Quel est le prix du chiffrement fonctionnel ? 🕫

On the Optimal Succinctness and Efficiency of Functional Encryption and Attribute-Based Encryption

Aayush Jain 🖾

Carnegie Mellon University

Rachel Lin[⊠]

罗辑 (Ji Luo)^{⊠⊕}

UNIVERSITY of WASHINGTON

Eurocrypt 2023

Setup \rightarrow mpk, msk

Enc(mpk, x, y) \rightarrow ct_x(y) **public/private inputs**

Enc(mpk, $x, y) \rightarrow ct_x$ public/private inputs

PHFE Security

about y beyond f(x, y).

PHFE Security: Collusion Resistance

-

PHFE Security: Collusion Resistance

about y beyond $\{f_q(x, y)\}$.

 $\operatorname{Exp}_{\operatorname{PHFE}}^{\mathbf{0}} \approx \operatorname{Exp}_{\operatorname{PHFE}}^{\mathbf{1}} \quad \text{if } |y_{\mathbf{0}}| = |y_{\mathbf{1}}| \text{ and } \forall q : f_q(x, y_{\mathbf{0}}) = f_q(x, y_{\mathbf{1}})$

 \star expressive functionality

- ★ expressive functionality
- ★ short keys / ciphertexts

★ fast decryption

 \star expressive functionality

supports **RAM** computation with **unbounded output length**

short keys / ciphertexts

★ fast decryption

★ expressive functionality

supports **RAM** computation with **unbounded output length**

★ short keys / ciphertexts $|sk_f| = poly(|f|)$ $|ct_x(y)| = poly(|x|, |y|)$ ★ fast decryption $T_{Dec} = poly(|f|, |x|, |y|, T)$

 \star expressive functionality

What do we want for a PHFE? (continued)

 \star expressive functionality

supports **RAM** computation with **unbounded output length**

★ short keys / ciphertexts $|sk_{f}| = 0(1) \quad \text{ideal}
|ct_{x}(y)| = |y| + 0(1)$ ★ fast decryption $T_{\text{Dec}} = 0(T) \quad \text{ideal}$

What do we want for a PHFE? (continued)

 \star expressive functionality

supports **RAM** computation with **unbounded output length**

- ★ short keys / ciphertexts |sk_f| = 0(1) ideal |ct_x(y)| = |y| + 0(1) ★ fast decryption T_{Dec} = 0(T) ideal
- \star adaptive security & minimal assumption

What do we want for a PHFE? (continued)

 \star expressive functionality

supports **RAM** computation with **unbounded output length**

- short keys / ciphertexts hort components $|\mathsf{sk}_f| = \mathbf{O}(1)$ ideal $|ct_x(y)| = |y| + O(1)$ **†** fast decryption ideal $T_{\rm Dec}=O(T)$ ALL OF THEM
- \star adaptive security & minimal assumption

What is the **best-possible efficiency** of PHFE?

What is the **best-possible efficiency** of PHFE?

Are there **trade-offs** among different aspects of efficiency?

What is the **best-possible efficiency** of PHFE?

Are there **trade-offs** among different aspects of efficiency?

(From what assumptions) Can we **construct** optimally efficient PHFE?

polynomially secure FE for circuits $\Rightarrow adaptively secure PHFE for RAM with$ $|mpk| = 0(1), |sk_{f}| = 0(1), |ct_{x}(y)| = 2|y| + 0(1),$ $T_{KeyGen} = 0(|f|), \quad T_{Enc} = 0(|x| + |y|),$ $T_{Dec} = 0(T + |f| + |x| + |y|).$

(weakly selective 1-key FE with $T_{Enc} = |f|^{1-\varepsilon}$ for circuits) "obfuscation-minimum" FE [long line of prior works] polynomially secure FE for circuits \implies \Rightarrow adaptively secure PHFE for RAM with |mpk| = O(1), $|sk_f| = O(1)$, $|ct_x(y)| = 2|y| + O(1)$, $T_{\text{KeyGen}} = O(|f|), \quad T_{\text{Enc}} = O(|x| + |y|),$ $T_{\text{Dec}} = O(T + |f| + |x| + |y|).$

(weakly selective 1-key FE with $T_{Enc} = |f|^{1-\varepsilon}$ for circuits) "obfuscation-minimum" FE [long line of prior works] polynomially secure FE for circuits \implies \Rightarrow adaptively secure PHFE for RAM with |mpk| = O(1), $|sk_f| = O(1)$, $|ct_x(y)| = 2|y| + O(1)$, $T_{\text{KeyGen}} = O(|f|), \quad T_{\text{Enc}} = O(|x| + |y|),$ $T_{\text{Dec}} = 0(T + |f| + |x| + |y|)?$

(weakly selective 1-key FE with $T_{Enc} = |f|^{1-\varepsilon}$ for circuits) "obfuscation-minimum" FE [long line of prior works] polynomially secure FE for circuits \implies \Rightarrow adaptively secure PHFE for RAM with |mpk| = O(1), $|sk_f| = O(1)$, $|ct_x(y)| = \frac{1}{2}|y| + O(1)$, $T_{\text{KeyGen}} = O(|f|), \quad T_{\text{Enc}} = O(|x| + |y|),$ $T_{\text{Dec}} = O(T + |f| + |x| + |y|)$ necessary / barrier

for	adaptive	sk _f	$ \operatorname{ct}_{x}(y) $	$T_{\rm Dec}$	assumptions
RAM long output	<u>this</u> 🗸	0(1)	2 y + 0(1)	O(T + f + x)	+ y) FE

for	adaptiv	/e sk _f	$ \operatorname{ct}_{x}(y) $	$T_{\rm Dec}$	assumptions
RAM long output	<u>this</u> 🗸	0(1)	2 y + O(1)	O(T + f + x)	+ y) FE
RAM	<u>ACFQ</u>	poly(f)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE

for	ada	ptiv	/e sk _f	$ \operatorname{ct}_{x}(y) $	$T_{\rm Dec}$	assumptions
RAM long output	this .	~	0(1)	2 y + O(1)	O(T + f + x	+ y) FE
RAM	<u>ACFQ</u>		poly(f)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
	<u>AS</u>	\checkmark	poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	iO
	<u>AJS</u>	\checkmark	c f + 0(1)	c y + 0(1)	$T \operatorname{poly}(f , y)$	subexp <i>iO</i>
1 /V1	<u>AM</u> ·	\checkmark	poly(f)	O(y)	$T \operatorname{poly}(f , y)$	dist. ind. FE
	<u>KNTY</u>		poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	1-key sel. FE

for	ad	apti	ve sk _f	$ \operatorname{ct}_{x}(y) $	$T_{\rm Dec}$	assumptions
RAM long output	<u>this</u>	\checkmark	0(1)	2 y + O(1)	O(T + f + x	+ y) FE
RAM	<u>ACFQ</u>		poly(f)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
ТМ	<u>AS</u>	\checkmark	poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	iO
	<u>AJS</u>	\checkmark	c f + 0(1)	c y + O(1)	$T \operatorname{poly}(f , y)$	subexp <i>iO</i>
	<u>AM</u>	\checkmark	poly(f)	O(y)	$T \operatorname{poly}(f , y)$	dist. ind. FE
	<u>KNTY</u>		poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	1-key sel. FE
circuit	<u>GGHRSW</u>		poly(C)	poly(y)	poly(C)	iO
	<u>KNTY</u>	\checkmark	poly(C)	poly(y)	poly(C)	1-key sel. FE
	<u>GWZ</u>		poly(C)	y + 0(1)	poly(C)	iO
Significant Improvement and "Two Clouds"

for	ad	lapti	ve sk _f	$ \operatorname{ct}_x(y) $	$T_{\rm Dec}$	assumptions
RAM long output	<u>this</u>	\checkmark	0(1)	2 y + O(1)	O(T + f + x	+ y) FE
RAM	ACFQ		poly(<i>f</i>)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
	AS	\checkmark	poly(<i>f</i>)	poly(y)	<i>T</i> poly(<i>f</i> , <i>y</i>)	iO
ТЛЛ	AJS	~	improveme	ent from pol	ynomial , y)	subexp <i>iO</i>
	AM	\sim	to nearly	optimal effi	ciency , y)	dist. ind. FE
	KNTY		poly(<i>f</i>)	poly(y)	<i>T</i> poly(<i>f</i> , <i>y</i>)	1-key sel. FE
circuit	<u>GGHRSW</u>		poly(C)	poly(y)	poly(C)	iO
	<u>KNTY</u>	\checkmark	poly(<i>C</i>)	poly(y)	poly(C)	1-key sel. FE
	GWZ		poly(C)	y + 0(1)	poly(<i>C</i>)	iO

Significant Improvement and "Two Clouds"

for	ad	lapti	ve sk _f	$ \operatorname{ct}_{x}(y) $	$T_{\rm Dec}$	assumptions
RAM long output	<u>this</u>	~	0(1)	2 y + O(1)	O(T + f + x	+ y) FE
RAM	<u>ACFQ</u>		poly(f)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
	AS	\checkmark	poly(<i>f</i>)	poly(y)	T poly(f , y)	iO
ТЛЛ	AJS		mproveme	ent from pol	ynomial , y)	subexp <i>iO</i>
1 / V 1	AM	~	to nearly	optimal effi	ciency , y)	dist. ind. FE
	<u>KNTY</u>		poly(f)	poly(y)	<i>T</i> poly(<i>f</i> , <i>y</i>)	1-key sel. FE
	<u>GGHRSW</u>		poly(<i>C</i>)	poly(y)	poly(C)	iO
circuit	<u>KNTY</u>	\checkmark	poly(<i>C</i>)	poly(y)	poly(C)	1-key sel. FE
	GWZ		poly(<i>C</i>)	y + 0(1)	poly(<i>C</i>)	iO
			🗸 obtainab	le if abandoning	adaptive security & I	ong output

Significant Improvement and "Two Clouds"

for	ad	lapti	ve sk _f	$ \operatorname{ct}_{x}(y) $	$T_{\rm Dec}$	assumptions
RAM long output	<u>this</u>	\checkmark	0(1)	2 y + O(1)	O(T + f + x)	+ y FE
RAM	<u>ACFQ</u>		poly(f)	poly(y)	$T \operatorname{poly}(f)$	PK-DE-PIR + FE
	AS	\checkmark	poly(<i>f</i>)	poly(y)	T poly(f , y)	iO
ТЛЛ	AJS		improveme	ent from pol	ynomial , y)	subexp <i>iO</i>
1 / V 1	AM	\sim	to nearly	optimal effi	ciency , y)	dist. ind. FE
	<u>KNTY</u>		poly(f)	poly(y)	$T \operatorname{poly}(f , y)$	1-key sel. FE
circuit	<u>GGHRSW</u>		poly(<i>C</i>)	poly(y)	poly(<i>C</i>)	iO
	<u>KNTY</u>		poly(<i>C</i>)	poly(y)	poly(<i>C</i>)	1-key sel. FE
	<u>GWZ</u>		poly(<i>C</i>)	y + 0(1)	poly(<i>C</i>)	iO
	voltainable if abandoning adaptive security &					ong output

first space-time efficiency trade-offs for (PH-)FE

For FE or PHFE for RAM, if

first space-time efficiency trade-offs for (PH-)FE

$$|sk_f| = O(|f|^A), T_{Dec} = (T + |f|^B + |y|) O(|x|^C)$$

then $A \ge 1$ or $B \ge 1$.

Results: **Unconditional** Space-Time Trade-Offs for (PH-)FE first space-time efficiency trade-offs for (PH-)FE For FE or PHFE for RAM, if $|\mathbf{sk}_{f}| = O(|f|^{A}), \quad T_{\text{Dec}} = (T + |f|^{B} + |y|) O(|x|^{C})$ then $A \ge 1$ or $B \ge 1$. For PHFE for RAM, if $|ct_{y}(y)| = O(|x|^{A}|y|^{C}), T_{Dec} = (T + |f| + |x|^{B})O(|y|^{C})$ then $A \geq 1$ or $B \geq 1$.

For FE or PHFE for RAM, if

 $|\mathbf{sk}_{f}| = O(|f|^{A}), \quad T_{\text{Dec}} = (T + |f|^{B} + |y|) O(|x|^{C})$

then $A \ge 1$ or $B \ge 1$.

For PHFE for RAM, if

 $|ct_{x}(y)| = O(|x|^{A}|y|^{C}), T_{Dec} = (T + |f| + |x|^{B})O(|y|^{C})$ then $A \ge 1$ or $B \ge 1$.

"Component size and decryption time cannot both be sublinear in f, x."

first space-time efficiency trade-offs for (PH-)FE

For FE or PHFE for RAM, if

 $|\mathbf{sk}_{f}| = O(|f|^{A}), \ T_{\text{Dec}} = (T + |f|^{B} + |y|) O(|x|^{C})$

then $A \ge 1$ or $B \ge 1$.

For PHFE for RAM, if

 $|\operatorname{ct}_{x}(y)| = O(|x|^{A}|y|^{C}), \quad T_{\operatorname{Dec}} = (T + |f| + |x|^{B}) O(|y|^{C})$

then $A \ge 1$ or $B \ge 1$.

"Component size and decryption time cannot both be sublinear in f, x."

Both hold for very **selective 1-sk 1-ct secret-key** scheme (a.k.a. **garbling**) supporting **simple** functions.

first space-time efficiency trade-offs for (PH-)FE

For FE or PHFE for RAM, if

 $|\mathbf{sk}_{f}| = O(|f|^{A}), \quad T_{\text{Dec}} = (T + |f|^{B} + |y|) O(|x|^{C})$

then $A \ge 1$ or $B \ge 1$.

For PHFE for RAM, if

 $|ct_x(y)| = O(|x|^A |y|^C), \quad T_{\text{Dec}} = (T + |f| + |x|^B) O(|y|^C)$

then $A \ge 1$ or $B \ge 1$.

"Component size and decryption time cannot both be sublinear in f, x."

Both hold for very **selective 1-sk 1-ct secret-key** scheme (a.k.a. **garbling**) supporting **simple** functions.

first space-time efficiency trade-offs for (PH-)FE

y? Linear-size components? Optimal decryption time? Connections to DE-PIR.

DE-PIR D

client efficiency |k| = O(1) and $T_{Query} = O(|D|^{1-\varepsilon})$ server efficiency $T_{Resp} = O(|D|^{1-\varepsilon})$

DE-PIR
$$D \xrightarrow{\text{Process}} \overbrace{k \text{Query}(i)}^{\text{Resp}} D[i]$$

client efficiency|k| = 0(1) and $T_{Query} = 0(|D|^{1-\varepsilon})$ server efficiency $T_{Resp} = 0(|D|^{1-\varepsilon})$ security $\widetilde{D}, \{ ct(i_q) \}$ hides $\{i_q\}$

DE-PIR
$$D \xrightarrow{\text{Process}} \overbrace{k \text{-Query}(i)}^{\text{Process}} ct \xrightarrow{D} [i]$$

client efficiency|k| = 0(1) and $T_{Query} = 0(|D|^{1-\varepsilon})$ server efficiency $T_{Resp} = 0(|D|^{1-\varepsilon})$ security $\widetilde{D}, \{ct(i_q)\}$ hides $\{i_q\}$ dream efficiency $|\widetilde{D}| = 0(|D|)$ and $T_{Query}, T_{Resp} = 0(1)$

client efficiency	$ k = O(1)$ and $T_{Query} = O(D ^{1-\varepsilon})$		
server efficiency	$T_{\rm Resp} = O(D ^{1-\varepsilon})$		
security	\widetilde{D} , {ct(i_q)} hides { i_q }	Well yes, but actually no	
dream efficiency	$ \widetilde{D} = O(D)$ and T_{Que}	$_{\rm ry}, T_{\rm Resp} = O(1)$	
	ls it known?		

Results: Optimal Decryption Time Implies **DE-PIR**

Results: Optimal Decryption Time Implies **DE-PIR**

Assuming **sufficiently** expressive secure PHFE with

$$|ct_{x}(y)| = |x|^{A} \operatorname{poly}(|y|), \quad T_{\operatorname{Dec}} = |x|^{B} \operatorname{poly}(T, |f|, |y|),$$

or
$$|ct_{x}(y)| = |y|^{A} \operatorname{poly}(|x|), \quad T_{\operatorname{Dec}} = |y|^{B} \operatorname{poly}(T, |f|, |x|)$$

for B < 1, then there exists **secret-key** DE-PIR with $|\tilde{D}| = |D| + O(|D|^{A}), T_{Query} = O(1), T_{Resp} = O(|D|^{B}).$

essentially also proven in <u>ACFQ</u>

Results: Optimal Decryption Time Implies **DE-PIR**

Assuming **mildly** expressive secure PHFE with

 $|sk_f| = O(|f|^A), T_{Dec} = |f|^B poly(T, |x|, |y|)$

for B < 1, then there exists **public-key** DE-PIR with

 $|\tilde{D}| = |D| + O(|D|^{A}), \quad T_{\text{Query}} = O(1), \quad T_{\text{Resp}} = O(|D|^{B}).$

Assuming **sufficiently** expressive secure PHFE with

$$|ct_{x}(y)| = |x|^{A} \operatorname{poly}(|y|), \quad T_{\operatorname{Dec}} = |x|^{B} \operatorname{poly}(T, |f|, |y|),$$

or
$$|ct_{x}(y)| = |y|^{A} \operatorname{poly}(|x|), \quad T_{\operatorname{Dec}} = |y|^{B} \operatorname{poly}(T, |f|, |x|)$$

for B < 1, then there exists **secret-key** DE-PIR with $|\widetilde{D}| = |D| + O(|D|^A), T_{Query} = O(1), T_{Resp} = O(|D|^B).$

essentially also proven in <u>ACFQ</u>

new in <u>this</u> work

14/23

new! previously only known for circuits [<u>BV</u>]_{with LWE} / TM [<u>AJS</u>]

new! previously only known for circuits [<u>BV</u>] with LWE / TM [<u>AJS</u>]

ABE for RAM	$ \mathrm{sk}_f $	$ ct_{\chi} $	T_{Dec}
from PHFE	0(1)	0(1)	O(T + f + x)

new! previously only known for circuits [<u>BV</u>] with LWE / TM [<u>AJS</u>]

4 new!	ABE for RAM	$ \mathrm{sk}_f $	$ ct_{\chi} $	T_{Dec}	
_	from PHFE	0(1)	0(1)	O(T + f + x)	
		f + 0(1)	0(1)	O(T + x) c	an move between
	minor tweaks	0(1)	x + 0(1)	O(T + f)	size and time
		f + 0(1)	x + 0(1)	O(T)	
(adaptive, b	ased				

new! previously only known for circuits [<u>BV</u>] with LWE / TM [<u>AJS</u>]

4 new!	ABE for RAM	$ \mathrm{sk}_f $	$ ct_x $	$T_{\rm Dec}$	
_	from PHFE	0(1)	0(1)	O(T + f + x)
		f + 0(1)	0(1)	O(T + x)	can move between
	minor tweaks	0(1)	x + 0(1)	O(T + f)	size and time
		f + 0(1)	x + 0(1)	O(T)	
(adaptive, b	ased				
on FE for cire	cuits)				

new! previously only known for circuits [<u>BV</u>] with LWE / TM [<u>AJS</u>]

4 new!	ABE for RAM	$ \mathrm{sk}_f $	$ ct_{\chi} $	T_{Dec}	
_	from PHFE	0(1)	0(1)	O(T + f + x)	_
		f + 0(1)	0(1)	O(T + x)	an move between
	minor tweaks	0(1)	x + 0(1)	O(T + f)	size and time
		f + 0(1)	x + 0(1)	O(T) Luo2	2
(adaptive, ba	ased				

y-independent Dec ↑ morally ↓ DE-PIR

Proof Sketch of Unconditional Lower Bound

 $|sk_f| = |f|^A$, $T_{Dec} = T + |f|^B + |x| + |y|$, A, B < 1.
$|sk_f| = |f|^A$, $T_{Dec} = T + |f|^B + |x| + |y|$, A, B < 1.

$$f = R \in \{0,1\}^N$$
, $x = \bot$, $y_0 = (I,w)$, $y_1 = z$.

 $|sk_f| = |f|^A$, $T_{Dec} = T + |f|^B + |x| + |y|$, A, B < 1.

$$f = R \in \{0,1\}^N, \qquad \begin{array}{l} I \subseteq [N] \text{ is of size } n & w \in \{0,1\}^n \\ x = \bot, & y_0 = (I,w), & y_1 = z. \\ z \in \{0,1\}^n \end{array}$$

$$|sk_f| = |f|^A$$
, $T_{Dec} = T + |f|^B + |x| + |y|$, $A, B < 1$.

$$f = R \in \{0,1\}^N, \qquad \begin{array}{l} I \subseteq [N] \text{ is of size } n & w \in \{0,1\}^n \\ x = \bot, & y_0 = (I,w), & y_1 = z. \end{array}$$

$$f (x,y) = \begin{cases} R[I] \bigoplus w, & y = (I,w); \\ z, & y = z. \end{cases}$$

 $|sk_f| = |f|^A, \qquad T_{Dec} = T + |f|^B + |x| + |y|, \qquad A, B < 1.$ $= N^A \ll n \qquad = n + N^B + 0 + n \approx n \ll N$

make N^A , $N^B \ll n \ll N$

$$f = R \in \{0,1\}^N, \qquad \begin{array}{l} I \subseteq [N] \text{ is of size } n & w \in \{0,1\}^n \\ x = \bot, & y_0 = (I,w), & y_1 = z. \\ \end{array}$$

$$f (x,y) = \begin{cases} R[I] \bigoplus w, & y = (I,w); \\ z, & y = z. \end{cases}$$

 $|\mathrm{sk}_f| \ll n$, $T_{\mathrm{Dec}} \ll N$.

 $f_R(x,y) = \begin{cases} R[I] \oplus w, & y = y_0 = (I,w); \\ z, & y = y_1 = z. \end{cases}$

 $|\mathrm{sk}_f| \ll n$,

 $T_{\rm Dec} \ll N.$

How much of R[I]does $Dec^{R}(sk_{f}, ct)$ read?

$$f_R(x,y) = \begin{cases} R[I] \oplus w, & y = y_0 = (I,w); \\ z, & y = y_1 = z. \end{cases}$$

choose random I, wand $z = R[I] \bigoplus w$

 $|\mathrm{sk}_f| \ll n$, $T_{\mathrm{Dec}} \ll N$.

How much of R[I]does $Dec^{R}(sk_{f}, ct)$ read?

When $y = y_0 = (I, w)$: (sk_f, ct) contains $\ll n$ bits of R[I] (*n* bits) must read **almost all** of R[I] (incompressibility argument)

$$f_R(x,y) = \begin{cases} R[I] \bigoplus w, & y = y_0 = (I,w); \\ z, & y = y_1 = z. \end{cases}$$

choose random I, wand $z = R[I] \bigoplus w$

 $|\mathrm{sk}_f| \ll n$, $T_{\mathrm{Dec}} \ll N$.

How much of R[I]does $Dec^{R}(sk_{f}, ct)$ read?

When $y = y_0 = (I, w)$: (sk_f, ct) contains $\ll n$ bits of R[I] (*n* bits) must read **almost all** of R[I] (incompressibility argument)

When $y = y_1 = z$: behavior of $\text{Dec}^R(\text{sk}_f, \text{ct})$ **independent** of Ican **only** read $|I| \cdot \frac{T_{\text{Dec}}}{N} \ll n$ bits from R[I] (hypergeometric distribution)

 $f_R(x,y) = \begin{cases} R[I] \bigoplus w, & y = y_0 = (I,w); & \text{choose} \\ z, & y = y_1 = z. & \text{and } z \end{cases}$

choose random I, wand $z = R[I] \bigoplus w$

 $|sk_f| = |f|^A$, $T_{Dec} = |f|^B poly(T, |x|, |y|)$, B < 1.

 $|\mathrm{sk}_{f}| = |f|^{A},$ $T_{\mathrm{Dec}} = |f|^{B} \operatorname{poly}(T, |x|, |y|),$ B < 1.f = D, $x = \bot,$ y = i, $f_{D}(x, y) = D[i].$

 $|\mathsf{sk}_{f}| = |f|^{A}, \qquad T_{\mathsf{Dec}} = |f|^{B} \operatorname{poly}(T, |x|, |y|), \qquad B < 1.$ $f = D, \qquad x = \bot, \qquad y = i, \qquad f_{D}(x, y) = D[i].$ $\mathsf{Preprocessing.} \qquad \widetilde{D} = (D, \operatorname{fesk}_{f}), \qquad k = \operatorname{fempk.}$ $|\widetilde{D}| = |D| + |D|^{A}$

$ \mathrm{sk}_f = f ^A,$	T_{Dec} =	$= f ^{B}$ poly((T, x , y),	B < 1.
f = D,	$x = \bot$,	y = i,	$f_D(x,y)$	= D[i].
Preproces	ssing. \hat{I}	$\check{O} = (D, \text{fes})$	k_f), k =	= fempk.
	$ \hat{L} $	$\check{D} = D + D $	A	
Querying.	, C	t = fect(i)	. <i>T</i> _C	uery = 0(1)

$ \mathrm{sk}_f = f ^A,$	T_{Dec}	$= f ^{B} \operatorname{poly}(7)$	[, x , y),	B < 1.
f = D,	$x = \bot$,	y = i,	$f_D(x,y)$	= D[i].
Preproces	sing.	$\widetilde{D} = (D, \text{fesk})$ $\widetilde{D} = D + D ^2$	k_f), k	= fempk.
Querying. Respondir	י ומ.	ct = fect(i). Dec ^D (fesk _f ,	fect).	$Q_{uery} = O(1)$ $T_{Resp} = D ^B$

$ \mathrm{sk}_f = f ^A,$	$T_{\rm Dec}$	$= f ^{B}$ poly(7)	^r , x , y)), $B < 1$.
f = D,	$x = \bot$,	y = i,	$f_D(x, y)$	D=D[i].
Preproces	ssing. Î	$\tilde{D} = (D, \text{fesk})$	(_f), <i>k</i>	k = fempk.
Querying.	, (p = D + D ct = fect(i).		$T_{\rm Query} = O(1)$
Respondi	ng. I	$\operatorname{Dec}^{D}(\operatorname{fesk}_{f})$	fect).	$T_{\text{Resp}} = D ^B$

A IND-secure, selective, non-output-hiding, (if SK) non-database-hiding.

$ \mathrm{sk}_f = f ^A,$	T_{Dec}	$= f ^{B}$ poly(7)	[, x , y)	, $B < 1$.
f = D,	$x = \bot$,	y = i,	$f_D(x,y)$) = D[i].
Preproces	sing. Î	$\tilde{D} = (D, \text{fesk})$	(_f), k	= fempk.
Querying.	<i> </i> ($ D = D + D ^{2}$ ct = fect(i).	L ,	$T_{\text{Ouerv}} = 0(1)$
Respondir	ng. I	$\operatorname{Dec}^{D}(\operatorname{fesk}_{f}^{},$	fect).	$T_{\text{Resp}} = D ^B$

A IND-secure, selective, non-output-hiding, (if SK) non-database-hiding.

Generic efficiency-preserving transformation for SIM-secure, adaptive, output-hiding, (if SK) database-hiding.

Step 1: Formulate the right definition.

Step 1: Formulate the right definition.

Step 1: Formulate the right definition.

Step 1: Formulate the right definition.

Step 1: Formulate the right definition.

Step 1: Formulate the right definition.

$T_{\text{Eval}} = (T + |f| + |D|) \operatorname{poly}(|M|)$

Open Questions: What's next for (PH-)FE/ABE?

- 1. **Construct** PHFE with optimal T_{Dec} from/and dream DE-PIR.
- 2. Achieve rate-1 in y with adaptive security and/or long output.

Open Questions: What's next for (PH-)FE/ABE?

- 1. **Construct** PHFE with optimal T_{Dec} from/and dream DE-PIR.
- 2. Achieve rate-1 in y with adaptive security and/or long output.

3. **Tight relation** between optimal T_{Dec} and DE-PIR. FE for circuits + **PK**-DE-PIR \Rightarrow (x, y)-optimal Dec time \Rightarrow **SK**-DE-PIR. FE for circuits + **SK**-DE-PIR \Rightarrow ...?

Open Questions: What's next for (PH-)FE/ABE?

- 1. **Construct** PHFE with optimal T_{Dec} from/and dream DE-PIR.
- 2. Achieve rate-1 in y with adaptive security and/or long output.
- 3. **Tight relation** between optimal T_{Dec} and DE-PIR. FE for circuits + **PK**-DE-PIR \Rightarrow (x, y)-optimal Dec time \Rightarrow **SK**-DE-PIR. FE for circuits + **SK**-DE-PIR \Rightarrow ...?
- 4. Pin down the exact Pareto frontier of efficiency.

Demystify the stripe area.

Thanks!

ePrint 2022/1317 (revision coming soon)