
End-to-End Secure Messaging with
Traceability Only for Illegal Content

James Bartusek, Sanjam Garg, Abhishek Jain, and Guru Vamsi Policharla

The debate over encryption

PrivacyPrivacy is a
fundamental

right!

E2EE interferes
with the

prosecution of
criminals!

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

Disclaimer: This is a much more nuanced
debate than I have the time or expertise

to talk about

If you want to learn more, RWC talks are good starting points:

• An evaluation of the risks of client-side scanning [GTSST22]

• Reactionary Authoritarianism, Encryption, and You! [Portnoy23]

No good way to implement backdoors
• All proposed systems are susceptible to abuse

• Surveillance and censorship is a real threat

• Assurances by companies is not sufficient!

Privacy

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

Negative impacts cannot be ignored

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

In response to Facebook deploying E2EE in messenger

Negative impacts cannot be ignored

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

In response to Facebook deploying E2EE in messenger

The debate over encryption

Privacy

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

Can we find a middle ground making both sides happy?

The debate over encryption

Privacy

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

Can we find a middle ground making both sides happy?

Identify bad actors while preserving privacy of honest users

The debate over encryption

Privacy

Can we find a middle ground making both sides happy?

Disclaimer: We do not think any proposal is safe for deployment yet

Disclaimer: This is a much more nuanced debate than I have the time or expertise to talk about

Identify bad actors while preserving privacy of honest users

Content moderation today

Moderation without E2EE
• Server given a database — hashes of “illegal” images

Moderation without E2EE
• Server given a database — hashes of “illegal” images

Resistant to small changes in image
cropping, rotation etc.
Not collision resistant!

Moderation without E2EE
• Server given a database — hashes of “illegal” images

Moderation without E2EE
• Server given a database — hashes of “illegal” images

Resistant to small changes in image
cropping, rotation etc.
Not collision resistant!

Moderation without E2EE
• Server given a database — hashes of “illegal” images

• Server can view all messages being exchanged

Moderation without E2EE
• Server given a database — hashes of “illegal” images

• Server can view all messages being exchanged

Moderation without E2EE
• Server given a database — hashes of “illegal” images

• Server can view all messages being exchanged

0xa55218475c1835c17…

(Perceptual Hash)

Match?

Moderation without E2EE
• Server given a database — hashes of “illegal” images

• Server can view all messages being exchanged

Moderation without E2EE
• Server given a database — hashes of “illegal” images

• Server can view all messages being exchanged

Moderation without E2EE?
• Server given a database — hashes of “illegal” images

• Server can view all messages being exchanged

Some inherent limitations
Malicious users can use steganography to hide content.

Some inherent limitations
Malicious users can use steganography to hide content.

Will persist even with cryptography. So who is moderation really targeting?

Some inherent limitations
Malicious users can use steganography to hide content.

Will persist even with cryptography. So who is moderation really targeting?

18m+ reports every year

What do we want from E2EE
with moderation?

Minimum Requirements
1. Server learns no information about messages exchanged

2. Originator of “forwarded” messages remains anonymous

Minimum Requirements
1. Server learns no information about messages exchanged

2. Originator of “forwarded” messages remains anonymous

m

m m m
A B C E

Minimum Requirements
1. Server learns no information about messages exchanged

2. Originator of “forwarded” messages remains anonymous

m

m m m

mNo information learnt about who sent

A B C E

Minimum Requirements
1. Server learns no information about messages exchanged

2. Originator of “forwarded” messages remains anonymous

m

m m m

mNo information learnt about who sent

What if server also colludes?
No more than that revealed by aux info — graph of messages

A B C E

Minimum Requirements
1. Server learns no information about messages exchanged

2. Originator of “forwarded” messages remains anonymous

“Standard” E2EE messaging already satisfies this

Minimum Requirements
1. Server learns no information about messages exchanged

2. Originator of “forwarded” messages remains anonymous

“Standard” E2EE messaging already satisfies this

But no “content moderation”

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some content (even if forwarded) and reports it, server
can identify the originator. No help needed from other users.

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some content (even if forwarded) and reports it, server
can identify the originator. No help needed from other users.

Feasibility: Group signatures are good enough

Line of work on traceback for E2EE achieves this + nice properties

Minimum Requirements

FB Whitepaper
GLR17

DGRW18 TGLMR19

Message Franking

LZHY+23

1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some content (even if forwarded) and reports it, server
can identify the originator. No help needed from other users.

Feasibility: Group signatures are good enough

Line of work on traceback for E2EE achieves this + nice properties

Minimum Requirements

FB Whitepaper
GLR17

DGRW18 TGLMR19

Message Franking

TMR19 LRTY21

PEB21

IAV22

Traceback

LZHY+23

1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some content (even if forwarded) and reports it, server
can identify the originator. No help needed from other users.

Feasibility: Group signatures are good enough

Line of work on traceback for E2EE achieves this + nice properties

Member of a group can anonymously sign a message on behalf of the group

But there is a group manager who can identify signer of a message

Group Signatures

Member of a group can anonymously sign a message on behalf of the group

But there is a group manager who can identify signer of a message

Group Signatures

We want to register
as a group!

Group Manager KeyGen() → (mpk, msk)

Member of a group can anonymously sign a message on behalf of the group

But there is a group manager who can identify signer of a message

Group Signatures

Group Manager

Sign(sk, m) → σ
Verify(mpk, σ, m) = 1

KeyGen() → (mpk, msk)

We want to register
as a group!

Member of a group can anonymously sign a message on behalf of the group

But there is a group manager who can identify signer of a message

Group Signatures

Trace(msk, σ) → pk

Group Manager

We want to register
as a group!

Group Manager

Sign(sk, m) → σ
Verify(mpk, σ, m) = 1

KeyGen() → (mpk, msk)

Group Signatures → Content Moderation
Service Provider/
Group Manager

All users register
as a group

Group Signatures → Content Moderation
Service Provider/
Group Manager Service Provider/

Group Manager

m, σ = Sign(sk, m)
All users register

as a group

Group Signatures → Content Moderation
Service Provider/
Group Manager Service Provider/

Group Manager

m, σ = Sign(sk, m)

m, σ

All users register
as a group

Group Signatures → Content Moderation
Service Provider/
Group Manager Service Provider/

Group Manager

m, σ = Sign(sk, m)

m, σ

1. If no report, malicious server learns no information about messages exchanged

2. If no report, originator of “forwarded” messages remains anonymous

3. If a user receives some content and reports it, server can identify the originator.

All users register
as a group

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some content (even if forwarded) and reports it, server
can identify the originator. No help needed from other users.

Is this really sufficient?

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some content (even if forwarded) and reports it, server
can identify the originator. No help needed from other users.

Is this really sufficient?

What happens when a malicious server and user collude??

Let’s try to strengthen this

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some illegal content (even if forwarded) and reports it,
server can identify the originator. No help needed from other users.

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some illegal content (even if forwarded) and reports it,
server can identify the originator. No help needed from other users.

Need to define illegal content
We will use the “database” definition

Minimum Requirements
1. Server learns no information about messages exchanged (no report)

2. Originator of “forwarded” messages remains anonymous (no report)

3. If a user receives some illegal content (even if forwarded) and reports it,
server can identify the originator. No help needed from other users.

4. Originator of harmless content remains anonymous, even if a malicious
user and server collude.

Achieving security against
malicious servers

Group Signatures → Content Moderation

m, σ = Sign(sk, m)

m, σ

msk

What’s going wrong here?

Server has too much power as it has .

Let’s tie its hands!

msk

Design Philosophy
• Want to avoid a master secret key as there is no server accountability

• Server should only be able to deanonymize “bad” message signers

• Paradigm of “pre-constraining” encryption keys introduced in [AJJM22]

• We build on this and introduce Pre-Constrained Group Signatures

Pre-Constrained Group Signatures
Group Manager

KeyGen(D) → (mpk, msk)
Database of illegal images

for which signers can be identified

Pre-Constrained Group Signatures
Group Manager

Database of illegal images
for which signers can be identified

KeyGen(D) → (mpk, msk)

Public key should not leak D

Can enforce that D is signed by NCMEC

Pre-Constrained Group Signatures
Group Manager

KeyGen(D) → (mpk, msk)

Sign(sk, m) → σ

Trace(msk, σ) → ⊥ if m ∉ D

Group Manager

pk if m ∈ D

Verify(mpk, σ, m) = 1

Can be generated maliciously!

Pre-Constrained Group Signatures
Group Manager

KeyGen(D) → (mpk, msk)

Sign(sk, m) → σ

Trace(msk, σ) → ⊥ if m ∉ D

Group Manager

pk if m ∈ D
Pre-constraining

Verify(mpk, σ, m) = 1

Can be generated maliciously!

Pre-Constrained Group Signatures →
Content Moderation

m, σ = Sign(sk, m)

m, σ

Can identify user only if m is “illegal”

KeyGen(D) → (mpk, msk)

Pre-Constrained Group Signatures →
Content Moderation

m, σ = Sign(sk, m)

m, σ

Privacy of honest users is unaffected!

KeyGen(D) → (mpk, msk)

Can identify user only if m is “illegal”

How do we pre-constrain
Group Signatures?

Compiler for Pre-Constrained Group Signatures

Compiler for Pre-Constrained Group Signatures

Let’s start with a generic construction of Group Signatures

Group Signature: mpk = (vks, pks)

Verification Key of a Signature Scheme

Public Key of a Public Key encryption scheme

Compiler for Pre-Constrained Group Signatures

Let’s start with a generic construction of Group Signatures

Group Signature:

• ct = Encpks
(pkc; r)

mpk = (vks, pks)

Client’s public key

Compiler for Pre-Constrained Group Signatures

Let’s start with a generic construction of Group Signatures

Group Signature:

•

• Simulation Extractable NIZK:

A. I know a server signature on my public key

B. I encrypted my public key using randomness

C. I know the secret key corresponding to

D. is a tag in the NIZK

ct = Encpks
(pkc; r)

σ pkc

pkc r
skc pkc

m
ct = Enc(pkc; r), Π = {skc, r, σ ∣ Verifyvks

(pkc, σ) = 1 ∧ ct = Enc(pkc; r) ∧ (skc, pkc) ∈ 𝒦 ∧ m)}

mpk = (vks, pks)

Compiler for Pre-Constrained Group Signatures

Let’s start with a generic construction of Group Signatures

Group Signature:

•

• Simulation Extractable NIZK:

A. I know a server signature on my public key [Only group members sign]

B. I encrypted my public key using randomness [Group manger can trace]

C. I know the secret key corresponding to [Unforgeability]

D. is a tag in the NIZK

ct = Encpks
(pkc; r)

σ pkc

pkc r
skc pkc

m

mpk = (vks, pks)

ct = Enc(pkc; r), Π = {skc, r, σ ∣ Verifyvks
(pkc, σ) = 1 ∧ ct = Enc(pkc; r) ∧ (skc, pkc) ∈ 𝒦 ∧ m)}

Compiler for Pre-Constrained Group Signatures

Pre-constrain here!

mpk = (vks, pks)

ct = Enc(pkc; r), Π = {skc, r, σ ∣ Verifyvks
(pkc, σ) = 1 ∧ ct = Enc(pkc; r) ∧ (skc, pkc) ∈ 𝒦 ∧ m)}

Let’s start with a generic construction of Group Signatures

Group Signature:

•

• Simulation Extractable NIZK:

A. I know a server signature on my public key

B. I encrypted my public key using randomness

C. I know the secret key corresponding to

D. is a tag in the NIZK

ct = Encpks
(pkc; r)

σ pkc

pkc r
skc pkc

m

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

Dm

• Server learns if

• Two round — first round reusable

• Desirable to have and

pkc m ∈ D

|ct | = O(1) T(PSI(2)) = O(1)

PSI(1)(D)
PSI(2)(m; pkc)

Pre-Constrained Group Signature:

•

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

• Server learns if

• Two round — first round reusable

• Desirable to have and

pkc m ∈ D

|ct | = O(1) T(PSI(2)) = O(1)

Compiler for Pre-Constrained Group Signatures

Dm

We achieved pre-constraining!!

PSI(1)(D)
PSI(2)(m; pkc)

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

Dm

Do we have such a PSI scheme?

PSI(1)(D)
PSI(2)(m; pkc)

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

Dm

Do we have such a PSI scheme?
Apple PSI [BDMTT21]

Caveat: |mpk | = O(|D |)

PSI(1)(D)
PSI(2)(m; pkc)

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

• Simulation Extractable NIZK:

A. I know a server signature on my public key

B. was computed correctly

C. I know the secret key corresponding to

D. is a tag in the NIZK

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

σ pkc

ct
skc pkc

m

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

• Simulation Extractable NIZK:

A. I know a server signature on my public key

B. was computed correctly

C. I know the secret key corresponding to

D. is a tag in the NIZK

Final touches: Pick the right signature scheme and proof system.

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

σ pkc

ct
skc pkc

m

Compiler for Pre-Constrained Group Signatures

Pre-Constrained Group Signature:

•

• Simulation Extractable NIZK:

A. I know a server signature on my public key

B. was computed correctly

C. I know the secret key corresponding to

D. is a tag in the NIZK

Final touches: Pick the right signature scheme and proof system.

We use structure preserving signatures + Groth-Sahai Proof System

mpk = (vks, pks PSI(1)(D))
ct = Encpks

(pkc; r) ct = PSI(2)(m; pkc)

σ pkc

ct
skc pkc

m

How do we perform?

Signing: ~10ms
Verification: ~40ms

Structure preserving signatures + Groth-Sahai Proof System

Takeaways

• Constructions are exciting but take a step back.

• Question the definition!

• Talk to both sides of the debate. Need formal requirements.

• Being “secure” according to the “wrong” definition is meaningless.

Thank you!
eprint: 2022/1643

