Coefficient Grouping: Breaking Chaghri and More

Fukang Liu ${ }^{1}$, Ravi Anand ${ }^{2}$, Libo Wang ${ }^{2,4}$, Willi Meier ${ }^{5}$, Takanori Isobe ${ }^{2,3}$
${ }^{1}$ Tokyo Institute of Technology, Japan
${ }^{2}$ University of Hyogo, Japan
${ }^{3}$ NICT, Japan
${ }^{4}$ Jinan University, China
${ }^{5}$ FHNW, Switzerland

April 25, EUROCRYPT 2023

Outline

1 Introduction

2 Degree Evaluation for Chaghri

3 Coefficient Grouping Technique

4 Application to Chaghri

5 Conclusion

The Chaghri Primitive

- Proposed at ACM CCS 2022
- FHE-friendly block cipher
- Outperforms AES (in FHE setting) by 65\%
- Over a large finite field $\mathbb{F}_{2^{63}}^{3}$

$m=3, \quad S(x)=x^{2^{32}+1}, \quad B(x)=c_{0} x^{2^{3}}+c_{1}$,
M : MDS matrix, $\quad \#$ rounds $=16$

Breaking and Rescuing Chaghri

■ Broke Chaghri in less than 3 weeks after its publication

- Three different ways for the degree evaluation:

■ Method 1 (not tight but useful to break Chaghri)

- Method 2 (tighter but only efficient for Chaghri)
- Coefficient grouping (for a general construction)

■ Identified countermeasures after breaking it

Impact of our attack

The designers of Chaghri have revised their designs with our proposed countermeasures:

$$
B(x)=c_{0} x^{2^{8}}+c_{1} x^{2^{2}}+c_{2} x+c_{3}
$$

Basic Knowledge for $\mathbb{F}_{p^{n}}$

Polynomial basis

Let f be an irreducible polynomial over $\mathbb{F}_{p^{n}}$ and $f(\alpha)=0$. Then, $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is called a polynomial basis of $\mathbb{F}_{p^{n}}$. In this way, each element $x \in \mathbb{F}_{p^{n}}$ can be represented as

$$
x=\sum_{i=0}^{n-1} \beta_{i} \alpha^{i}, \quad \beta_{i} \in[0, p-1],
$$

i.e. x is uniquely represented by $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \mathbb{F}_{p}^{n}$.

Basic Knowledge for $\mathbb{F}_{p^{n}}$

Well-known properties

$$
\left\{\begin{aligned}
(x+y)^{p^{i}} & =x^{p^{i}}+y^{p^{i}}, \forall x, y \in \mathbb{F}_{p^{n}} \\
x^{p^{n}} & =x, \forall x \in \mathbb{F}_{p^{n}} \\
x^{p^{n}-1} & =1, \forall x \in \mathbb{F}_{p^{n}} \text { and } x \neq 0
\end{aligned}\right.
$$

Higher-order Differential Attack over $\mathbb{F}_{2^{n}}$

Algebraic degree of a univariate polynomial $\mathcal{F}(X)$ in $\mathbb{F}_{2^{n}}[X]$

Let

$$
\mathcal{F}(X)=\sum_{i=0}^{2^{n}-1} u_{i} X^{i}
$$

Then, its algebraic degree $D_{\mathcal{F}}$ is defined as:

$$
D_{\mathcal{F}}=\max \left\{H(i): i \in\left[0,2^{n}-1\right], u_{i} \neq 0\right\}
$$

where $H(i)$ denotes the hamming weight of the integer i, i.e., the number of " 1 " in its binary representation.

Example

For $\mathcal{F}=X^{2^{30}+2^{31}}+X^{2^{1}+2^{3}+2^{4}}$, we have $D_{\mathcal{F}}=3$.

Higher-order Differential Attack over $\mathbb{F}_{2^{n}}$

Higher-order differential attack over $\mathbb{F}_{2^{n}}$

Let

$$
\mathcal{F}(X)=\sum_{i=0}^{2^{n}-1} u_{i} X^{i}
$$

With the polynomial basis, each X is uniquely represented by a vector $\left(\beta_{0}, \ldots, \beta_{n-1}\right) \in \mathbb{F}_{2}^{n}$.
In this way, we have

$$
\sum_{\left(\beta_{0}, \beta_{1}, \ldots, \beta_{n-1}\right) \in V} \mathcal{F}\left(\sum_{i=0}^{n-1} \beta_{i} \alpha^{i}\right)=0 \text { for } \operatorname{Dim}(V) \geq D_{\mathcal{F}}+1
$$

Previous Work on MiMC

■ Round function: $R(x)=S(x)+K_{i}$ where

$$
S(x)=x^{3} .
$$

- Upper bound on the algebraic degree after r rounds:
- $P_{r}(x)$: the polynomial representation after r rounds:
- If $3^{r}<2^{n}$, there must be

$$
D_{P_{r}} \leq\left\lceil\log _{2} 3^{r}\right\rceil \approx r \log _{2} 3
$$

- Good enough to break MiMC over $\mathbb{F}_{2^{n}}$.
- Follow-up work for the case $S(x)=x^{2^{d}+1}$: If $\left(2^{d}+1\right)^{r}<2^{n}$, there must be

$$
D_{P_{r}} \leq\left\lceil\log _{2}\left(2^{d}+1\right)^{r}\right\rceil \approx r d
$$

- Too loose for large d, e.g. the case of Chaghri.

■ How about larger r such that $\left(2^{d}+1\right)^{r} \geq 2^{n}$, i.e., the set of exponents are within modulo $2^{n}-1$.

Degree Evaluation for Chaghri: Method 2

- The round function:

$$
S(x)=x^{2^{32}+1}, \quad B(x)=c_{0} x^{2^{3}}+c_{1}
$$

■ State transitions:

$$
\left(z_{0,1}, z_{0,2}, z_{0,3}\right) \rightarrow\left(z_{1,1}, z_{1,2}, z_{1,3}\right) \rightarrow \cdots \rightarrow\left(z_{r, 1}, z_{r, 2}, z_{r, 3}\right)
$$

Degree Evaluation for Chaghri: Method 2

Our very naive idea:

- Step 1: set the input as a univariate polynomial in X :

$$
\begin{aligned}
& z_{0,1}=A_{0,1} X+B_{0,1} \\
& z_{0,2}=A_{0,2} X+B_{0,2} \\
& z_{0,3}=A_{0,3} X+B_{0,3}
\end{aligned}
$$

- $z_{r, i}$ is always a univariate polynomial $P_{r, i}(X) \in \mathbb{F}_{2^{n}}[X]$.

■ Step 2: trace the evolution of $P_{r, i}$.
■ Step 3: compute all possible exponents in $P_{r, i}$. (practical???)
■ Step 4: find the exponent with the maximal hamming weight

Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

■ New representation for $\left(z_{r, 1}, z_{r, 2}, z_{r, 3}\right)$

$$
z_{r, 1}=\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}, z_{r, 2}=\sum_{i=1}^{\left|w_{r}\right|} B_{r, i} X^{w_{r, i}}, z_{r, 3}=\sum_{i=1}^{\left|w_{r}\right|} C_{r, i} X^{w_{r, i}}
$$

- The set of all possible exponents after r rounds:

$$
w_{r}=\left\{w_{r, 1}, w_{r, 2}, \ldots, w_{r,\left|w_{r}\right|}\right\} \subseteq \mathbb{N}, \quad w_{0}=\{0,1\}
$$

- Goal: find a relation between w_{r} and w_{r+1} to compute w_{r} iteratively.

Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

- Through $S(x)=x^{2^{32}+1}$:

$$
\begin{aligned}
S\left(z_{r, 1}\right) & =\left(\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}\right)^{2^{32}+2^{0}} \\
& =\left(\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}\right)^{2^{32}} \times\left(\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}\right)^{2^{0}} \\
& =\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r, i, j} X^{2^{32} w_{r, i}+2^{0} w_{r, j}} .
\end{aligned}
$$

where $A_{r, i, j} \in \mathbb{F}_{2^{n}}$ are key-dependent coefficients.

Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

- Through $B(x)=x^{2^{3}}$:

$$
\begin{aligned}
B \circ S\left(z_{r, 1}\right) & =c_{0}\left(\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r, i, j} X^{\left(2^{32} w_{r, i}+2^{0} w_{r, j}\right)}\right)^{2^{3}}+c_{1} \\
& =\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r, i, j}^{\prime} X^{2^{35} w_{r, i}+2^{3} w_{r, j} .}
\end{aligned}
$$

- The matrix M does not affect this representation:

$$
z_{r+1,1}=\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r+1, i, j} X^{2^{35} w_{r, i}+2^{3} w_{r, j}}
$$

Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

- The relation between w_{r} and w_{r+1} is obtained as

$$
w_{r+1}=\left\{\mathcal{M}_{63}(e)\left|e=2^{35} w_{r, i}+2^{3} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\}\right.
$$

where we define

$$
\mathcal{M}_{n}(x)=\left\{\begin{aligned}
2^{n}-1 & \text { if } 2^{n}-1 \mid x, x \geq 2^{n}-1 \\
x \%\left(2^{n}-1\right) & \text { otherwise }
\end{aligned}\right.
$$

due to

$$
\left\{\begin{aligned}
x^{2^{n}} & =x \forall x \in \mathbb{F}_{2^{n}}, \\
x^{2^{n}-1} & =1 \forall x \in \mathbb{F}_{2^{n}} \text { and } x \neq 0
\end{aligned}\right.
$$

- Why previous methods failed: they can not handle the modular addition!!!

Degree Evaluation for Chaghri: Method 2

Step 2: trace the evolution of polynomials

- The relation between w_{r} and w_{r+2} is obtained as

$$
\begin{aligned}
w_{r+1} & =\left\{\mathcal{M}_{63}(e)\left|e=2^{35} w_{r, i}+2^{3} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\},\right. \\
w_{r+2} & =\left\{\mathcal{M}_{63}(e)\left|e=2^{35}\left(2^{35} w_{r, i}+2^{3} w_{r, j}\right)+2^{3}\left(2^{35} w_{r, s}+2^{3} w_{r, t}\right), 1 \leq i, j, s, t \leq\left|w_{r}\right|\right\},\right. \\
& =\left\{\mathcal{M}_{63}(e)\left|e=2^{38}\left(w_{r, i}+w_{r, s}\right)+2^{7} w_{r, i}+2^{6} w_{r, t}, 1 \leq i, j, s, t \leq\left|w_{r}\right|\right\},\right.
\end{aligned}
$$

■ Why we consider w_{r+2} : 2 rounds are treated as 1 round in Chaghri.

Throughout this slide, we have

$$
w_{r}=\left\{w_{r, 1}, w_{r, 2}, \ldots, w_{r,\left|w_{r}\right|}\right\}
$$

Degree Evaluation for Chaghri: Method 2

Step 3: Compute w_{r}

- Initial set:

$$
w_{0}=\{0,1\} .
$$

- Compute w_{r+2} with

$$
\begin{aligned}
w_{r+2}= & \left\{\mathcal{M}_{63}(e) \mid e=2^{38}\left(w_{r, i}+w_{r, s}\right)+2^{7} w_{r, i}+2^{6} w_{r, t},\right. \\
& \left.1 \leq i, j, s, t \leq\left|w_{r}\right|\right\} .
\end{aligned}
$$

■ Naive enumeration quickly becomes impractical as $\left|w_{r}\right|$ is too large even for small r.

Degree Evaluation for Chaghri: Method 2

Step 3: Compute w_{r}

- New observation:

$$
w_{r} \subseteq\left\{e=e^{H} \vee e^{L} \mid e^{H} \wedge e^{L}=0, e^{H} \in w_{r}^{H}, e^{L} \in w_{r}^{L}\right\} .
$$

- w_{r}^{H} and w_{r}^{L} are much smaller (computed independently).

■ Practically compute w_{r}^{H} and w_{r}^{L} for $r=16!$!!

Degree Evaluation for Chaghri: Method 2

Step 4: Find the element with the maximal hamming weight in w_{r}

- The relation:

$$
\begin{aligned}
& w_{r} \subseteq\left\{e=e^{H} \vee e^{L} \mid e^{H} \wedge e^{L}=0, e^{H} \in w_{r}^{H}, e^{L} \leq w_{r}^{L}\right\}, \\
& w_{0}=\{0,1\}, \quad w_{0}^{H}=\{0\}, \quad w_{0}^{L}=\{0,1\}
\end{aligned}
$$

- The maximal hamming weight:

$$
\max \left\{H(i) \mid i \in w_{r}^{H}\right\}+\max \left\{H(i) \mid i \in w_{r}^{L}\right\} .
$$

- Get the upper bound (37): break Chaghri with time $O\left(2^{38}\right)$.

Chaghri is broken. But not yet over. Not elegant enough!!!

Coefficient Grouping Technique

Motivation

■ Do we really need to compute w_{r} round by round?

- The method is too dedicated for the parameters of Chaghri, i.e. $S(x), B(x)$.
- Can we have a more elegant and general method that can work for any

$$
S(x)=x^{2^{k_{0}}+2^{k_{1}}}, B(x)=c_{1} x^{2^{k_{2}}}+c_{2}
$$

and a general finite field $\mathbb{F}_{2^{n}}$?

Coefficient Grouping Technique

Using $S(x)=x^{2^{k_{0}}+2^{k_{1}}} \in \mathbb{F}_{2^{n}}[x], \quad B(x)=c_{1} x^{2^{k_{2}}}+c_{2} \in \mathbb{F}_{2^{n}}[x]$

- Relation between w_{r} and w_{r+1} :

$$
w_{r+1}=\left\{\mathcal{M}_{n}(e)\left|e=2^{k_{0}+k_{2}} w_{r, i}+2^{k_{1}+k_{2}} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\}\right.
$$

- Relation between w_{r} and w_{r+2} :

$$
\begin{aligned}
w_{r+2} & \\
= & \left\{\mathcal{M}_{n}(e) \mid e=2^{k_{0}+k_{2}}\left(2^{k_{0}+k_{2}} w_{r, i}+2^{k_{1}+k_{2}} w_{r, j}\right)+2^{k_{1}+k_{2}}\left(2^{k_{0}+k_{2}} w_{r, s}+2^{k_{1}+k_{2}} w_{r, t}\right),\right. \\
& \left.1 \leq i, j, s, t \leq\left|w_{r}\right|\right\} \\
= & \left\{\mathcal{M}_{n}(e) \mid e=2^{2 k_{0}+2 k_{2}} w_{r, i}+2^{k_{0}+k_{1}+2 k_{2}}\left(w_{r, j}+w_{r, s}\right)+2^{2 k_{1}+2 k_{2}} w_{r, t},\right. \\
& \left.1 \leq i, j, s, t \leq\left|w_{r}\right|\right\} .
\end{aligned}
$$

Coefficient Grouping Technique

Using $S(x)=x^{2^{k_{0}}+2^{k_{1}}} \in \mathbb{F}_{2^{n}}[x], \quad B(x)=c_{1} x^{2^{k_{2}}}+c_{2} \in \mathbb{F}_{2^{n}}[x]$

- Relation between w_{r} and $w_{r+\ell}$:

$$
\begin{array}{r}
w_{r+\ell}=\left\{\mathcal{M}_{n}(e) \mid e=\sum_{i=1}^{N_{n-1}} 2^{n-1} w_{r, d_{i, n-1}}+\sum_{i=1}^{N_{n-2}} 2^{n-2} w_{r, d_{i, n-2}}+\ldots+\sum_{i=1}^{N_{0}} 2^{0} w_{r, d_{i, 0}},\right. \\
\text { where } \left.1 \leq d_{i, j} \leq\left|w_{r}\right| \text { for } 0 \leq j \leq n-1\right\} .
\end{array}
$$

- Group all possible N_{j} coefficients sharing the same factor 2^{j} :

$$
w_{r, d_{1, j}}, w_{r, d_{2, j}}, \ldots, w_{r, d_{N_{j}, j}} \in w_{r}\left(r=0, w_{0}=\{0,1\}\right)
$$

i.e., in the formula of $e, 2^{j} w_{r, d_{i, j}}$ is possible to appear

- $w_{r+\ell}$ is fully described by a vector $\left(N_{n-1}, \ldots, N_{0}\right)$ and w_{r}.

Coefficient Grouping Technique

New representation of w_{r}

- $r=0:$

$$
\begin{aligned}
w_{0} & =\{0,1\}=\left\{\mathcal{M}_{n}(e)\left|e=2^{0} w_{0, i}, 1 \leq i \leq 2=\left|w_{0}\right|\right\}\right. \\
& \rightarrow\left(N_{0, n-1}, \ldots, N_{0,1}\right)=(0, \ldots, 0), \quad N_{0,0}=1
\end{aligned}
$$

- Relation between w_{r} and w_{r+1} :

$$
w_{r+1}=\left\{\mathcal{M}_{n}(e)\left|e=2^{k_{0}+k_{2}} w_{r, i}+2^{k_{1}+k_{2}} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\}\right.
$$

■ Find $\left(N_{r, n-1}, \ldots, N_{r, 0}\right)$ to represent w_{r} :

$$
N_{r+1, i}=N_{r,\left(i-\left(k_{1}+k_{2}\right)\right) \% n}+N_{r,\left(i-\left(k_{0}+k_{2}\right)\right) \%{ }_{n} \text { for } 0 \leq i \leq n-1 . . . ~}^{\text {. }}
$$

- ($\left.N_{r, n-1}, \ldots, N_{r, 0}\right)$ can be computed in time $O(n)$.

Coefficient Grouping Technique

Finding two representations of w_{r}

- Representation 1 of w_{r} :

$$
\begin{aligned}
w_{r}= & \left\{\mathcal{M}_{n}(e) \mid e=\sum_{i=1}^{N_{r, n-1}} 2^{n-1} w_{r, d_{i, n-1}}+\sum_{i=1}^{N_{r, n-2}} 2^{n-2} w_{r, d_{i, n-2}}+\ldots+\sum_{i=1}^{N_{r, 0}} 2^{0} w_{r, d_{i, 0}},\right. \\
& \text { where } \left.1 \leq d_{i, j} \leq\left|w_{0}\right| \text { for } 0 \leq j \leq n-1 \text { and } w_{0}=\{0,1\}\right\} .
\end{aligned}
$$

■ For each term 2^{j}, there are N_{j} possible coefficients

$$
w_{r, d_{1, j}}, w_{r, d_{2, j}}, \ldots, w_{r, d_{N_{j}, j}} \in w_{0}=\{0,1\}
$$

which implies $\sum_{i=1}^{N_{r, j}} 2^{j} w_{r, d_{i, j}} \in\left\{2^{j} \gamma_{j} \mid 0 \leq \gamma_{j} \leq N_{r, j}\right\}$.

Coefficient Grouping Technique

Finding $e \in w_{r}$ with $H(e)$ maximal

- Representation 2 of w_{r} :

$$
w_{r}=\left\{\mathcal{M}_{n}(e) \mid e=\sum_{i=0}^{n-1} 2^{i} \gamma_{i}, 0 \leq \gamma_{i} \leq N_{r, i}\right\} .
$$

- Problem reduction (optimization problem):

$$
\begin{array}{ll}
\text { maximize } & H\left(\mathcal{M}_{n}\left(\sum_{i=0}^{n-1} 2^{i} \gamma_{i}\right)\right), \\
\text { subject to } & 0 \leq \gamma_{i} \leq N_{r, i} \text { for } i \in[0, n-1] .
\end{array}
$$

■ Solved in time $O(n)!!!$ or by blackbox solvers.

- finding and proving the $O(n)$ algorithm require significant additional work

Breaking Chaghri and even More rounds

Table: The upper bounds of the algebraic degree for Chaghri

r	0	2	4	6	8	10	12	14	16	18	20	22	24	25	26
deg	1	3	7	7	12	17	22	27	32	37	42	47	52	58	60

Rescuing Chaghri

Achieving an (almost) exponential degree growth

- The slow growth is mainly caused by a sparse polynomial of $B(x)$, i.e. $B(x)=c_{0} x^{2^{3}}+c_{1}$
- Reason: the growth of the number of possible monomials is highly related to the density of $B(x)$
- requires significant additional work

■ Intuition: more possible monomials, higher probability that a monomial with deg $=2^{r}$ appears

- Use $B(x)=c_{0} x^{2^{8}}+c_{1} x^{2^{2}}+c_{2} x+c_{3}$ instead

Conclusion

- An efficient degree evaluation technique in time $O(n)$ for a special cipher over $\mathbb{F}_{2^{n}}$

■ Be careful of the symmetric-key primitive design over a large finite field! (less understood)

■ Open problem: other novel cryptanalytic techniques for ciphers over a large finite field

