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Given arbitrarily many keys,
information revealed about 𝒚
is exactly the computation results.
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Motivation / Questions

(From what assumptions)
Can we construct optimally efficient PHFE?
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“Component size and decryption time
cannot both be sublinear in 𝒇, 𝒙.”

Both hold for very selective 1-sk 1-ct secret-key scheme
(a.k.a. garbling) supporting simple functions.

𝒚? Linear-size components? 
Optimal decryption time?

Connections to DE-PIR.
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Assuming sufficiently expressive secure PHFE with
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reusable
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4. Pin down the exact Pareto frontier of efficiency.

Demystify the stripe area.
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ePrint 2022/1317 (revision coming soon)

Thanks!
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