Disorientation faults in CSIDH

Gustavo Banegas INRIA

Juliane Krämer University of Regensburg

Tanja Lange TU/e & Academia Sinica

Michael Meyer University of Regensburg

Lorenz Panny Academia Sinica

Krijn Reijnders Radboud University

Jana Sotáková UvA & OuSoft

Monika Trimoska Radboud University

From disorientation attacks to key recovery

CSIDH FOR BEGINNERS

CSIDH for beginners

1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. per ℓ we can take either a positive or a negative step

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. Per ℓ we can take either a positive or a negative step
- 4. Magic!

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

- 1. Pick some field \mathbb{F}_p with many primes ℓ dividing p+1
- 2. There are "special" $A \in \mathbb{F}_p$ that give us "supersingular" curves $E_A : y^2 = x^3 + Ax^2 + x$ with $\#E_A(\mathbb{F}_p) = p + 1$
- 3. Per ℓ we can take either a positive or a negative step
- 4. Magic!

$$p = 419 = 4 \cdot 3 \cdot 5 \cdot 7 - 1$$

gives 27 "special" $A \in \mathbb{F}_p$
with $\#E_A(\mathbb{F}_p) = p + 1$
steps by $\ell \in \{3, 5, 7\}$

1. Pick somewhere to start

- 1. Pick somewhere to start
- 2. Alice picks **secret path** $a = (e_1, e_2, e_3)$

- 1. Pick somewhere to start
- 2. Alice picks **secret path** $a = (e_1, e_2, e_3)$
- 3. Bob picks **secret path** $\mathfrak{b} = (e_1, e_2, e_3)$

- 1. Pick somewhere to start
- 2. Alice picks **secret path** $a = (e_1, e_2, e_3)$
- 3. Bob picks **secret path** $\mathfrak{b} = (e_1, e_2, e_3)$

- 1. Pick somewhere to start
- 2. Alice picks **secret path** $a = (e_1, e_2, e_3)$
- 3. Bob picks **secret path** $\mathfrak{b} = (e_1, e_2, e_3)$
 - Alice applies a to Bob's **Public Key** Bob applies b to Alice's Public Key **Shared** 124 Secret 368 199 245 379 Start 390 275 413 144 174 **Public** Key **Public** Key

- 1. Pick somewhere to start
- 2. Alice picks **secret path** $a = (e_1, e_2, e_3)$
- 3. Bob picks **secret path** $\mathfrak{b} = (e_1, e_2, e_3)$
- 4. Alice applies α to Bob's **Public Key** Bob applies b to Alice's **Public Key**

HOW TO WALK

work again...?

How to compute walk

work again...?

How to compute walk

How to compute walk

Let's say $E \to E'$ is path (+2, +1, -2, +2, 0, -1, -2)

e.g. take two negative steps for third ℓ that divides p + 1

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point P, check if + or -
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point P, check if + or -
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point P, check if + or -
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point P, check if + or -
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point *P*, check if + or −
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

How to compute walk

- 1. Sample point P, check if + or -
- 2. Can use P to perform one step of each ℓ_i
- 3. Repeat until path is performed

FAULT INJECTIONS

Or: How I Learned to Stop Worrying and Love the Laser

How faults break CSIDH

Toy example

Let's say $E \to E'$ is path (+1, +1, -1, -1, 0, 0, 0)

2

- Let's say $E \to E'$ is path (+1, +1, -1, -1, 0, 0, 0)
- we sample a second positive point
- but fault inject so device thinks its negative

- Let's say $E \to E'$ is path (+1, +1, -1, -1, 0, 0, 0)
- we sample a second positive point
- but fault inject so device thinks its negative

2 How faults

break CSIDH

- Let's say $E \to E'$ is path (+1, +1, -1, -1, 0, 0, 0)
- we sample a second positive point
- but fault inject so device thinks its negative

break CSIDH

- Let's say $E \to E'$ is path (+1, +1, -1, -1, 0, 0, 0)
- we sample a second positive point
- but fault inject so device thinks its negative

How faults break CSIDH

- Let's say $E \to E'$ is path (+1, +1, -1, -1, 0, 0, 0)
- we sample a second positive point
- but fault inject so device thinks its negative

- Path $E \rightarrow E'$ is (+2, +1, -2, +2, 0, -1, -2)
- What happens when we inject these points?

- Path $E \rightarrow E'$ is (+2, +1, -2, +2, 0, -1, -2)
- What happens when we inject these points?

• Path $E \rightarrow E'$ is (+2, +1, -2, +2, 0, -1, -2)

Radboud University

What happens when we inject these points?

• Path $E \rightarrow E'$ is (+2, +1, -2, +2, 0, -1, -2)

Radboud University

• What happens when we inject these points?

- Path $E \rightarrow E'$ is (+2, +1, -2, +2, 0, -1, -2)
- What happens when we inject these points?

Real world: CSIDH-512

- uses 74 ℓ_i with $e_i \in [-5, ..., 5]$ for secret $(e_1, ..., e_{74})$
- hence, need 10 points to perform computation so we get $E^{1,\pm}$, ..., $E^{5,\pm}$ and a much larger graph
- overall strategy is exactly the same as before

Real world: CSIDH-512

- uses 74 ℓ_i with $e_i \in [-5, ..., 5]$ for secret $(e_1, ..., e_{74})$
- hence, need 10 points to perform computation so we get $E^{1,\pm}$, ..., $E^{5,\pm}$ and a much larger graph
- overall strategy is exactly the same as before

MORE READABLE: CSIDH-103

 $E^{2,-}$

- uses 21 ℓ_i with $e_i \in [-3, ..., 3]$ for secret $(e_1, ..., e_{21})$
- hence, need 6 points to perform computation so we get $E^{1,\pm}$, ..., $E^{3,\pm}$ and a much larger graph

CSIDH-103

$$[a] \sim (-1, +1, +2, +3, -2, +3, +2, +3, +1, +2, -3, -3, +2, +3, -2, -3, -2, +2, +1, -3, 0)$$

IN SUMMARY

- fault injections allow us to break CSIDH-512 in about 100 samples
 (one sample is a computation of group action with a single fault injection)
- similar strategy applied to CTIDH-512 needs only **40 samples**
- more advanced tricks (using the twist) moves most of computational effort to break CTIDH-512 to one-off precomputation
- countermeasure: Elligreator. (about 5% extra cost)
- hashed version: requires more samples and computations, still feasible

