

Effective and Efficient Masking with Low Noise using Small-Mersenne-Prime Ciphers

Loïc Masure, Pierrick Méaux, Thorben Moos, François-Xavier Standaert

Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium. Luxembourg University, SnT, Luxembourg. erc

European Research Council

April 24th, 2023

Context : Side-Channel Analysis (SCA)

- N bits
 - Black-box cryptanalysis: 2^N

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper,

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices"

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices"

Context : Side-Channel Analysis (SCA)

UCLouvain

"Cryptographic algorithms don't run on paper, they run on physical devices"

- Black-box cryptanalysis: 2^N
- Side-Channel Analysis: $2^n \cdot \frac{N}{n}, n \ll N$

Trace : power, EM, acoustics, runtime, ...

Masking

UCLouvain

Masking, aka *MPC on silicon*: linear secret sharing over a finite field $(\mathbb{F}, \star, \cdot)$

The Effect of Masking

Simulation, for \mathbb{F}_{2^n} : $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

Observation: "Masking amplifies noise" Constant gap between each curve (log scale)

exponential security w.r.t. #shares d

Figure MI(Y; Trace) vs. σ^2 , $2 \leq d \leq 6$

The Effect of Masking

Simulation, for \mathbb{F}_{2^n} : $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

The Effect of Masking

Simulation, for \mathbb{F}_{2^n} : $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

The Effect of Masking

Simulation, for \mathbb{F}_{2^n} : $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Observation:

Secret always leaks > 1 bit, regardless of d !

Figure MI(Y; Trace) vs. σ^2 , $2 \leqslant d \leqslant 6$

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Explanation: $hw(Y_1 \oplus \ldots \oplus Y_d) = \sum_{\mathfrak{i}} hw(Y_{\mathfrak{i}}) - 2 \cdot \big(\dots \big)$

Figure MI(Y; Trace) vs. σ^2 , $2 \leqslant d \leqslant 6$

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Explanation:

 $\begin{array}{l} hw(Y_1 \oplus \ldots \oplus Y_d) = \sum_i hw(Y_i) - 2 \cdot (\ldots) \\ \text{Parity of } hw(Y) \text{ stable by } \oplus : \text{ subgroup of } \mathbb{F}_{2^n} \end{array}$

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Explanation:

Figure MI(Y; Trace) vs. σ^2 , $2 \leqslant d \leqslant 6$

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Explanation:

Figure MI(Y; Trace) vs. σ^2 , $2 \leqslant d \leqslant 6$

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Explanation:

Figure MI(Y; Trace) vs. σ^2 , $2 \leq d \leq 6$

Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?

Explanation:

Corollary: parallelism is no cure either

Figure MI(Y; Trace) vs. σ^2 , $2 \leqslant d \leqslant 6$

Two Solutions for Sound Masking

What conditions the distributions

Theorem¹

Soundness \iff support <u>not</u> contained in any non-trivial subgroup (or coset) of $\mathbb F$

Two solutions:

- Leak < 1 bit per share:²
 - Support of PMF always larger than any coset
 - Work with any $\mathbb F$ (usually chosen to fit the cipher) 🗸
 - Leakage-dependent: not always verified X
- Choose \mathbb{F} without any non-trivial subgroup \implies work over \mathbb{F}_p , with p prime:
 - May not fit every block cipher X
 - No assumption on the leakage

¹Stromberg 1960; Dziembowski, Faust, and Skórski 2016.

²Béguinot et al. 2023.

Two Solutions for Sound Masking

UCLouvain

What conditions the distributions

Theorem¹

Soundness \iff support <u>not</u> contained in any non-trivial subgroup (or coset) of $\mathbb F$

Two solutions:

- Leak < 1 bit per share:²
 - Support of PMF always larger than any coset
 - Work with any ${\mathbb F}$ (usually chosen to fit the cipher) \checkmark
 - Leakage-dependent: not always verified X
- Choose \mathbb{F} without any non-trivial subgroup \implies work over \mathbb{F}_p , with p prime:
 - May not fit every block cipher X
 - No assumption on the leakage

¹Stromberg 1960; Dziembowski, Faust, and Skórski 2016. ²Béguinot et al. 2023.

Two Solutions for Sound Masking

UCLouvain

What conditions the distributions

Theorem¹

Soundness \iff support <u>not</u> contained in any non-trivial subgroup (or coset) of $\mathbb F$

Two solutions:

- Leak < 1 bit per share:²
 - Support of PMF always larger than any coset
 - Work with any ${\mathbb F}$ (usually chosen to fit the cipher) 🗸
 - Leakage-dependent: not always verified X
- Choose \mathbb{F} without any non-trivial subgroup \implies work over \mathbb{F}_p , with p prime:
 - May not fit every block cipher X
 - No assumption on the leakage

¹Stromberg 1960; Dziembowski, Faust, and Skórski 2016.

²Béguinot et al. 2023.

Second Solution: work over \mathbb{F}_p

Figure MI(Y; Trace) vs. σ^2 , $2 \leqslant d \leqslant 6$

- Not only masking over \mathbb{F}_p safer in low-noise settings ...
- The advantage is also kept in high-noise settings !

How to leverage?

Q: How can we make use of masking in \mathbb{F}_p to effectively and efficiently protect crypto implementations?

A: Ideally, we need algorithms that work in implementation-friendly prime fields, such as small-Mersenne-prime fields (\mathbb{F}_{2^n-1}), and use only simple field arithmetic $(+, -, \cdot)$

AES-prime

UCLouvain

AES-prime: An AES-like toy cipher adapted for prime-field masking

- Based on arithmetic addition/multiplication modulo a prime, applied to 4×4 state
- Small Mersenne prime, i.e., $p = 2^7 1$, for efficient reduction (and constant mult.)
- Sbox is based on a small power map in \mathbb{F}_p (bijection without fixed point)
- MixColumns is a 4 imes 4 MDS matrix over \mathbb{F}_p
- Security claim: Attack complexity $\ge 2^{7 \cdot 16}$ with 14 cipher rounds

$$S(x) = x^{5} + 2 \mod p \qquad \qquad M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 16 \\ 1 & 4 & 16 & 2 \\ 1 & 16 & 2 & 4 \end{bmatrix}$$

Complex in Software? Not really!

Field Addition in \mathbb{F}_{2^n-1} in C/C++ and ARM Assembly ($c = a + b \mod p$)	
c = a+b;	ADD r0,r0,r1
	UBFX r1,r0,#0,#n
c = (c & p) + (c >> n);	ADD r0,r1,r0,ASR #n

Field Multiplication in \mathbb{F}_{2^n-1} in C/C++ and ARM Assembly ($c = a \cdot b \mod p$)

$c = a \star b;$	MUL r0,r1,r0
	UBFX r1,r0,#0,#n
c = (c & p) + (c >> n);	ADD r0,r1,r0,ASR #n
	UBFX r1,r0,#0,#n
c = (c & p) + (c >> n);	ADD r0,r1,r0,ASR #n

- Only works for sufficiently small integers (< 16 bit for multiplication operands on ARM Cortex-M3)
- If c < p is strictly needed for the addition result, then $c \stackrel{?}{=} p$ needs to be checked after reduction

Complex in Hardware? Not really!

UCLouvain

Field Addition in \mathbb{F}_{2^n-1} in VHDL ($c = a + b \mod p$)

$$ab <= ('0' \& a) + ('0' \& b);$$

c <= ab(n-1 downto 0) + ('0' & ab(n));

Field Multiplication in \mathbb{F}_{2^n-1} in VHDL ($c = a \cdot b \mod p$)

```
ab <= a * b;
ab_r <= ('0' & ab(n-1 downto 0)) + ('0' & ab(2*n-1 downto n));
c <= ab_r(n-1 downto 0) + ('0' & ab_r(n));</pre>
```

Works with NUMERIC_STD package as well as the proprietary STD_LOGIC_ARITH & STD_LOGIC_UNSIGNED packages

• If c < p is strictly needed for the addition result, then $c \stackrel{?}{=} p$ needs to be checked after reduction

Software Case Study: Masked S-box

Naive implementation of masked $x^5 + 2$ using 3 consecutive ISW multiplications:

UCLouvain

Masked $x^5 + 2$ (naive) in Software, Log/Alog tables

(a) Cortex-M3 sample trace, field \mathbb{F}_{2^7} .

(b) Cortex-M3 sample trace, field \mathbb{F}_{2^7-1} .

Software, Horizontal SASCA Attack for 2-6 Shares

100

 10^{1}

10²

Number of traces

10³

Software, Horizontal SASCA Attack for 2-6 Shares

Loïc Masure, Pierrick Méaux, Thorben Moos, François-Xavier Standaert | Effective and Efficient Masking with Low Noise using Small-Mersenne-Prime Ciphers | April 24th, 2023 14

 10^{0}

 10^{1}

 10^{2}

Number of traces

10³

 10^{4}

 10^{4}

Follow-Up Work at TCHES

- A follow-up of this work is already published at TCHES Volume 2023 Issue 2
- "Prime-Field Masking in Hardware and its Soundness against Low-Noise SCA Attacks"
- More hardware focused, introduces new arbitrary-order PINI gadgets for secure **squaring** in prime fields, also optimized constructions for masking the AES-prime S-box
- Evaluation of performance vs. physical security tradeoff between AES vs. AES-prime
- https://doi.org/10.46586/tches.v2023.i2.482-518
- https://github.com/uclcrypto/prime_field_masking_hardware

Conclusion

- Additive masking in small and implementation-friendly prime fields seems promising for efficient physically secure cryptography
- We can mask securely without the need to guarantee a notable amount of noise
- We demonstrated: Security advantages over Boolean masking can reach multiple orders of magnitude against low-noise attacks in practical experiments
- Advantages against SCA attacks with high noise, as well as fault attacks are also expected
- New dedicated ciphers for efficient masking in prime fields are needed to explore the interest of this design space

References I

Béguinot, J. et al. (2023). "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings". In: Constructive Side-Channel Analysis and Secure Design - 14th International Workshop, CC Ed. by E. B. Kavun and M. Pehl. Vol. 13979. Lecture Notes in Computer Science. Springer, pp. 86–104. DOI: 10.1007/978-3-031-29497-6_5. URL: https://doi.org/10.1007/978-3-031-29497-6_5. Dziembowski, S., S. Faust, and M. Skórski (2016). "Optimal Amplification of Noisy Leakages". In: TCC (A2). Vol. 9563. LNCS. Springer, pp. 291-318. Stromberg, K. (1960). "Probabilities on a Compact Group". In: Transactions of the American Mathematical Society 94.2, pp. 295–309. ISSN: **00029947**. URL: http://www.jstor.org/stable/1993313.