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Key Differences:

e Simulator explicitly program ideal model
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Adaptive Compromise Setting

(See also: Adaptive Corruptions/Security, Selective Opening Attacks, Non-committing encryption...)

Arises in many settings

Primitives: Secure Computation, Commitment Schemes, Encryption, PRFs...

Definitional Frameworks: Game-based, Simulation-based (UC, CC, ...)
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SIM-AC Definitions [Jaeger, Tyagi C’20]

Pseudorandom Function Symmetric Encryption
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Benefits of SIM-AC [Jaeger, Tyagi C’20]

/

T4

App1

4

SIM-AC-CPA /CCA

App2

=<
SIM-AC-PRF

A AN F

N\

N\

N\

Apps;

Modeq

Modes

Modes

PRIy

[
PRF-

PRF;

Georgia Tech College of Computing

School of Cybersecurity
and Privacy



Benefits of SIM-AC [Jaeger, Tyagi C’20]

SIM-AC-PRF
A 4~ F

/

---- .. Cegr ~FPal X - L

W, - leo o o i i R ok o
&
o8
-
p ‘.;

App2

pesl o g 0y Lo S SmC e izt N
£
Apps | §
’ )

SIM-AC-CPA/CCA |}

T
=

’ I

N\

N\

N\

Modeq

Modes

Modes

PRIy

[
PRF-

PRF;

High-level proofs:

Searchable encryption
Revocable Cloud Storage

OPAQUE

Georgia Tech College of Computing

School of Cybersecurity
and Privacy



Benefits of SIM-AC [Jaeger, Tyagi C’20]

X. -

/

T4

App1

4

A . a-¢ o

App2

=

N\

N\

N\

Apps;

S LR TR, B ORI - L. PV T ORIl A RS VR, BB ORI -2 - R AD O3 . IR R IR V. B IO -t O] O It e BT 1 S 8 L PN - O
N\
8
— — &
¥
O
5

{ Intermediate-level proofs:

PRIy

[
PRF-

PRF;

t | SIM-AC-PRF Mode; | | Modes | | Modes | #

High-level proofs:

Searchable encryption
Revocable Cloud Storage

OPAQUE

CTR, CBC, ...
Enc-then-Mac

I®

Georgia Tech College of Computing

School of Cybersecurity
and Privacy
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1. SIM-AC and it shortcomings.

2. SIM*-AC and it solution to shortcomings.

- Multiple schemes with same primitive
- Multiple uses of same scheme
- Single-user security = Multi-user security

3. Recovering prior results: SIM-AC results hold with SIM*-AC.

4. SIM*-AC for asymmetric encryption.

- Comparisons to prior definitions
- KEM/DEM hybrid encryption
- Fujisaki-Okamoto style transforms
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1. SIM-AC Shortcomings
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1. SIM-AC Shortcomings

Does single-user security — multi-user security?

Real World
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Ideal World
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Simulator completely replacing P prevents reuse.

Multiple uses of the same scheme;

Multi-user security
Cascade PRF
Searchable encryption®

Multiple schemes with the same primitive:
Searchable encryption®
Revocable Cloud Storage”

Enc-then-Mac*
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2. SIM*-AC Solution

One “solution”, don’t re-use P.

Paper 2020/241

Separate Your Domains: NIST PQC KEMs, Oracle
Cloning and Read-Only Indifferentiability

Mihir Bellare, Hannah Davis, and Felix Gunther
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2. SIM*-AC Solution Modify ideal primitive

Lazy sampling - Define P(x) when needed.
Programmable - Give (X,y) to define P(x)=y.
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Modify ideal primitive

- Define P(x) when needed.
- Give (X,y) to define P(x)=y.
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Real World

Hybrid World

Ideal World

P
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2. SIM*-AC Solution

Multiple uses of the same scheme:  New proofs for both of these.

Multi-user security I/ Super-constant rounds/users needs universal simulator.
Cascade PRF
Searchable encryption®

Multiple schemes with the same primitive:
Searchable encryption”
Revocable Cloud Storage”
Enc-then-Mac”
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4. SIM*-AC For Asymmetric Encryption
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4. SIM*-AC For Asymmetric Encryption
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4. SIM*-AC For Asymmetric Encryption

Positive results
KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM — SIM*-AC-X PKE for X = CPA, CCA
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4. SIM*-AC For Asymmetric Encryption

Positive results
KEM/DEM: SIM*-AC-X KEM + SIM*-AC-X DEM — SIM*-AC-X PKE for X = CPA, CCA
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Our Contributions

1. SIM-AC and it shortcomings.

2. SIM*-AC and it solution to shortcomings.

- Multiple schemes with same primitive
- Multiple uses of same scheme
- Single-user security = Multi-user security

3. Recovering prior results: SIM-AC results hold with SIM*-AC.

4. SIM*-AC for asymmetric encryption.

- Comparisons to prior definitions
- KEM/DEM hybrid encryption
- Fujisaki-Okamoto style transforms
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