A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions

Pierre Briaud ${ }^{1}$, joint work with Morten \varnothing ygarden ${ }^{2}$

Eurocrypt 2023, April 27
${ }^{1}$ Inria Paris \& Sorbonne Université
${ }^{2}$ Simula UiB

Decoding Problem over \mathbb{F}_{q}

$\boldsymbol{G} \hookleftarrow \mathcal{U}\left(\mathbb{F}_{q}^{k \times n}\right)$ full-rank, $\boldsymbol{m} \hookleftarrow \mathcal{U}\left(\mathbb{F}_{q}^{k}\right)$ Error $\boldsymbol{e}, t \stackrel{\text { def }}{=} \mathrm{HW}(\boldsymbol{e})$ small

Parity-check $\boldsymbol{H} \hookleftarrow \mathcal{U}\left(\mathbb{F}_{q}^{(n-k) \times n}\right)$ full-rank

LPN ?

Secret size k, number of samples $n=k^{1+\alpha}, 0<\alpha<1$, tiny noise

Regular Syndrome Decoding (RSD)

Assume $n=N \times t$ for some $N \in \mathbb{N}$ (blocksize)

Regular error [AFS05]

- For $1 \leq i \leq t$, random $\boldsymbol{e}_{i} \in \mathbb{F}_{q}^{N}, \operatorname{HW}\left(\boldsymbol{e}_{i}\right)=1$
- Error is $e \stackrel{\text { def }}{=}\left(e_{1}, \ldots, e_{t}\right) \in \mathbb{F}_{q}^{n}$

Use case: Secure Computation [Haz+18]

Pseudorandom Correlation Generators (PCGs) [Boy+19]

\rightarrow Correlated randomness

[^0]
PCG for Vector OLE [Boy+19]

Want shares of long pseudorandom u

1. Function Secret Sharing $\rightarrow t$-sparse vector \boldsymbol{e}
2. Decoding/LPN \rightarrow final \boldsymbol{u}

LPN, 2 ways !
Code rate $R \stackrel{\text { def }}{=} k / n$

Primal	Dual
$u=\boldsymbol{m} \boldsymbol{G}+\boldsymbol{e}$	$u=\boldsymbol{e} \boldsymbol{H}^{\top}$
Very low R	Constant R

Regular $\boldsymbol{e} \rightarrow$ reduce FSS cost

Known attacks on RSD

Do NOT exploit regular noise!

- "Folklore": guess k error-free positions in $\boldsymbol{e}+$ Gauss
- ISD (cf. Andre's talk), Statistical Decoding...
\rightarrow Tiny noise: "Folklore" is better

Contribution

1st algebraic attack on RSD

- Tailored to regular noise
- Can beat "Folklore" /ISD for low code rates (Primal)
(Naive) algebraic system for $q=2$

Modeling regular structure

Polynomial ring $R \stackrel{\text { def }}{=} \mathbb{F}_{2}\left[\left(e_{i, j}\right)_{i, j}\right], n$ variables, block $e_{i} \stackrel{\text { def }}{=}\left(e_{i, 1}, \ldots, e_{i, N}\right) \in \mathbb{F}_{2}^{N}$
Coordinates $\in \mathbb{F}_{2}$ (field equations)

$$
\begin{equation*}
\forall i, \forall j, e_{i, j}^{2}-e_{i, j}=0 . \tag{1}
\end{equation*}
$$

One $\neq 0$ coordinate per block

$$
\begin{equation*}
\forall i, \forall j_{1} \neq j_{2}, e_{i, j_{1}} e_{i, j_{2}}=0 . \tag{2}
\end{equation*}
$$

Over \mathbb{F}_{2}, this coordinate is 1

$$
\begin{equation*}
\forall i, \sum_{j=1}^{N} e_{i, j}=1 . \tag{3}
\end{equation*}
$$

We consider $\mathcal{Q} \stackrel{\text { def }}{=}(1) \cup(2) \cup(3)$

Parity-checks $e H^{\top}=s$

Linear equations ($\boldsymbol{h}_{i} i$-th row in \boldsymbol{H})

Parity-checks

$$
\mathcal{P} \stackrel{\text { def }}{=}\left\{\forall i \in\{1 . . n-k\},\left\langle\boldsymbol{h}_{i}, \boldsymbol{e}\right\rangle-s_{i}\right\}
$$

More when R small:

$$
\# \mathcal{P}=n-k=n(1-R)
$$

Solving algorithms

$1) \times$ monomials $\quad \rightarrow$ Macaulay matrix $\boldsymbol{M}_{\boldsymbol{d}}$ (here, homogeneous)

2) RowEchelon $\left(\boldsymbol{M}_{d}\right)$ for $d \leq D$

Cost $\exp (D)$, but which D ?

Analysis

Hilbert series (HS)

Homogeneous ideal I, $R_{d} \stackrel{\text { def }}{=} \operatorname{span}\{\mu, \operatorname{deg}(\mu)=d\}, I_{d} \stackrel{\text { def }}{=} / \cap R_{d}$

HS are nice

But unknown in general :(

$$
\mathcal{H}_{R / I}(z) \stackrel{\text { def }}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d}=\sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d}\right) z^{d}-\sum_{d \in \mathbb{N}} \operatorname{Rank}\left(\boldsymbol{M}_{d}\right) z^{d}
$$

- Highest degree parts in $\mathcal{S} \stackrel{\text { def }}{=} \mathcal{P} \cup \mathcal{Q}$

$$
I \stackrel{\text { def }}{=}\left\langle\mathcal{S}^{(h)}\right\rangle=\left\langle\mathcal{P}^{(h)}\right\rangle+\left\langle\mathcal{Q}^{(h)}\right\rangle
$$

- I zero-dimensional:

$$
\mathcal{H}_{R / I}(z) \text { polynomial of degree } D-1
$$

Structural part \mathcal{Q}

Easy to handle

$$
\mathcal{Q}^{(h)}=\underbrace{\left\{\forall i \in\{1 . . t\}, \forall j \in\{1 . . N\}, e_{i, j}^{2}\right\}}_{(1)} \cup \underbrace{\left\{\forall i, \forall j_{1} \neq j_{2}, e_{i, j_{1}} e_{i, j_{2}}\right\}}_{(2)} \cup \underbrace{\left\{\forall i, \sum_{j=1}^{N} e_{i, j}\right\}}_{(3)}
$$

HS 1
Combinatorics $\rightarrow \operatorname{dim}\left(R_{d} /\left\langle\mathcal{Q}^{(h)}\right\rangle_{d}\right)=\binom{t}{d}(N-1)^{d}$

$$
\mathcal{H}_{R /\left\langle\mathcal{Q}^{(h)}\right\rangle}(z)=(1+(N-1) z)^{t}
$$

Parity-checks \mathcal{P}

Require assumption. Hope: HS known for random systems

Assumption (\approx semi-regularity)

$\mathcal{P}^{(h)}$ behaves randomly in quotient $R /\left\langle\mathcal{Q}^{(h)}\right\rangle$

We have $\left\langle\mathcal{S}^{(h)}\right\rangle=\left\langle\mathcal{P}^{(h)}\right\rangle+\left\langle\mathcal{Q}^{(h)}\right\rangle$. Under Assumption, we get

$$
\mathcal{H}_{R /\left\langle\mathcal{S}^{(h)}\right\rangle}(z)=\left[\frac{\mathcal{H}_{R /\left\langle\mathcal{Q}^{(h)}\right\rangle}(z)}{(1+z)^{n-k}}\right]_{+},
$$

[.] $]_{+}$: truncation after first <0 coef.

HS 2 (under Assumption + using HS 1)

$$
\mathcal{H}_{R /\langle\mathcal{S}(h)\rangle}(z)=\left[\frac{(1+(N-1) z)^{t}}{(1+z)^{n-k}}\right]_{+}
$$

Final cost

Estimate for D

We had $D=\operatorname{deg}\left(\mathcal{H}_{R /\left\langle\mathcal{S}^{(h)}\right\rangle}\right)+1$

$$
\rightarrow 1 \text { st }<0 \text { coef. in generating series }
$$

- Linear algebra on Macaulay matrix $\boldsymbol{M}_{D}, 2 \leq \omega<3$

$$
T_{\text {solve }}(\mathcal{S})=\mathcal{O}\left(\# \operatorname{cols}\left(\boldsymbol{M}_{D}\right)^{\omega}\right)=\mathcal{O}\left(\binom{t}{D}^{\omega}(N-1)^{\omega D}\right)
$$

Improvements

Standard tricks

- Hybrid approach
- XL-Wiedemann

Cost with improvements

Parameters from Boyle et al. [Boy+19], updated analysis by Liu et al. [Liu+22]
Large field: no more $\left\{\forall i, \quad \sum_{j=1}^{N} e_{i, j}=1\right\}$, high degree field eqs

n	k	t	$\mathbb{F}_{2}[$ Liu +22$]$	This work \mathbb{F}_{2}	$\mathbb{F}_{2^{128}}[$ Liu+22]	This work $\mathbb{F}_{2^{128}}$
2^{22}	64770	4788	147	$\mathbf{1 0 4}$	156	$\mathbf{1 1 1}$
2^{20}	32771	2467	143	$\mathbf{1 2 6}$	155	$\mathbf{1 3 1}$
2^{18}	15336	1312	139	$\mathbf{1 2 3}$	153	$\mathbf{1 3 3}$
2^{16}	7391	667	135	141	151	151
2^{14}	3482	338	132	140	150	152
2^{12}	1589	172	131	136	155	$\mathbf{1 5 2}$
2^{10}	652	106	176	$\mathbf{1 4 6}$	194	$\mathbf{1 8 0}$

[^0]: [AFS05] Augot, Finiasz, and Sendrier. "A Family of Fast Syndrome Based Cryptographic Hash Functions". MYCRYPT 2005.
 [Haz+18] Hazay et al. TinyKeys: A New Approach to Efficient Multi-Party Computation.
 [Boy+19] Boyle et al. Compressing Vector OLE.

