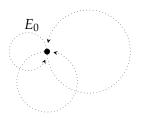
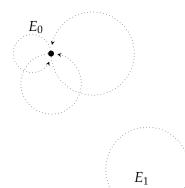
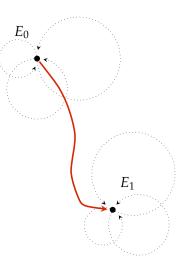
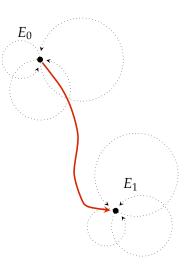

Supersingular Curves You Can Trust


<u>Andrea Basso</u>, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison, <u>Lorenz Panny</u>, Sikhar Patranabis, Benjamin Wesolowski

Lyon, 26 April 2023


 Elliptic curves have a lot of structure, among which the endomorphism ring.


- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End(*E*).
 Including the isogeny problem!


- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End(E).
 Including the isogeny problem!

- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End(E).
 Including the isogeny problem!

- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End(E).
 Including the isogeny problem!
- \implies End(*E*) can be used to backdoor several isogeny-based protocols.

Solution: Supersingular Elliptic Curves with Unknown Endomorphism Ring.

"SECUER"

Solution: <u>Supersingular Elliptic Curves with Unknown Endomorphism Ring</u>. "SECUER"

Concretely, a supersingular elliptic curve for which there are good reasons to believe that no one knows the endomorphism ring.

Solution: <u>Supersingular Elliptic Curves with Unknown Endomorphism Ring</u>. "SECUER"

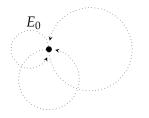
Concretely, a supersingular elliptic curve for which there are good reasons to believe that no one knows the endomorphism ring.

<u>Utopia:</u> efficient algorithm [*random seed* $\mapsto E$] such that \nexists efficient algorithm [*random seed* $\mapsto End(E)$].

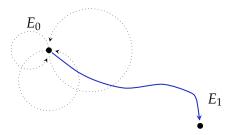
Solution: <u>Supersingular Elliptic Curves with Unknown Endomorphism Ring</u>. "SECUER"

Concretely, a supersingular elliptic curve for which there are good reasons to believe that no one knows the endomorphism ring.

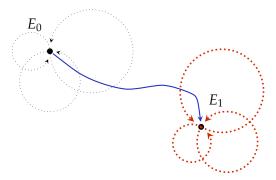
<u>Utopia:</u> efficient algorithm [*random seed* $\mapsto E$] such that \nexists efficient algorithm [*random seed* $\mapsto End(E)$].


Reality: Less great; next slide.

• Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_p .

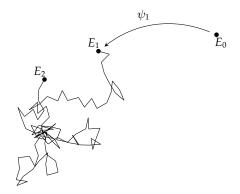

▶ Bröker's algorithm: Reduce a CM curve from characteristic zero to F_p.
 Only efficient for small CM discriminants ⇒ known endomorphism ring.

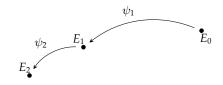
- ▶ Bröker's algorithm: Reduce a CM curve from characteristic zero to F_p.
 Only efficient for small CM discriminants ⇒ known endomorphism ring.
- Random isogeny walking from such a curve.

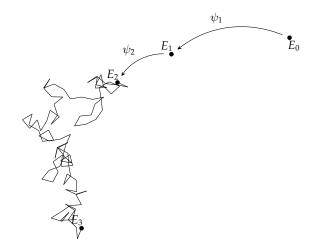

- ▶ Bröker's algorithm: Reduce a CM curve from characteristic zero to F_p.
 Only efficient for small CM discriminants ⇒ known endomorphism ring.
- Random isogeny walking from such a curve.

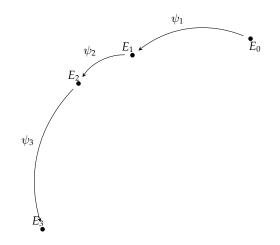
- ▶ Bröker's algorithm: Reduce a CM curve from characteristic zero to F_p.
 Only efficient for small CM discriminants ⇒ known endomorphism ring.
- Random isogeny walking from such a curve.

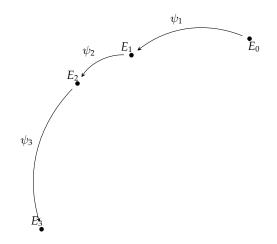
- ▶ Bröker's algorithm: Reduce a CM curve from characteristic zero to F_p.
 Only efficient for small CM discriminants ⇒ known endomorphism ring.
- Random isogeny walking from such a curve.

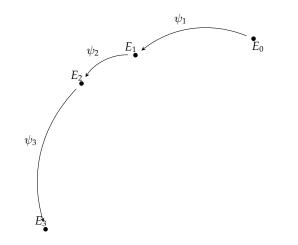



The connecting isogeny is a backdoor to the endomorphism ring.

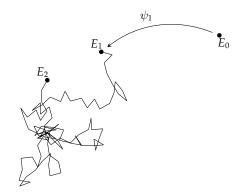

 \mathbf{E}_0

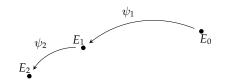


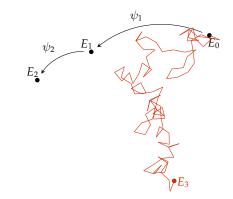


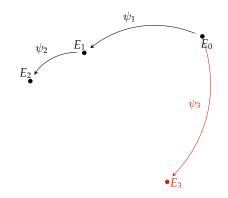


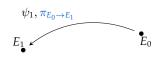
This is clearly secure as long as at least one participant is trustworthy.



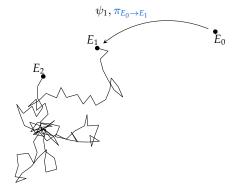

This is clearly secure as long as at least one participant is trustworthy — or is it?

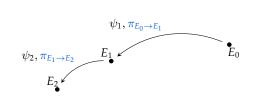

 E_0

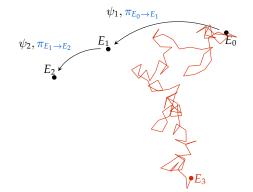


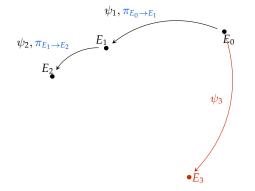

Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.

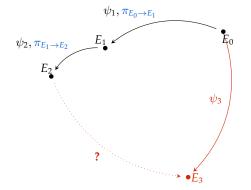
 E_0


Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.


Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.


Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.


Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.


Solution: a zero-knowledge proof for each isogeny $\psi_i : E_{i-1} \to E_i$.

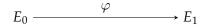
Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.

Solution: a zero-knowledge proof for each isogeny $\psi_i \colon E_{i-1} \to E_i$.

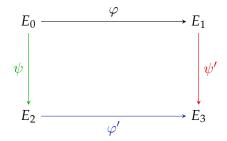
Main result

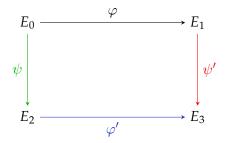
Assuming End(E) is hard to compute, the trusted-setup protocol is provably secure in the simplified UC model if the proof of knowledge π is

• Correct for the relation

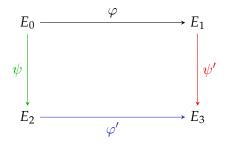

 $\varphi \colon E_0 \to E_1$ is a cyclic *d*-isogeny.

Special-sound for the relation


 $\varphi \colon E_0 \to E_1$ is a cyclic isogeny (not necessarily of degree *d*).


► Statistically zero-knowledge.

 \implies Trusted setup is resistant against future cryptanalysis.



Good things:

- ► No auxiliary points
- ► No SIDH attacks!!

Good things:

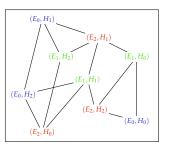
- ► No auxiliary points
- ► No SIDH attacks!!

Bad things:

- Isogenies are rational \Longrightarrow short
- Only computational ZK

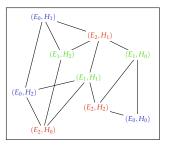
► The supersingular isogeny graph is Ramanujan.
 ⇒ Random walks quickly converge to ≈uniform.

► The supersingular isogeny graph is Ramanujan.
 ⇒ Random walks quickly converge to ≈uniform.

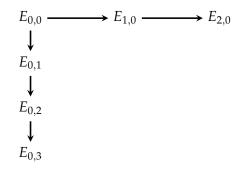


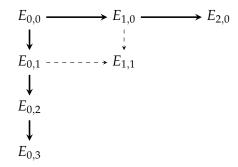
ZK depends on uniformity of curve with a subgroup.
 Need supersingular graph with level structure.

► The supersingular isogeny graph is Ramanujan.
 ⇒ Random walks quickly converge to ≈uniform.

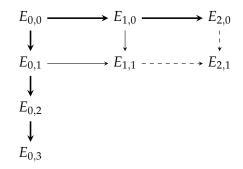

ZK depends on uniformity of curve with a subgroup.
 ⇒ Need supersingular graph with level structure.

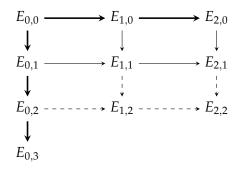
► The supersingular isogeny graph is Ramanujan.
 ⇒ Random walks quickly converge to ≈uniform.

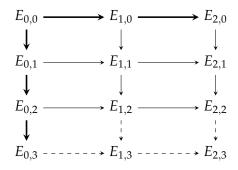

- ZK depends on uniformity of curve with a subgroup.
 Need supersingular graph with level structure.
- The graph with level structure is <u>also</u> Ramanujan!
 More information revealed, hence longer walks.

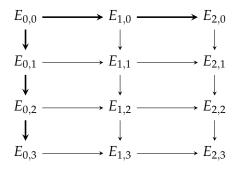

We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.

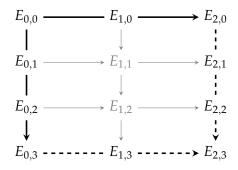
- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".

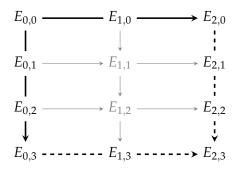

- ► We need to construct SIDH squares with degrees much larger than *p*. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".


- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".

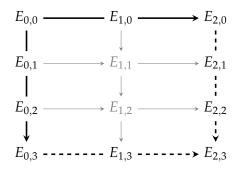

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".


- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".


- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".


- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".



- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".

• Gluing $n \times m$ squares with degrees $2^a \times 3^b$: Complexity $nm \cdot \widetilde{O}(a+b)$.

- ► We need to construct SIDH squares with degrees much larger than *p*. Kernel points are irrational, which makes things tricky computationally.
- \implies Solution: Glue together multiple SIDH squares. "SIDH ladder".

- Gluing $n \times m$ squares with degrees $2^a \times 3^b$: Complexity $nm \cdot \widetilde{O}(a+b)$.
- Any base field: Choose a = b = 1, potentially going to a degree-O(1) extension.

Performance: Not great, not terrible

	Isogeny Lengths		Proof Size	Running Time	
$\log(p)$	\rightarrow	\downarrow	(kB)	Prove (s)	Verify (s)
434	705	890	191.19	2.96	0.32
503	774	977	215.75	4.17	0.44
610	1010	1275	404.32	12.12	1.24
751	1280	1616	662.63	26.07	2.89

Performance: Not great, not terrible

	Isogeny Lengths		Proof Size	Running Time	
$\log(p)$	\rightarrow	\downarrow	(kB)	Prove (s)	Verify (s)
434	705	890	191.19	2.96	0.32
503	774	977	215.75	4.17	0.44
610	1010	1275	404.32	12.12	1.24
751	1280	1616	662.63	26.07	2.89

- Practical enough for trusted-setup protocols.
- We plan to run a trusted setup ceremony in the real world.
- \implies Result: the world's <u>first and only</u> **SECUER**s!