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The Chaghri Primitive

Proposed at ACM CCS 2022

FHE-friendly block cipher

Outperforms AES (in FHE setting) by 65%

Over a large finite field F3
263
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m = 3, S(x) = x2
32+1, B(x) = c0x

23 + c1,

M : MDS matrix, #rounds = 16
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Breaking and Rescuing Chaghri

Broke Chaghri in less than 3 weeks after its publication

Three different ways for the degree evaluation:

Method 1 (not tight but useful to break Chaghri)
Method 2 (tighter but only efficient for Chaghri)
Coefficient grouping (for a general construction)

Identified countermeasures after breaking it

Impact of our attack

The designers of Chaghri have revised their designs with our
proposed countermeasures:

B(x) = c0x
28 + c1x

22 + c2x + c3
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Basic Knowledge for Fpn

Polynomial basis

Let f be an irreducible polynomial over Fpn and f (α) = 0. Then,
{1, α, . . . , αn−1} is called a polynomial basis of Fpn . In this way,
each element x ∈ Fpn can be represented as

x =
n−1∑
i=0

βiα
i , βi ∈ [0, p − 1],

i.e. x is uniquely represented by (β0, . . . , βn−1) ∈ Fn
p.
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Basic Knowledge for Fpn

Well-known properties
(x + y)p

i
= xp

i
+ yp

i
, ∀x , y ∈ Fpn ,

xp
n
= x , ∀x ∈ Fpn ,

xp
n−1 = 1, ∀x ∈ Fpn and x ̸= 0.
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Higher-order Differential Attack over F2n

Algebraic degree of a univariate polynomial F(X ) in F2n [X ]

Let

F(X ) =
2n−1∑
i=0

uiX
i .

Then, its algebraic degree DF is defined as:

DF = max{H(i) : i ∈ [0, 2n − 1], ui ̸= 0},

where H(i) denotes the hamming weight of the integer i , i.e., the
number of ”1” in its binary representation.

Example

For F = X 230+231 + X 21+23+24 , we have DF = 3.
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Higher-order Differential Attack over F2n

Higher-order differential attack over F2n

Let

F(X ) =
2n−1∑
i=0

uiX
i .

With the polynomial basis, each X is uniquely represented by a
vector (β0, . . . , βn−1) ∈ Fn

2.
In this way, we have

∑
(β0,β1,...,βn−1)∈V

F(
n−1∑
i=0

βiα
i ) = 0 for Dim(V ) ≥ DF + 1
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Previous Work on MiMC

Round function: R(x) = S(x) + Ki where

S(x) = x3.

Upper bound on the algebraic degree after r rounds:
Pr (x) : the polynomial representation after r rounds:
If 3r < 2n, there must be

DPr ≤ ⌈log2 3r⌉ ≈ r log2 3.

Good enough to break MiMC over F2n .

Follow-up work for the case S(x) = x2
d+1: If (2d + 1)r < 2n,

there must be

DPr ≤ ⌈log2(2d + 1)r⌉ ≈ rd .

Too loose for large d , e.g. the case of Chaghri.
How about larger r such that (2d + 1)r ≥ 2n, i.e., the set of
exponents are within modulo 2n − 1.
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Degree Evaluation for Chaghri: Method 2

The round function:

S(x) = x2
32+1, B(x) = c0x

23 + c1.

State transitions:

(z0,1, z0,2, z0,3) → (z1,1, z1,2, z1,3) → · · · → (zr ,1, zr ,2, zr ,3)

· · · · · ·
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Degree Evaluation for Chaghri: Method 2

Our very naive idea:

Step 1: set the input as a univariate polynomial in X :

z0,1 = A0,1X + B0,1,

z0,2 = A0,2X + B0,2,

z0,3 = A0,3X + B0,3.

• zr ,i is always a univariate polynomial Pr ,i (X ) ∈ F2n [X ].

Step 2: trace the evolution of Pr ,i .

Step 3: compute all possible exponents in Pr ,i . (practical???)

Step 4: find the exponent with the maximal hamming weight
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Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

New representation for (zr ,1, zr ,2, zr ,3)

zr ,1 =

|wr |∑
i=1

Ar ,iX
wr,i , zr ,2 =

|wr |∑
i=1

Br ,iX
wr,i , zr ,3 =

|wr |∑
i=1

Cr ,iX
wr,i

The set of all possible exponents after r rounds:

wr = {wr ,1,wr ,2, . . . ,wr ,|wr |} ⊆ N, w0 = {0, 1}.

Goal: find a relation between wr and wr+1 to compute wr

iteratively.
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Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

Through S(x) = x2
32+1:

S(zr ,1) = (

|wr |∑
i=1

Ar ,iX
wr,i )2

32+20

= (

|wr |∑
i=1

Ar ,iX
wr,i )2

32 × (

|wr |∑
i=1

Ar ,iX
wr,i )2

0

=

|wr |∑
i=1

|wr |∑
j=1

Ar ,i ,jX
232wr,i+20wr,j .

where Ar ,i ,j ∈ F2n are key-dependent coefficients.

13 / 28



Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

Through B(x) = x2
3
:

B ◦ S(zr ,1) = c0

( |wr |∑
i=1

|wr |∑
j=1

Ar ,i ,jX
(232wr,i+20wr,j )

)23

+ c1

=

|wr |∑
i=1

|wr |∑
j=1

A′
r ,i ,jX

235wr,i+23wr,j .

The matrix M does not affect this representation:

zr+1,1 =

|wr |∑
i=1

|wr |∑
j=1

Ar+1,i ,jX
235wr,i+23wr,j
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Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

The relation between wr and wr+1 is obtained as

wr+1 = {M63(e)|e = 235wr ,i + 23wr ,j , 1 ≤ i , j ≤ |wr |},

where we define

Mn(x) =

{
2n − 1 if 2n − 1|x , x ≥ 2n − 1,

x%(2n − 1) otherwise.

due to {
x2

n
= x ∀x ∈ F2n ,

x2
n−1 = 1 ∀x ∈ F2n and x ̸= 0.

Why previous methods failed: they can not handle the
modular addition!!!
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Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

The relation between wr and wr+2 is obtained as

wr+1 = {M63(e) | e = 235wr,i + 23wr,j , 1 ≤ i, j ≤ |wr |},

wr+2 = {M63(e) | e = 235(235wr,i + 23wr,j ) + 23(235wr,s + 23wr,t ), 1 ≤ i, j, s, t ≤ |wr |},

= {M63(e) | e = 238(wr,i + wr,s ) + 27wr,i + 26wr,t , 1 ≤ i, j, s, t ≤ |wr |},

Why we consider wr+2: 2 rounds are treated as 1 round in
Chaghri.

Throughout this slide, we have

wr = {wr ,1,wr ,2, . . . ,wr ,|wr |}.

16 / 28



Degree Evaluation for Chaghri: Method 2

Step 3: Compute wr

Initial set:

w0 = {0, 1}.

Compute wr+2 with

wr+2 = {M63(e) | e = 238(wr ,i + wr ,s) + 27wr ,i + 26wr ,t ,

1 ≤ i , j , s, t ≤ |wr |}.

Naive enumeration quickly becomes impractical as |wr | is too
large even for small r .
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Degree Evaluation for Chaghri: Method 2

Step 3: Compute wr

New observation:

wr ⊆ {e = eH ∨ eL | eH ∧ eL = 0, eH ∈ wH
r , eL ∈ wL

r }.

wH
r and wL

r are much smaller (computed independently).

Practically compute wH
r and wL

r for r = 16!!!
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Degree Evaluation for Chaghri: Method 2

Step 4: Find the element with the maximal hamming weight in wr

The relation:

wr ⊆ {e = eH ∨ eL | eH ∧ eL = 0, eH ∈ wH
r , eL ≤ wL

r },
w0 = {0, 1}, wH

0 = {0}, wL
0 = {0, 1}

The maximal hamming weight:

max{H(i) | i ∈ wH
r }+max{H(i) | i ∈ wL

r }.

Get the upper bound (37): break Chaghri with time O(238).

Chaghri is broken. But not yet over. Not elegant enough!!!
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Coefficient Grouping Technique

Motivation

Do we really need to compute wr round by round?

The method is too dedicated for the parameters of Chaghri,
i.e. S(x),B(x).

Can we have a more elegant and general method that can
work for any

S(x) = x2
k0+2k1 ,B(x) = c1x

2k2 + c2

and a general finite field F2n?
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Coefficient Grouping Technique

Using S(x) = x2
k0+2k1 ∈ F2n [x ], B(x) = c1x

2k2 + c2 ∈ F2n [x ]

Relation between wr and wr+1:

wr+1 = {Mn(e) | e = 2k0+k2wr,i + 2k1+k2wr,j , 1 ≤ i, j ≤ |wr |}

Relation between wr and wr+2:

wr+2

= {Mn(e) | e = 2k0+k2 (2k0+k2wr,i + 2k1+k2wr,j ) + 2k1+k2 (2k0+k2wr,s + 2k1+k2wr,t ),

1 ≤ i, j, s, t ≤ |wr |}

= {Mn(e) | e = 22k0+2k2wr,i + 2k0+k1+2k2 (wr,j + wr,s ) + 22k1+2k2wr,t ,

1 ≤ i, j, s, t ≤ |wr |}.
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Coefficient Grouping Technique

Using S(x) = x2
k0+2k1 ∈ F2n [x ], B(x) = c1x

2k2 + c2 ∈ F2n [x ]

Relation between wr and wr+ℓ:

wr+ℓ = {Mn(e) | e =

Nn−1∑
i=1

2n−1wr,di,n−1
+

Nn−2∑
i=1

2n−2wr,di,n−2
+ . . . +

N0∑
i=1

20wr,di,0
,

where 1 ≤ di,j ≤ |wr | for 0 ≤ j ≤ n − 1}.

Group all possible Nj coefficients sharing the same factor 2j :

wr ,d1,j ,wr ,d2,j , . . . ,wr ,dNj ,j
∈ wr (r = 0, w0 = {0, 1}),

i.e., in the formula of e, 2jwr ,di,j is possible to appear

wr+ℓ is fully described by a vector (Nn−1, . . . ,N0) and wr .
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Coefficient Grouping Technique

New representation of wr

r = 0:

w0 = {0, 1} = {Mn(e) | e = 20w0,i , 1 ≤ i ≤ 2 = |w0|},
→ (N0,n−1, . . . ,N0,1) = (0, . . . , 0), N0,0 = 1.

Relation between wr and wr+1:

wr+1 = {Mn(e) | e = 2k0+k2wr ,i + 2k1+k2wr ,j , 1 ≤ i , j ≤ |wr |}

Find (Nr ,n−1, . . . ,Nr ,0) to represent wr :

Nr+1,i = Nr ,(i−(k1+k2))%n + Nr ,(i−(k0+k2))%n for 0 ≤ i ≤ n − 1.

(Nr ,n−1, . . . ,Nr ,0) can be computed in time O(n).
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Coefficient Grouping Technique

Finding two representations of wr

Representation 1 of wr :

wr =

{
Mn(e) | e =

Nr,n−1∑
i=1

2n−1wr,di,n−1
+

Nr,n−2∑
i=1

2n−2wr,di,n−2
+ . . . +

Nr,0∑
i=1

20wr,di,0
,

where 1 ≤ di,j ≤ |w0| for 0 ≤ j ≤ n − 1 and w0 = {0, 1}
}
.

For each term 2j , there are Nj possible coefficients

wr ,d1,j ,wr ,d2,j , . . . ,wr ,dNj ,j
∈ w0 = {0, 1},

which implies
∑Nr,j

i=1 2
jwr ,di,j ∈ {2jγj | 0 ≤ γj ≤ Nr ,j}.
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Coefficient Grouping Technique

Finding e ∈ wr with H(e) maximal

Representation 2 of wr :

wr = {Mn(e) | e =
n−1∑
i=0

2iγi , 0 ≤ γi ≤ Nr ,i}.

Problem reduction (optimization problem):

maximize H

(
Mn(

n−1∑
i=0

2iγi )

)
,

subject to 0 ≤ γi ≤ Nr ,i for i ∈ [0, n − 1].

Solved in time O(n)!!! or by blackbox solvers.

• finding and proving the O(n) algorithm require significant
additional work
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Breaking Chaghri and even More rounds

Table: The upper bounds of the algebraic degree for Chaghri

r 0 2 4 6 8 10 12 14 16 18 20 22 24 25 26

deg 1 3 7 12 17 22 27 32 37 42 47 52 58 60 63
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Rescuing Chaghri

Achieving an (almost) exponential degree growth

The slow growth is mainly caused by a sparse polynomial of
B(x), i.e. B(x) = c0x

23 + c1

Reason: the growth of the number of possible monomials is
highly related to the density of B(x)

• requires significant additional work

Intuition: more possible monomials, higher probability that a
monomial with deg = 2r appears

Use B(x) = c0x
28 + c1x

22 + c2x + c3 instead
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Conclusion

An efficient degree evaluation technique in time O(n) for a
special cipher over F2n

Be careful of the symmetric-key primitive design over a large
finite field! (less understood)

Open problem: other novel cryptanalytic techniques for
ciphers over a large finite field
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