Supersingular Curves You Can Trust

Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Patranabis, Benjamin Wesolowski

Lyon, 26 April 2023

Plenty of reasons to distrust a supersingular elliptic curve

- Elliptic curves have a lot of structure, among which the endomorphism ring.

Plenty of reasons to distrust a supersingular elliptic curve

- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End (E). Including the isogeny problem!

Plenty of reasons to distrust a supersingular elliptic curve

- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End (E). Including the isogeny problem!

Plenty of reasons to distrust a supersingular elliptic curve

- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End (E). Including the isogeny problem!

Plenty of reasons to distrust a supersingular elliptic curve

- Elliptic curves have a lot of structure, among which the endomorphism ring.
- Several hard problems become easy when you know End (E). Including the isogeny problem!
$\Longrightarrow \operatorname{End}(E)$ can be used to backdoor several isogeny-based protocols.

A big open problem

Solution: Supersingular Elliptic Curves with Unknown Endomorphism Ring. "SECUER"

A big open problem

Solution: Supersingular Elliptic Curves with Unknown Endomorphism Ring. "SECUER"

> Concretely, a supersingular elliptic curve for which there are good reasons to believe that no one knows the endomorphism ring.

A big open problem

Solution: Supersingular Elliptic Curves with Unknown Endomorphism Ring. "SECUER"

> Concretely, a supersingular elliptic curve for which there are good reasons to believe that no one knows the endomorphism ring.

Utopia: efficient algorithm $[$ random seed $\longmapsto E]$ such that $\#$ efficient algorithm $[$ random seed $\longmapsto \operatorname{End}(E)]$.

A big open problem

Solution: Supersingular Elliptic Curves with Unknown Endomorphism Ring. "SECUER"

> Concretely, a supersingular elliptic curve for which there are good reasons to believe that no one knows the endomorphism ring.

Utopia: efficient algorithm $[$ random seed $\longmapsto E]$ such that $\#$ efficient algorithm $[$ random seed $\longmapsto \operatorname{End}(E)]$.

Reality: Less great; next slide.

Constructing supersingular curves

- Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_{p}.

Constructing supersingular curves

- Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_{p}.

Only efficient for small CM discriminants \Longrightarrow known endomorphism ring.

Constructing supersingular curves

- Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_{p}.

Only efficient for small CM discriminants \Longrightarrow known endomorphism ring.

- Random isogeny walking from such a curve.

Constructing supersingular curves

- Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_{p}.

Only efficient for small CM discriminants \Longrightarrow known endomorphism ring.

- Random isogeny walking from such a curve.

Constructing supersingular curves

- Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_{p}.

Only efficient for small CM discriminants \Longrightarrow known endomorphism ring.

- Random isogeny walking from such a curve.

Constructing supersingular curves

- Bröker's algorithm: Reduce a CM curve from characteristic zero to \mathbb{F}_{p}.

Only efficient for small CM discriminants \Longrightarrow known endomorphism ring.

- Random isogeny walking from such a curve.

The connecting isogeny is a backdoor to the endomorphism ring.

Folklore workaround: Distributed trusted setup
\dot{E}_{0}

Folklore workaround: Distributed trusted setup

Folklore workaround: Distributed trusted setup

This is clearly secure as long as at least one participant is trustworthy.

Folklore workaround: Distributed trusted setup

This is clearly secure as long as at least one participant is trustworthy - or is it?

Dumb attack: Simply restart from E_{0}

Dumb attack: Simply restart from E_{0}

Dumb attack: Simply restart from E_{0}

Dumb attack: Simply restart from E_{0}

Dumb attack: Simply restart from E_{0}

Dumb attack: Simply restart from E_{0}

Dumb attack: Simply restart from E_{0}

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.
$\stackrel{\bullet}{E}_{0}$

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

The solution: Proof of Isogeny Knowledge

Solution: a zero-knowledge proof for each isogeny $\psi_{i}: E_{i-1} \rightarrow E_{i}$.

Main result

Assuming $\operatorname{End}(E)$ is hard to compute, the trusted-setup protocol is provably secure in the simplified UC model if the proof of knowledge π is

- Correct for the relation
$\varphi: E_{0} \rightarrow E_{1}$ is a cyclic d-isogeny.
- Special-sound for the relation
$\varphi: E_{0} \rightarrow E_{1}$ is a cyclic isogeny (not necessarily of degree d).
- Statistically zero-knowledge.
\Longrightarrow Trusted setup is resistant against future cryptanalysis.

Starting point: proof of isogeny knowledge

$$
E_{0} \longrightarrow E_{1}
$$

Starting point: proof of isogeny knowledge

Starting point: proof of isogeny knowledge

Starting point: proof of isogeny knowledge

Good things:

- No auxiliary points
- No SIDH attacks!!

Starting point: proof of isogeny knowledge

Good things:

- No auxiliary points
- No SIDH attacks!!

Bad things:

- Isogenies are rational \Longrightarrow short
- Only computational ZK

Achieving statistical zero-knowledge (in theory)

- The supersingular isogeny graph is Ramanujan.
\Longrightarrow Random walks quickly converge to \approx uniform.

Achieving statistical zero-knowledge (in theory)

- The supersingular isogeny graph is Ramanujan.
\Longrightarrow Random walks quickly converge to \approx uniform.

- ZK depends on uniformity of curve with a subgroup. \Longrightarrow Need supersingular graph with level structure.

Achieving statistical zero-knowledge (in theory)

- The supersingular isogeny graph is Ramanujan.
\Longrightarrow Random walks quickly converge to \approx uniform.

- ZK depends on uniformity of curve with a subgroup. \Longrightarrow Need supersingular graph with level structure.

Achieving statistical zero-knowledge (in theory)

- The supersingular isogeny graph is Ramanujan.
\Longrightarrow Random walks quickly converge to \approx uniform.

- ZK depends on uniformity of curve with a subgroup. \Longrightarrow Need supersingular graph with level structure.
- The graph with level structure is also Ramanujan! \Longrightarrow More information revealed, hence longer walks.

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally. \Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

- Gluing $n \times m$ squares with degrees $2^{a} \times 3^{b}$: Complexity $n m \cdot \widetilde{O}(a+b)$.

Achieving statistical zero-knowledge (in reality)

- We need to construct SIDH squares with degrees much larger than p. Kernel points are irrational, which makes things tricky computationally.
\Longrightarrow Solution: Glue together multiple SIDH squares. "SIDH ladder".

- Gluing $n \times m$ squares with degrees $2^{a} \times 3^{b}$: Complexity $n m \cdot \widetilde{O}(a+b)$.
- Any base field: Choose $a=b=1$, potentially going to a degree- $O(1)$ extension.

Performance: Not great, not terrible

	Isogeny Lengths		Proof Size	Running Time	
$\log (p)$	\rightarrow	\downarrow	(kB)	Prove (s)	Verify (s)
434	705	890	191.19	2.96	0.32
503	774	977	215.75	4.17	0.44
610	1010	1275	404.32	12.12	1.24
751	1280	1616	662.63	26.07	2.89

Performance: Not great, not terrible

	Isogeny Lengths		Proof Size	Running Time	
$\log (p)$	\rightarrow	\downarrow	(kB)	Prove (s)	Verify (s)
434	705	890	191.19	2.96	0.32
503	774	977	215.75	4.17	0.44
610	1010	1275	404.32	12.12	1.24
751	1280	1616	662.63	26.07	2.89

- Practical enough for trusted-setup protocols.
- We plan to run a trusted setup ceremony in the real world.
\Longrightarrow Result: the world's first and only SECUERs!

