_{-1} improves the performance

Efficient FHEW Bootstrapping and Applications to Threshold HE

- Let $I_{\ell}^+ = \left\{ i : \alpha_i = g^{\ell} \right\}$ and $I_{\ell}^- = \left\{ i : \alpha_i = -g^{\ell} \right\}$, for $\ell \in [0, N/2 1]$
- ullet Using the fact that $g^{N/2}=1 \pmod{2N}$ we have the following decomposition

$$\sum_{i} \alpha_i s_i = \left(\sum_{j \in I_0^+} s_j + \dots + g\left(\sum_{j \in I_{N/2-1}^+} s_j - g\left(\sum_{j \in I_0^-} s_j + \dots + g\left(\sum_{j \in I_{N/2-1}^-} s_j \right) \right) \right) \right)$$

• Let $I_{\ell}^+ = \left\{i : \alpha_i = g^{\ell}\right\}$ and $I_{\ell}^- = \left\{i : \alpha_i = -g^{\ell}\right\}$, for $\ell \in [0, N/2 - 1]$

ullet Using the fact that $g^{N/2}=1 \pmod{2N}$ we have the following decomposition

$$\sum_{i} \alpha_{i} s_{i} = \left(\sum_{j \in I_{0}^{+}} s_{j} + \dots + g\left(\sum_{j \in I_{N/2-1}^{+}} s_{j} - g\left(\sum_{j \in I_{0}^{-}} s_{j} + \dots + g\left(\sum_{j \in I_{N/2-1}^{-}} s_{j} \right) \right) \right) \right)$$

- Let $I_{\ell}^+ = \left\{i: \alpha_i = g^{\ell}\right\}$ and $I_{\ell}^- = \left\{i: \alpha_i = -g^{\ell}\right\}$, for $\ell \in [0, N/2 1]$
- Using the fact that $g^{N/2} = 1 \pmod{2N}$ we have the following decomposition

$$\sum_{i} \alpha_{i} s_{i} = \left(\sum_{j \in I_{0}^{+}} s_{j} + \dots + g\left(\sum_{j \in I_{N/2-1}^{+}} s_{j} - g\left(\sum_{j \in I_{0}^{-}} s_{j} + \dots + g\left(\sum_{j \in I_{N/2-1}^{-}} s_{j} \right) \right) \right) \right)$$

- Given an initial ciphertext $acc = \mathsf{RLWE}^0_{\boldsymbol{z}}(\boldsymbol{f}'(X)),$
- ullet we first multiply it by brk $_j$ for all $j\in I^-_{N/2-1}$, brk $_j:=\mathsf{RGSW}_{m z}\left(X^{s_j}
 ight)$

$$ext{acc} = \mathsf{RLWE}_{oldsymbol{z}}\left(oldsymbol{f}'\cdot X^{\sum_{j\in I^-_{N/2-1}}s_j}
ight)$$

• then apply automorphism EvalAuto_g to acc and obtain

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}'(X^g) \cdot X^{g \cdot \sum_{j \in I_{N/2-1}^{-}} s_j} \right)$$

- Then we multiply the accumulator by brk_j for $j \in I^-_{N/2-2}$ and again apply automorphism EvalAuto_g to acc
- ullet This process is repeated for both I^-_ℓ and I^+_ℓ for all $\ell=N/2-1,...,0$

- Given an initial ciphertext $acc = \mathsf{RLWE}^0_{\boldsymbol{z}}(\boldsymbol{f}'(X))$,
- we first multiply it by \mathtt{brk}_j for all $j \in I^-_{N/2-1}$, $\mathtt{brk}_j := \mathsf{RGSW}_{\boldsymbol{z}}\left(X^{s_j}\right)$

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}' \cdot \boldsymbol{X}^{\sum_{j \in I_{N/2-1}^{-}} s_j}
ight)$$

• then apply automorphism EvalAuto_g to acc and obtain

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}'(X^g) \cdot X^{g \cdot \sum_{j \in I_{N/2-1}^-} s_j} \right)$$

- Then we multiply the accumulator by brk_j for $j \in I^-_{N/2-2}$ and again apply automorphism EvalAuto_g to acc
- ullet This process is repeated for both I^-_ℓ and I^+_ℓ for all $\ell=N/2-1,...,0$

- Given an initial ciphertext $acc = \mathsf{RLWE}^0_{\boldsymbol{z}}(\boldsymbol{f}'(X))$,
- we first multiply it by \mathtt{brk}_j for all $j \in I^-_{N/2-1}$, $\mathtt{brk}_j := \mathsf{RGSW}_{\boldsymbol{z}}\left(X^{s_j}\right)$

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}' \cdot \boldsymbol{X}^{\sum_{j \in I_{N/2-1}^{-}} s_j}
ight)$$

then apply automorphism EvalAuto_g to acc and obtain

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}'(X^g) \cdot X^{g \cdot \sum_{j \in I_{N/2-1}^{-}} s_j} \right)$$

- Then we multiply the accumulator by brk_j for $j \in I^-_{N/2-2}$ and again apply automorphism EvalAuto_g to acc
- ullet This process is repeated for both I^-_ℓ and I^+_ℓ for all $\ell=N/2-1,...,0$

- Given an initial ciphertext $acc = \mathsf{RLWE}^0_{\boldsymbol{z}}(\boldsymbol{f}'(X))$,
- we first multiply it by \mathtt{brk}_j for all $j \in I^-_{N/2-1}$, $\mathtt{brk}_j := \mathsf{RGSW}_{\boldsymbol{z}}\left(X^{s_j}\right)$

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}' \cdot \boldsymbol{X}^{\sum_{j \in I_{N/2-1}^{-}} s_j} \right)$$

then apply automorphism EvalAuto_g to acc and obtain

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}'(X^g) \cdot X^{g \cdot \sum_{j \in I_{N/2-1}} s_j} \right)$$

- Then we multiply the accumulator by brk_j for $j \in I^-_{N/2-2}$ and again apply automorphism EvalAuto_g to acc
- This process is repeated for both I_ℓ^- and I_ℓ^+ for all $\ell=N/2-1,...,0$

- Given an initial ciphertext $acc = \mathsf{RLWE}^0_{\boldsymbol{z}}(\boldsymbol{f}'(X))$,
- we first multiply it by \mathtt{brk}_j for all $j \in I^-_{N/2-1}$, $\mathtt{brk}_j := \mathsf{RGSW}_{\boldsymbol{z}}\left(X^{s_j}\right)$

$$\mathtt{acc} = \mathsf{RLWE}_{m{z}}\left(m{f}' \cdot X^{\sum_{j \in I_{N/2-1}^{-}} s_j}
ight)$$

then apply automorphism EvalAuto_g to acc and obtain

$$\mathtt{acc} = \mathsf{RLWE}_{\boldsymbol{z}} \left(\boldsymbol{f}'(X^g) \cdot X^{g \cdot \sum_{j \in I_{N/2-1}^{-}} s_j} \right)$$

- Then we multiply the accumulator by brk_j for $j \in I^-_{N/2-2}$ and again apply automorphism EvalAuto_g to acc
- This process is repeated for both I_ℓ^- and I_ℓ^+ for all $\ell=N/2-1,...,0$


```
1: procedure BlindRotateCore (acc, \vec{\alpha}, {brk}_i \}_{i \in [0, n-1]}, {ak_{g^u}}_{u \in [1, w]}, ak_{-g})
 2:
           v \leftarrow 0
           for (\ell = N/2 - 1; \ell > 0; \ell = \ell - 1) do
 3:
 4:
                for j \in I_{\ell}^{-} do
 5:
                      acc \leftarrow acc \circledast brk_i
 6:
               v \leftarrow v + 1
 7:
                if (I_{\ell-1}^- \neq \emptyset or v = w or l = 1) then
 8:
                      acc \leftarrow EvalAuto_{a^v}(acc, ak_{a^v})
9:
                     v \leftarrow 0
10:
           for j \in I_0^- do
11:
                acc \leftarrow acc \circledast brk_i
12:
           acc \leftarrow EvalAuto_{-q}(acc, ak_{-q})
13:
           for (\ell = N/2 - 1; \ell > 0; \ell = \ell - 1) do
                Repeat Line 4 - 9
14:
           for j \in I_0^+ do
15:
16:
                acc \leftarrow acc \circledast brk_i
17: return acc
```

• Limitation: automorphism exists only for odd numbers in \mathbb{Z}_{2N}

- Each α_i should be odd
- Several variants are proposed

- Limitation: automorphism exists only for odd numbers in \mathbb{Z}_{2N}
- Each α_i should be odd
- Several variants are proposed

Figure: NAND gate bootstrapping procedure of FHEW scheme [DM15, MP21]

Odd α_i : Round-to-odds

• Previously: for $(\vec{\alpha}', \beta') = \text{LWE}_{Q_{ks}}(Q_{ks}/4 \cdot m)$,

$$\left(\vec{\alpha} = \left\lfloor \frac{q}{Q_{\texttt{ks}}} \cdot \vec{\alpha}' \right\rceil, \beta = \left\lfloor \frac{q}{Q_{\texttt{ks}}} \cdot \beta' \right\rceil \right) = \texttt{LWE}_q(q/4 \cdot m)$$

New modulus reduction:

$$\left(\vec{\alpha} = \left\lfloor \frac{2N}{Q_{\rm ks}} \cdot \vec{\alpha}' \right\rceil_{\rm odd}, \beta = \left\lfloor \frac{2N}{Q_{\rm ks}} \cdot \beta' \right\rceil_{\rm odd}\right) = {\rm LWE}_{2N}(q/4 \cdot m)$$

• [.]_{odd} finds the nearest odd integer

Odd α_i : Round-to-odds

• Previously: for $(\vec{\alpha}', \beta') = \text{LWE}_{Q_{ks}}(Q_{ks}/4 \cdot m)$,

$$\left(\vec{\alpha} = \left\lfloor \frac{q}{Q_{\texttt{ks}}} \cdot \vec{\alpha}' \right\rceil, \beta = \left\lfloor \frac{q}{Q_{\texttt{ks}}} \cdot \beta' \right\rceil \right) = \texttt{LWE}_q(q/4 \cdot m)$$

New modulus reduction:

$$\left(\vec{\alpha} = \left\lfloor \frac{2N}{Q_{\rm ks}} \cdot \vec{\alpha}' \right\rceil_{\rm odd}, \beta = \left\lfloor \frac{2N}{Q_{\rm ks}} \cdot \beta' \right\rceil_{\rm odd} \right) = {\rm LWE}_{2N}(q/4 \cdot m)$$

• [...]_{odd} finds the nearest odd integer

Odd α_i : Round-to-odds

• Previously: for $(\vec{\alpha}', \beta') = \text{LWE}_{Q_{\text{ks}}}(Q_{\text{ks}}/4 \cdot m)$,

$$\left(\vec{\alpha} = \left\lfloor \frac{q}{Q_{\texttt{ks}}} \cdot \vec{\alpha}' \right\rceil, \beta = \left\lfloor \frac{q}{Q_{\texttt{ks}}} \cdot \beta' \right\rceil \right) = \texttt{LWE}_q(q/4 \cdot m)$$

• New modulus reduction:

$$\left(\vec{\alpha} = \left\lfloor \frac{2N}{Q_{\rm ks}} \cdot \vec{\alpha}' \right\rceil_{\rm odd}, \beta = \left\lfloor \frac{2N}{Q_{\rm ks}} \cdot \beta' \right\rceil_{\rm odd} \right) = {\rm LWE}_{2N}(q/4 \cdot m)$$

• $\lfloor \cdot \rceil_{odd}$ finds the nearest odd integer

Multiple Automorphism Keys

When $I_{\ell}^+ = \emptyset$,

- ...
- Multiply $\mathsf{RGSW}(X^{s_j})$ for $j \in I^+_{\ell+1}$
- EvalAuto $_g$
- (Nothing to do): multiply $\operatorname{RGSW}(X^{s_j})$ for $j \in I_{\ell}^+$
- Eval $Auto_g$
- Multiply $\mathsf{RGSW}(X^{s_j})$ for $j \in I^+_{\ell-1}$
- ...

If we have ak_{q^2}

- • • •
- Multiply $\mathsf{RGSW}(X^{s_j})$ for $j \in I^+_{\ell+1}$
- EvalAuto_{g2}
- Multiply $\mathsf{RGSW}(X^{s_j})$ for $j \in I^+_{\ell-1}$

• • • •

Multiple Automorphism Keys

When $I_{\ell}^+ = \emptyset$,

- ...
- Multiply $\operatorname{RGSW}(X^{s_j})$ for $j \in I^+_{\ell+1}$
- EvalAuto $_g$
- (Nothing to do): multiply $\operatorname{RGSW}(X^{s_j})$ for $j \in I_{\ell}^+$
- EvalAuto $_g$
- Multiply $\operatorname{RGSW}(X^{s_j})$ for $j \in I^+_{\ell-1}$
- ...

If we have ak_{g^2}

- ...
- Multiply $\operatorname{RGSW}(X^{s_j})$ for $j \in I^+_{\ell+1}$
- EvalAuto_{g²}
- Multiply $\operatorname{RGSW}(X^{s_j})$ for $j \in I^+_{\ell-1}$

• ...

Multiple Automorphism Keys

Figure: Bootstrapping performance by number of ak. ⁵

⁵#ak = $\log N$ is enough. Analysis is available on paper.

Efficient FHEW Bootstrapping and Applications to Threshold HE

Outline

1 Preliminaries

2 New Blind Rotation

3 Analysis and Implementation

4 FHEW-like Threshold Homomorphic Encryption

5 Conclusion

Table: Key size, complexity, and error variance of each technique (normalized). |U| = 1 for binary, and 2 for ternary.

Method	# keys	# mult	$\sigma^2_{ t acc}/\sigma^2_{\odot}$		
AP [AP14, DM15]	$2d_r(B_r-1)n$	$2d_r\left(1-\frac{1}{B_r}\right)n$	$2d_r\left(1-\frac{1}{B_r}\right)n$		
GINX [GINX16, CGGI20, MP21]	2 U n	2 U n	4 U n		
GINX* [KDE \pm 21, BIP \pm 22]	4n	2n	8n		
Proposed	2n + w + 1	$2n + \frac{w-1}{w}\kappa + \frac{N}{w}$	$2n + \frac{w-1}{w}\kappa + \frac{N}{w}$		

Table: Optimized parameter sets for FHEW schemes.⁶

Parameter set	key	n	q	N	Q	d_g	d_{ks}	λ_{\min}^{\dagger}
128_Ours/AP	$\sigma = 3.2$	458	1024	1024	2^{28}	3	2	128.2
128_tGINX	ternary	531	2048	1024	2^{26}	4	2	128.5
128_bGINX	binary	571	2048	1024	2^{25}	4	2	128.1
STD128_OPT [MP21]	ternary	502	1024	1024	2^{27}	4	2	121.0
TFHE [TFH]	binary	630	$\sigma = 2^{-15}$	1024	$\sigma = 2^{-25}$	3	2	115.11

Gaussian secret improves the efficiency!

⁶Security is measured by lattice estimator.

Efficient FHEW Bootstrapping and Applications to Threshold HE
Table: Optimized parameter sets for FHEW schemes.⁶

Parameter set	key	n	q	N	Q	d_g	d_{ks}	λ_{\min}^{\dagger}
128_Ours/AP	$\sigma = 3.2$	458	1024	1024	2^{28}	3	2	128.2
128_tGINX	ternary	531	2048	1024	2^{26}	4	2	128.5
128_bGINX	binary	571	2048	1024	2^{25}	4	2	128.1
STD128_OPT [MP21]	ternary	502	1024	1024	2^{27}	4	2	121.0
TFHE [TFH]	binary	630	$\sigma = 2^{-15}$	1024	$\sigma = 2^{-25}$	3	2	115.11

Gaussian secret improves the efficiency!

⁶Security is measured by lattice estimator.

Efficient FHEW Bootstrapping and Applications to Threshold HE

Table: Implementation result (average of 400, #ak = 10 for our method), blind rotation key size, and failure probability for FHEW bootstrapping (NAND gate).

Parameter set	Method	Runtime [ms]	Key size [MB]	Fail. prob. ($\leq 2^{-32}$)
128_Ours/AP	Proposed	80.1	12.67	$2^{-85.68}$
128_Ours/AP	AP	127.8	776.45	$2^{-77.74}$
128_tGINX	GINX*	89.7	40.45	$2^{-93.84}$
128_bGINX	GINX	84.1	20.91	$2^{-79.82}$

Faster bootstrapping, smaller bootstrapping key size

Table: Implementation result (average of 400, #ak = 10 for our method), blind rotation key size, and failure probability for FHEW bootstrapping (NAND gate).

Parameter set	Method	Runtime [ms]	Key size [MB]	Fail. prob. ($\leq 2^{-32}$)
128_Ours/AP	Proposed	80.1	12.67	$2^{-85.68}$
128_Ours/AP	AP	127.8	776.45	$2^{-77.74}$
128_tGINX	GINX*	89.7	40.45	$2^{-93.84}$
128_bGINX	GINX	84.1	20.91	$2^{-79.82}$

Faster bootstrapping, smaller bootstrapping key size

Outline

1 Preliminaries

- 2 New Blind Rotation
- 3 Analysis and Implementation

4 FHEW-like Threshold Homomorphic Encryption

5 Conclusion

• A more compelling motivation to use larger secret keys

- Distribute a secret key s among a set of participants, say P_1,\ldots,P_k
- each holding a share s_i , and they can collaboratively decrypt messages.

- A more compelling motivation to use larger secret keys
- Distribute a secret key s among a set of participants, say P_1, \ldots, P_k
- each holding a share s_i , and they can collaboratively decrypt messages.

Each participant $j \in J$ has (J: set of participants)

 ${\rm 1}\!\!{\rm 1}$ the secret keys \vec{s}_j for LWE encryption

2 and z_j for RLWE encryption,

The common secret keys:

•
$$\vec{s}_* = \sum_{j \in J} \vec{s}_j$$

•
$$oldsymbol{z}_* = \sum_{j \in J} oldsymbol{z}_j$$

The public key:

•
$$ext{pk}^{\mathsf{RLWE}}_{m{z}_*} = (m{a}_{ ext{crs}}, \sum_{j \in J} m{b}_j)$$
, where $m{b}_j = -m{a}_{ ext{crs}} \cdot m{z}_j + m{e}_j$

Each participant $j \in J$ has (J: set of participants)

 ${\rm 1}\!\!{\rm 1}$ the secret keys \vec{s}_j for LWE encryption

2) and z_j for RLWE encryption,

The common secret keys:

•
$$\vec{s}_* = \sum_{j \in J} \vec{s}_j$$

• $\vec{z} = \sum_{j \in J} \vec{z}_j$

The public key:

• $ext{pk}^{\mathsf{RLWE}}_{m{z}_*} = (m{a}_{ ext{crs}}, \sum_{j \in J} m{b}_j)$, where $m{b}_j = -m{a}_{ ext{crs}} \cdot m{z}_j + m{e}_j$

Each participant $j \in J$ has (J: set of participants)

 ${\rm 1}\!\!{\rm 1}$ the secret keys \vec{s}_j for LWE encryption

2 and z_j for RLWE encryption,

The common secret keys:

•
$$\vec{s}_* = \sum_{j \in J} \vec{s}_j$$

• $\boldsymbol{z}_* = \sum_{j \in J} \boldsymbol{z}_j$.

The public key:

• pk
$$_{m{z}_*}^{\mathsf{RLWE}} = (m{a}_{\mathtt{crs}}, \sum_{j \in J} m{b}_j)$$
, where $m{b}_j = -m{a}_{\mathtt{crs}} \cdot m{z}_j + m{e}_j$

Generation of $\mathsf{RLWE}'_{\boldsymbol{z}_*}(\boldsymbol{z}_*(X^i))$:

• Using the shared public key $pk_{z_*}^{RLWE}$, j generates

 $\mathtt{ak}_{j,k}^{Thr} = \mathsf{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_j(X^k)\right)$

- Next, each participant sends $ak_{i,k}^{Thr}$ to the computing party.
- The computing party generates automorphism keys $\mathtt{a} \mathtt{k}_k^{Thr}$ as follows

$$\mathrm{ak}_k^{Thr} := \sum_{j \in J} \mathrm{ak}_{j,k}^{Thr} = \sum_{j \in J} \mathrm{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_j(X^k)\right) = \mathrm{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_*(X^k)\right).$$

Generation of $\mathsf{RLWE}'_{\boldsymbol{z}_*}(\boldsymbol{z}_*(X^i))$:

• Using the shared public key $pk_{z_*}^{RLWE}$, j generates

 $\mathsf{ak}_{j,k}^{Thr} = \mathsf{RLWE}'_{oldsymbol{z}_{*}}\left(oldsymbol{z}_{j}(X^k)
ight)$

- Next, each participant sends $ak_{j,k}^{Thr}$ to the computing party.
- ullet The computing party generates automorphism keys as ${f k}_k^{Thr}$ as follows

 $\mathrm{ak}_k^{Thr} := \sum_{j \in J} \mathrm{ak}_{j,k}^{Thr} = \sum_{j \in J} \mathsf{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_j(X^k)\right) = \mathsf{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_*(X^k)\right).$

Generation of $\mathsf{RLWE}'_{\boldsymbol{z}_*}(\boldsymbol{z}_*(X^i))$:

Using the shared public key pk^{RLWE}, j generates

 $\mathtt{ak}_{j,k}^{Thr} = \mathsf{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_j(X^k)\right)$

- Next, each participant sends $ak_{i,k}^{Thr}$ to the computing party.
- The computing party generates automorphism keys $\mathtt{a} \mathtt{k}_k^{Thr}$ as follows

$$\mathtt{ak}_k^{Thr} := \sum_{j \in J} \mathtt{ak}_{j,k}^{Thr} = \sum_{j \in J} \mathsf{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_j(X^k)\right) = \mathsf{RLWE}'_{\boldsymbol{z}_*}\left(\boldsymbol{z}_*(X^k)\right).$$

The difference:

- The sum of components $s_{j,i}$ is done in the exponent.
- The merging is done by RGSW \circledast RGSW multiplications eneration of RGSW_{z*}($X_{*,i}^s$):
- Each participant generates the partial encryption

$$\mathtt{brk}_{j,i}^{Thr} = \mathtt{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}})$$

- Then, each party sends $brk_{j,i}^{Thr}$ to the computing party.
- The computing party calculates $\mathtt{brk}_i^{Thr} = \mathtt{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}})$:

$$\mathtt{brk}_i^{Thr} := \prod_{j \in J} \mathtt{brk}_{j,i}^{Thr} = \prod_{j \in J} \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}}) = \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}}).$$

The difference:

- The sum of components $s_{j,i}$ is done in the exponent.
- The merging is done by RGSW \circledast RGSW multiplications

Generation of $RGSW_{z_*}(X_{*,i}^s)$:

• Each participant generates the partial encryption

$$\mathtt{brk}_{j,i}^{Thr} = \mathtt{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}})$$

- Then, each party sends $brk_{j,i}^{Thr}$ to the computing party.
- The computing party calculates $\mathtt{brk}_i^{Thr} = \mathtt{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}})$:

$$\mathtt{brk}_i^{Thr} := \prod_{j \in J} \mathtt{brk}_{j,i}^{Thr} = \prod_{j \in J} \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}}) = \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}}).$$

The difference:

- The sum of components $s_{j,i}$ is done in the exponent.
- The merging is done by RGSW \circledast RGSW multiplications

Generation of $RGSW_{z_*}(X_{*,i}^s)$:

• Each participant generates the partial encryption

$$\mathtt{brk}_{j,i}^{Thr} = \mathtt{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}})$$

- Then, each party sends $brk_{j,i}^{Thr}$ to the computing party.
- The computing party calculates $brk_i^{Thr} = RGSW_{\boldsymbol{z}_*}(X^{s_{*,i}})$:

$$\mathtt{brk}_i^{Thr} := \prod_{j \in J} \mathtt{brk}_{j,i}^{Thr} = \prod_{j \in J} \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}}) = \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}}).$$

The difference:

- The sum of components $s_{j,i}$ is done in the exponent.
- The merging is done by RGSW \circledast RGSW multiplications
- Generation of $RGSW_{z_*}(X_{*,i}^s)$:
 - Each participant generates the partial encryption

$$\texttt{brk}_{j,i}^{Thr} = \texttt{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}})$$

- Then, each party sends $brk_{i,i}^{Thr}$ to the computing party.
- The computing party calculates $\mathtt{brk}_i^{Thr} = \mathtt{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}})$:

$$\mathtt{brk}_i^{Thr} := \prod_{j \in J} \mathtt{brk}_{j,i}^{Thr} = \prod_{j \in J} \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{j,i}}) = \mathsf{RGSW}_{\boldsymbol{z}_*}(X^{s_{*,i}}).$$

The computing party locates the evaluation keys:

1
$$\operatorname{brk}_{i}^{Thr} = \operatorname{RGSW}_{\boldsymbol{z}_{*}}(X^{s_{*,i}}), \quad i \in [0, n-1]$$

2 $\operatorname{ak}_{u}^{Thr} = \operatorname{RLWE}'_{\boldsymbol{z}_{*}}(\boldsymbol{z}_{*}(X^{g^{u}})), \quad u \in [1, w]$
3 $\operatorname{ak}_{-1}^{Thr} = \operatorname{RLWE}'_{\boldsymbol{z}_{*}}(\boldsymbol{z}_{*}(X^{-1}))$

Conclusion: FHEW-like Threshold HE Design

The computing party locates the evaluation keys:

1
$$\operatorname{brk}_{i}^{Thr} = \operatorname{RGSW}_{\boldsymbol{z}_{*}}(X^{s_{*,i}}), \quad i \in [0, n-1]$$

2 $\operatorname{ak}_{u}^{Thr} = \operatorname{RLWE}'_{\boldsymbol{z}_{*}}(\boldsymbol{z}_{*}(X^{g^{u}})), \quad u \in [1, w]$
3 $\operatorname{ak}_{-1}^{Thr} = \operatorname{RLWE}'_{\boldsymbol{z}_{*}}(\boldsymbol{z}_{*}(X^{-1}))$

Conclusion: FHEW-like Threshold HE Design

Outline

1 Preliminaries

- 2 New Blind Rotation
- 3 Analysis and Implementation

4 FHEW-like Threshold Homomorphic Encryption

5 Conclusion

- Offers the best of both previous AP and GINX (further improves on them)
- Several variants which provide tradeoffs between key size and complexity
- Simple threshold HE scheme based on FHEW
 - Takes advantage of the new blind rotation: secret keys wider than ternary

- Apply it to schemes of other structures such as NTRU and Torus variants
- Batched (or amortized) bootstrapping

- Offers the best of both previous AP and GINX (further improves on them)
- Several variants which provide tradeoffs between key size and complexity
- Simple threshold HE scheme based on FHEW
 - $\hfill \bullet$ Takes advantage of the new blind rotation: secret keys wider than ternary

- Apply it to schemes of other structures such as NTRU and Torus variants
- Batched (or amortized) bootstrapping

- Offers the best of both previous AP and GINX (further improves on them)
- Several variants which provide tradeoffs between key size and complexity
- Simple threshold HE scheme based on FHEW
 - Takes advantage of the new blind rotation: secret keys wider than ternary

- Apply it to schemes of other structures such as NTRU and Torus variants
- Batched (or amortized) bootstrapping

- Offers the best of both previous AP and GINX (further improves on them)
- Several variants which provide tradeoffs between key size and complexity
- Simple threshold HE scheme based on FHEW
 - Takes advantage of the new blind rotation: secret keys wider than ternary

- Apply it to schemes of other structures such as NTRU and Torus variants
- Batched (or amortized) bootstrapping

Reference I

- [AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In *CRYPTO 2014*, pages 297–314. Springer, 2014.
- [BDF18] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from tensored homomorphic accumulator. In *Progress in Cryptology –* AFRICACRYPT 2018, pages 217–251. Springer, 2018.
- [BIP⁺22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P. Smart. FINAL: Faster FHE instantiated with NTRU and LWE. In Advances in Cryptology - ASIACRYPT 2022, pages 188–215, 2022.
- [CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In Advances in Cryptology – ASIACRYPT 2017, pages 377–408. Springer, 2017.
- [CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic encryption over the torus. *Journal of Cryptology*, 33(1):34–91, 2020.

Reference II

- [DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. In EUROCRYPT 2015, pages 617–640. Springer, 2015.
- [GINX16] Nicolas Gama, Malika Izabachene, Phong Q Nguyen, and Xiang Xie. Structural lattice reduction: Generalized worst-case to average-case reductions and homomorphic cryptosystems. In EUROCRYPT 2016, pages 528–558. Springer, 2016.
 - [JP22] Marc Joye and Pascal Paillier. Blind rotation in fully homomorphic encryption with extended keys. In *International Symposium on Cyber Security, Cryptology, and Machine Learning*, pages 1–18. Springer, 2022.
- [KDE⁺21] Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, and Donghoon Yoo. General bootstrapping approach for RLWE-based homomorphic encryption. *Cryptol. ePrint Arch.*, 2021/691, 2021.

- [LHH⁺21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGASUS: Bridging polynomial and non-polynomial evaluations in homomorphic encryption. In 2021 IEEE symposium on Security and Privacy (S&P), pages 1057–1073. IEEE, 2021.
 - [LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic sign evaluation using FHEW/TFHE bootstrapping. In Advances in Cryptology - ASIACRYPT 2022, pages 130–160, 2022.
 - [MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryptosystems. In *WAHC'21*, pages 17–28. ACM, 2021.
 - [TFH] TFHE. Fast fully homomorphic encryption library over the torus. https://tfhe.github.io/tfhe/.

Thank You!