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Classical collision algorithms

f : {0, 1}n → {0, 1}n

A first algorithm

Create a sorted list (xi , f (xi )) of size 2n/2

Look for collisions
Also works for collisions between L1 and L2

Improved algorithms
Memoryless
Parallelizable
Same query complexity
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Other cases

Finding 2t collisions instead of 1

List of size 2t/2+n/2 contains 2t collisions on average

f : {0, 1}n → {0, 1}m, n < m ≤ 2n

List of size 2t/2+m/2

Lower bounds

Matching query lower bound in all cases
(
Ω
(
2t/2+m/2))
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Quantum collisions
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BHT

BHT algorithm
Take a list L = (f (y0), . . . , f (y2u))

Search for an x with f (x) = f (yi ) and x ̸= yi

Cost 2u memory, 2u +
√

2n
2u time

Finding 2t collisions

Use one larger list of size 2n/3+2t/3

Do 2t quantum searches
(
cost 2t ×

√
2n

2n/3−2t/3

)
Lower bound [LZ19]

General query lower bound Ω
(
2m/3+2t/3)
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With larger m

BHT algorithm

List of size 2m/3

Only 22n−m inputs are part of a collision
Need m/3 ≥ m − n, otherwise the list might contain no
relevant input
=⇒ m ≤ 3/2n
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Summary
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Quantum walks
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Random walks

Idea
Start at a random node
Walk to adjacent nodes, stop when a good node is found

Parameters
Proportion of marked nodes p

Number of walks steps to sample a random node 1/ε
Cost to construct the first random node S

Cost to walk to an adjacent node U

Cost to check is a node is marked T

Total cost

S +
1
p

(
1
ε
U + T

)
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Example: Walk-based collision finding

Definition (Johnson graph)

Nodes are sets of 2r elements among 2n

N1 and N2 are adjacents is |N1 ∩ N2| = 2r − 1
ε = 2n

2r (2n−2r ) ≃ 2−r

Collision finding with Johnson graph
Create a random list of elements of size 2r

Walk 2r times
If the node contains a collision, stop

Complexity

2r +
1

22r−n
(2r × 1 + 2r ) ≃ max(2r , 2n−r )
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Quantum walks

Principle
Simulate a quantum search on a graph using a walk update
operator

MNRS framework
Proportion of marked nodes p

Number of walks steps to sample a uniformly random node 1/ε
Cost to construct the superposition of all nodes S

Cost to walk to an adjacent node U

Cost to check is a node is marked T

Total cost S + 1√
p

(
1√
ε
U + T

)
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Ambainis algorithm

Problem
f : {0, 1}n → {0, 1}m, n < m ≤ 2n, find a collision

MNRS walk in a Johnson graph
Create a random list of elements of size 2r

Apply the walk operator
√

2r times
Test if the node contains a collision

Complexity
Setup : 2r

Fraction of marked nodes : 22r−m

Assume Update and Test polynomial
Cost 2r + 2m/2−r × 2r/2 ≃ max(2r , 2m/2−r/2)
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Finding t collisions

Idea
Use more memory, amortize it to find more collisions

Issue
At the end of Ambainis’ walk, the measurement destroys the
quantum state

Aim
Having a procedure that allows us to extract a collision and
preserve a useful quantum data structure
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New algorithm

Begin with a normal quantum walk

Measure the number of collisions we have in the end
Remove reversibly this number of collision from the data
structure
Measure the extracted collisions
Final state is now the uniform superposition of all structures:

Without collision
Without any of the extracted inputs

Do a new walk on a smaller Johnson graph:

With smaller sets (-collisions)
In a smaller ambient set (avoid the extracted preimages)
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Assumptions

Efficient history-independent operations

Use a data structure built upon radix trees
Quantum memory layout: uniform superposition of all possible
classical layout
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Assumptions

Efficient history-independent operations
Use a data structure built upon radix trees
Quantum memory layout: uniform superposition of all possible
classical layout

The next quantum walk needs to work

The quantum states after extraction must be nodes in the
graph
It is fine to start from collision-free nodes
Nodes with collisions are a small fraction of the nodes
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Quantum collisions now
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With golden collisions

Golden collisions
Find (x , y) such that f (x) = f (y), plus P(x , y) is true.

Algorithm
The same algorithm works:

Add the test in the walk
Count/extract only golden collisions
Works if a random node contains a golden collision with small
probability.
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Quantum lattice sieving

Lattice sieving
Start with many vectors vi

Find many vi ± vj with smaller norm
Iterate

Quantum Lattice sieving [CL21]

Find good vi ± vj with a quantum walk
Locality sensitive filtering:

Take a code,
Close vi tend to decode to the same value

Improvement

Original quantum walk 20.2570d+o(d)

Improved quantum walk 20.2563d+o(d)
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Thank you!
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