Let Attackers Program Ideal Models: Modularity and Composability for Adaptive Compromise

Joseph Jaeger

2 Second Summary

SIM-AC definitions
[Jaeger, Tyagi C'20]

SIM*-AC definitions
[this work]

2 Second Summary

SIM-AC definitions
[Jaeger, Tyagi C'20]

SIM*-AC definitions
[this work]

Key Differences:

- Simulator explicitly program ideal model
- Attacker allowed to program ideal model
- Universal quantification of simulator

(See also: Adaptive Corruptions/Security, Selective Opening Attacks, Non-committing encryption...)

(See also: Adaptive Corruptions/Security, Selective Opening Attacks, Non-committing encryption...)

(See also: Adaptive Corruptions/Security, Selective Opening Attacks, Non-committing encryption...)

(See also: Adaptive Corruptions/Security, Selective Opening Attacks, Non-committing encryption...)

Arises in many settings

(See also: Adaptive Corruptions/Security, Selective Opening Attacks, Non-committing encryption...)

Arises in many settings

Primitives: Secure Computation, Commitment Schemes, Encryption, PRFs...

Definitional Frameworks: Game-based, Simulation-based (UC, CC, ...)

Online Simulation Setting

Real World

Online Simulation Setting

Real World

$X \mid Y = \Pi(X)$

$$\mathbf{Adv}(A) = \Pr[A(\Pi) = 1] - \Pr[A(S) = 1]$$

Online Simulation Setting

Real World

Ideal World

$$\mathbf{Adv}(A) = \Pr[A(\Pi) = 1] - \Pr[A(S) = 1]$$

Symmetric Encryption (SIM-AC-CPA)

Real World

Online Simulation Setting

Real World

Ideal World

$$\mathbf{Adv}(A) = \Pr[A(\Pi) = 1] - \Pr[A(S) = 1]$$

Symmetric Encryption (SIM-AC-CPA)

Real World

Pseudorandom Function (SIM-AC-PRF)

Real World

Symmetric Encryption (SIM-AC-CPA)

Real World

Pseudorandom Function (SIM-AC-PRF)

Symmetric Encryption (SIM-AC-CPA)

Real World

Real World

Ideal World

Pseudorandom Function (SIM-AC-PRF)

Symmetric Encryption (SIM-AC-CPA)

Real World

Real World

Ideal World

Ideal World

Not shown:

Requires ideal model.

[Nielsen C'02]

Multi-user definitions.

High-level proofs:

Searchable encryption Revocable Cloud Storage OPAQUE

High-level proofs:

Searchable encryption
Revocable Cloud Storage
OPAQUE

Intermediate-level proofs:

CTR, CBC, ...
Enc-then-Mac

High-level proofs:

Searchable encryption
Revocable Cloud Storage
OPAQUE

Intermediate-level proofs:

CTR, CBC, ...
Enc-then-Mac

Low-level proofs:

Random oracle PRF Ideal cipher PRF

Current work shows shortcomings here

Current work shows shortcomings here

High-level proofs:

Searchable encryption Revocable Cloud Storage OPAQUE

Intermediate-level proofs:

CTR, CBC, ...
Enc-then-Mac

Low-level proofs:

Random oracle PRF Ideal cipher PRF

1. SIM-AC and it shortcomings.

- 1. SIM-AC and it shortcomings.
- 2. SIM*-AC and it solution to shortcomings.
 - Multiple schemes with same primitive
 - Multiple uses of same scheme
 - Single-user security → Multi-user security

- 1. SIM-AC and it shortcomings.
- 2. SIM*-AC and it solution to shortcomings.
 - Multiple schemes with same primitive
 - Multiple uses of same scheme
 - Single-user security → Multi-user security
- 3. Recovering prior results: SIM-AC results hold with SIM*-AC.

- 1. SIM-AC and it shortcomings.
- 2. SIM*-AC and it solution to shortcomings.
 - Multiple schemes with same primitive
 - Multiple uses of same scheme
 - Single-user security → Multi-user security
- 3. Recovering prior results: SIM-AC results hold with SIM*-AC.
- 4. SIM*-AC for asymmetric encryption.
 - Comparisons to prior definitions
 - KEM/DEM hybrid encryption
 - Fujisaki-Okamoto style transforms

Real World

SIM-AC-PRF

Does single-user security → multi-user security?

Does single-user security → multi-user security?

Real World

Does single-user security → multi-user security?

Real World

$$\frac{\mathsf{Eval}}{\mathsf{Exp}}$$

Does single-user security → multi-user security?

Real World

 $\frac{\mathbf{Eval}}{\mathbf{\Pi}_2}$

Hybrid World

Ideal World

Eval
S₂
Exp

Does single-user security → multi-user security?

Real World

Ideal World

Exp

Does single-user security → multi-user security?

Does single-user security → multi-user security?

Real World

 $\frac{\mathbf{Eval}}{\mathbf{\Pi}_2}$

Hybrid World

Ideal World

Eval
S₂
Exp

Does single-user security → multi-user security?

Eval Eval **Real World** Exp Exp Eval Eval **Hybrid World** Exp Exp Eval Eval **Ideal World** Exp Exp

Does single-user security → multi-user security?

Eval Eval **Real World** Π_2 Exp Exp Eval Eval **Hybrid World** Exp Exp Eval Eval **Ideal World** Exp Exp

Does single-user security → multi-user security?

Eval Eval **Real World** Π_2 Exp Exp Eval Eval **Hybrid World** Exp Exp Eval Eval **Ideal World** Exp Exp

1. SIM-AC Shortcomings

Eval

Exp

Does single-user security → multi-user security?

Eval

Exp

Real World

Simulator completely replacing P prevents reuse.

Hybrid World

Ideal World

1. SIM-AC Shortcomings

Does single-user security → multi-user security?

Real World

Simulator completely replacing P prevents reuse.

Hybrid World

Ideal World

Multiple uses of the same scheme:

Multi-user security

Cascade PRF

Searchable encryption*

Multiple schemes with the same primitive:

Searchable encryption*

Revocable Cloud Storage*

Enc-then-Mac*

One "solution", don't re-use P.

Paper 2020/241

Separate Your Domains: NIST PQC KEMs, Oracle Cloning and Read-Only Indifferentiability

Mihir Bellare, Hannah Davis, and Felix Günther

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Ideal World

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Have S explicitly program P.

Ideal World

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Real World

Hybrid World

Ideal World

$$\begin{array}{|c|c|c|c|}\hline Eval \\\hline Exp & & & & \\\hline Exp & & & & \\\hline \end{array}$$

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Eval **Real World** Eval val **Hybrid World** Exp Eval Eval **Ideal World** Exp Exp

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Eval Eval **Real World** Π_2 Π_1 Exp Exp Eval Eval **Hybrid World** Π_2 Exp Exp Eval Eval **Ideal World** Exp Exp

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Eval Eval **Real World** Π_2 Π_1 Exp Exp Eval Eval **Hybrid World** Π_2 Exp Exp Eval Eval **Ideal World** Exp Exp

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Have S and Adversary explicitly program P.

Eval Eval **Real World** Π_2 Exp Exp Eval Eval **Hybrid World** Exp Exp Eval Eval **Ideal World** Exp Exp

Modify ideal primitive

Lazy sampling - Define P(x) when needed. Programmable - Give (x,y) to define P(x)=y.

Have S and Adversary explicitly program P.

Multiple uses of the same scheme:

Multi-user security

Cascade PRF

Searchable encryption*

New proofs for both of these.

Super-constant rounds/users needs universal simulator.

Multiple schemes with the same primitive:

Searchable encryption*

Revocable Cloud Storage*

Enc-then-Mac*

High-level proofs:

Searchable encryption
Revocable Cloud Storage
OPAQUE

Intermediate-level proofs:

CTR, CBC, ...
Enc-then-Mac

Low-level proofs:

Random oracle PRF Ideal cipher PRF

High-level proofs:

Free!
SIM*-AC → SIM-AC

Intermediate-level proofs:

CTR, CBC, ...
Enc-then-Mac

Low-level proofs:

Random oracle PRF Ideal cipher PRF

High-level proofs:

Free!
SIM*-AC → SIM-AC

Intermediate-level proofs:

"Free"
Sufficiently blackbox

Low-level proofs:

Not free, rewrite proofs
Basically same bounds
prim queries → # prim + prog

Real World

Sender Exposure: Encryption randomness Receiver Exposure: Decryption key

SIM*-AC-CCA

Real World

Sender Exposure: Encryption randomness Receiver Exposure: Decryption key

SIM*-AC-CCA

Ideal World

Real World

Sender Exposure: Encryption randomness Receiver Exposure: Decryption key

SIM*-AC-CCA

Ideal World

KEM definitions as well!

- Enc → Encaps
- Dec → Decaps
- Random key when ideal

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Relationships:

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Relationships:

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation

Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz

SIM*-AC-CCA

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Relationships:

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Relationships:

UC-Secure Non-Interactive Public-Key Encryption

Jan Camenisch*, Anja Lehmann*, Gregory Neven*, Kai Samelin*§

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable Data Encapsulation

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Relationships:

UC-Secure Non-Interactive Public-Key Encryption

Jan Camenisch*, Anja Lehmann*, Gregory Neven*, Kai Samelin*§

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto Transformation

Positive results

KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM \rightarrow SIM*-AC-X PKE for X = CPA, CCA

Paper 2016/845

Selective Opening Security from Simulatable **Data Encapsulation**

Felix Heuer and Bertram Poettering

IND-CCA KEM + (Perm + INT-CTXT + Simulatable) DEM

 \rightarrow

SIM-SO-CCA PKE

DHIES: An encryption scheme based on the Diffie-Hellman Problem

Michel Abdalla*

Mihir Bellare[†]

Phillip Rogaway[‡]

Hashed KEM: SIM*-AC-CPA/CCA from forms of one-wayness + RO.

Relationships:

UC-Secure Non-Interactive Public-Key Encryption

Jan Camenisch*, Anja Lehmann*, Gregory Neven*, Kai Samelin*§

Paper 2017/604

A Modular Analysis of the Fujisaki-Okamoto **Transformation**

Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz

Georgia Tech College of Computing School of Cybersecurity and Privacy

Let Attackers Program Ideal Models

Our Contributions

- 1. SIM-AC and it shortcomings.
- 2. SIM*-AC and it solution to shortcomings.
 - Multiple schemes with same primitive
 - Multiple uses of same scheme
 - Single-user security → Multi-user security
- 3. Recovering prior results: SIM-AC results hold with SIM*-AC.
- 4. SIM*-AC for asymmetric encryption.
 - Comparisons to prior definitions
 - KEM/DEM hybrid encryption
 - Fujisaki-Okamoto style transforms

