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Plenty of reasons to distrust a supersingular elliptic curve

▶ Elliptic curves have a lot of
structure, among which the
endomorphism ring.

▶ Several hard problems become
easy when you know End(E).
Including the isogeny problem!

=⇒ End(E) can be used to backdoor
several isogeny-based protocols.
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A big open problem

Solution: Supersingular Elliptic Curves with Unknown Endomorphism Ring.

“SECUER”

Concretely, a supersingular elliptic curve
for which there are good reasons to believe
that no one knows the endomorphism ring.

Utopia: efficient algorithm [random seed 7−→ E]
such that ∄ efficient algorithm [random seed 7−→ End(E)].

Reality: Less great; next slide.
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Constructing supersingular curves

▶ Bröker’s algorithm: Reduce a CM curve from characteristic zero to Fp.

Only efficient for small CM discriminants =⇒ known endomorphism ring.

▶ Random isogeny walking from such a curve.
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The connecting isogeny is a backdoor to the endomorphism ring.
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Folklore workaround: Distributed trusted setup
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This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy. — or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy.

— or is it?

5 / 12



Folklore workaround: Distributed trusted setup

E0E1

ψ1

E2

ψ2

E3

ψ3

This is clearly secure as long as at least one participant is trustworthy — or is it?

5 / 12



Dumb attack: Simply restart from E0
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The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny ψi : Ei−1 → Ei.
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Main result

Assuming End(E) is hard to compute, the trusted-setup protocol is
provably secure in the simplified UC model if the proof of knowledge π is

▶ Correct for the relation

φ : E0 → E1 is a cyclic d-isogeny.

▶ Special-sound for the relation

φ : E0 → E1 is a cyclic isogeny (not necessarily of degree d).

▶ Statistically zero-knowledge.
=⇒ Trusted setup is resistant against future cryptanalysis.
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Starting point: proof of isogeny knowledge

E0 E1
φ

E2

ψ

E3

ψ′

φ′

Good things:

Bad things:

▶ No auxiliary points
▶ No SIDH attacks!!

▶ Isogenies are rational =⇒ short
▶ Only computational ZK
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Achieving statistical zero-knowledge (in theory)

▶ The supersingular isogeny graph is Ramanujan.
=⇒ Random walks quickly converge to ≈uniform.

▶ ZK depends on uniformity of curve with a subgroup.
=⇒ Need supersingular graph with level structure.

▶ The graph with level structure is also Ramanujan!
=⇒ More information revealed, hence longer walks.
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Achieving statistical zero-knowledge (in reality)

▶ We need to construct SIDH squares with degrees much larger than p.
Kernel points are irrational, which makes things tricky computationally.

=⇒ Solution: Glue together multiple SIDH squares. “SIDH ladder”.

E0,0

E0,1

E0,2

E0,3

E1,0 E2,0

▶ Gluing n × m squares with degrees 2a × 3b: Complexity nm · Õ(a+b).
▶ Any base field: Choose a= b= 1, potentially going to a degree-O(1) extension.
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Performance: Not great, not terrible

Isogeny Lengths Proof Size Running Time
log(p) → ↓ (kB) Prove (s) Verify (s)

434 705 890 191.19 2.96 0.32
503 774 977 215.75 4.17 0.44
610 1010 1275 404.32 12.12 1.24
751 1280 1616 662.63 26.07 2.89

▶ Practical enough for trusted-setup protocols.
▶ We plan to run a trusted setup ceremony in the real world.

=⇒ Result: the world’s first and only SECUERs!
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