Impossibility of Indifferentiable Iterated Blockciphers from 3 or Less Primitive Calls

Speaker: Yaobin Shen
Chun Guo Lei Wang Dongdai Lin
EUROCRYPT 2023 - April 26, 2023

Section 1

Background

Iterated blockciphers

■ Virtually all modern blockciphers are iterated blockciphers

Iterated blockciphers

- Virtually all modern blockciphers are iterated blockciphers

■ Compositions of "rounds"/simpler blockciphers

Feistel network: DES, SIMON, etc.
Provable security up to $2^{n / 2}$ queries.

Iterated Even-Mansour (IEM): AES, Skinny, etc. Provable security up to $2^{3 n / 4}$ queries.

We ask: are there lower bounds?

■ How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher?

We ask: are there lower bounds?

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher?
- Indistinguishability from a random permutation: 1 call to a public permutation

Even-Mansour cipher [EM97]: provable security up to $2^{n / 2}$ queries

We ask: are there lower bounds?

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher?
■ Indistinguishability from a random permutation: 1 call to a public permutation
- Indifferentiability from an ideal cipher?

Indifferentiability of blockciphers

Why indifferentiability?

- Because of the composition theorem: $C^{E^{\mathcal{P}}}$ using an indifferentiable blockcipher is as secure as $C^{\mathbf{I C}}$.
- Limitations: single-stage [RSS11, BBM13], complexity blow-up [DRST12, DGHM13].

Adversary D against $C^{E^{\mathcal{P}}} \Longrightarrow$ Adversary $D^{\prime}=(D, S)$ constitutes an adversary against $C^{\text {IC }}$

Indifferentiability of blockciphers

We had fruitful positive results:
■ Key-prepended Feistel ciphers [CPS08, HKT11, DKT16, DS16]

- Iterated Even-Mansour ciphers [ABD+13, LS13, DSST17, GL16]
- Confusion-diffusion networks [DSSL16]

3 -round iterated Even-Mansour with an idealized key derivation [GL16]

Indifferentiability of blockciphers

Fruitful positive results
■ Key-prepended Feistel ciphers [CPS08, HKT11, DKT16, DS16]
■ Iterated Even-Mansour ciphers [ABD+13, LS13, DSST17, GL16]

- Confusion-diffusion networks [DSSL16]

But no general lower bounds

- Only specific lower bounds for specific constructions
- Key-prepended Feistel: at least 6 rounds (6 calls to random functions) [CPS08]
- Iterated Even-Mansour with key derivation: at least 3 rounds (4 calls to random permutations or functions) [$\left.\mathrm{ABD}^{+} 13, \mathrm{GL16}\right]$
- Iterated Even-Mansour without key derivation: 5 rounds (5 calls to random permutations) necessary and sufficient [LS13, DSST17]

Back to the question

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?

Back to the question

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?
- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations

Back to the question

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?
- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations
- Trivial case: we already have so many n-bit random permutations!

Back to the question

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?
- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations
- Trivial case: we already have so many n-bit random permutations!
- Oracle $\mathcal{P}=\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{|\mathcal{I}|}\right)$

■ $\mathbf{P}_{i}:\{0,1\}^{(m(i))} \rightarrow\{0,1\}^{(m(i))}$ is a random permutation of width $m(i)=\operatorname{poly}(n)$
■ $\mathcal{I}=\mathcal{I}_{\leq n} \sqcup \mathcal{I}_{>n}$, where $m(i) \leq n$ iff. $i \in \mathcal{I}_{\leq n}$

Back to the question

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?
- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations
- Trivial case: we already have so many n-bit random permutations!
- Oracle $\mathcal{P}=\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{|\mathcal{I}|}\right)$

■ $\mathbf{P}_{i}:\{0,1\}^{(m(i))} \rightarrow\{0,1\}^{(m(i))}$ is a random permutation of width $m(i)=\operatorname{poly}(n)$
■ $\mathcal{I}=\mathcal{I}_{\leq n} \sqcup \mathcal{I}_{>n}$, where $m(i) \leq n$ iff. $i \in \mathcal{I}_{\leq n}$

- Avoid trivial results: $\left|\mathcal{I}_{\leq n}\right|=O(\operatorname{poly}(n))$

Back to the question

- How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?
- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations
- Trivial case: we already have so many n-bit random permutations!
- Oracle $\mathcal{P}=\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{|\mathcal{I}|}\right)$

■ $\mathbf{P}_{i}:\{0,1\}^{(m(i))} \rightarrow\{0,1\}^{(m(i))}$ is a random permutation of width $m(i)=\operatorname{poly}(n)$
■ $\mathcal{I}=\mathcal{I}_{\leq n} \sqcup \mathcal{I}_{>n}$, where $m(i) \leq n$ iff. $i \in \mathcal{I}_{\leq n}$

- Avoid trivial results: $\left|\mathcal{I}_{\leq n}\right|=O($ poly $(n))$
- Can have exponentially many large permutations: $\left|\mathcal{I}_{>n}\right|=2^{\text {poly(n) }}$: this offers indifferentiable functions [CLL19] and injections [BF18].

Back to the question

■ How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?

- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations
- Trivial case: we already have so many n-bit random permutations!

■ Oracle $\mathcal{P}=\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{|\mathcal{I}|}\right)$
■ $\mathbf{P}_{i}:\{0,1\}^{(m(i))} \rightarrow\{0,1\}^{(m(i))}$ is a random permutation of width $m(i)=\operatorname{poly}(n)$
■ $\mathcal{I}=\mathcal{I}_{\leq n} \sqcup \mathcal{I}_{>n}$, where $m(i) \leq n$ iff. $i \in \mathcal{I}_{\leq n}$

- Avoid trivial results: $\left|\mathcal{I}_{\leq n}\right|=O(\operatorname{poly}(n))$
- Can have exponentially many large permutations: $\left|\mathcal{I}_{>n}\right|=2^{\text {poly(n) }}$: this offers indifferentiable functions [CLL19] and injections [BF18].
- Input: $(i, \delta, z),(i, \delta) \in \mathcal{I} \times\{+,-\}$ for index and direction, $z \in\{0,1\}^{m(i)}$ for input

Back to the question

■ How many random function/permutation-calls are necessary for a "non-trivial" iterated blockcipher...
■ What does it mean by "non-trivial"?

- An ideal cipher with n-bit blocks is an exponential number of n-bit random permutations
- Trivial case: we already have so many n-bit random permutations!

■ Oracle $\mathcal{P}=\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{|\mathcal{I}|}\right)$
■ $\mathbf{P}_{i}:\{0,1\}^{(m(i))} \rightarrow\{0,1\}^{(m(i))}$ is a random permutation of width $m(i)=\operatorname{poly}(n)$
■ $\mathcal{I}=\mathcal{I}_{\leq n} \sqcup \mathcal{I}_{>n}$, where $m(i) \leq n$ iff. $i \in \mathcal{I}_{\leq n}$

- Avoid trivial results: $\left|\mathcal{I}_{\leq n}\right|=O($ poly $(n))$
- Can have exponentially many large permutations: $\left|\mathcal{I}_{>n}\right|=2^{\text {poly(n) }}$: this offers indifferentiable functions [CLL19] and injections [BF18].
- Input: $(i, \delta, z),(i, \delta) \in \mathcal{I} \times\{+,-\}$ for index and direction, $z \in\{0,1\}^{m(i)}$ for input

■ BTW: when $\left|\mathcal{I}_{\leq n}\right|=2^{\text {poly(n) }}$, it seems our impossibility result on 1-call blockciphers E1 ${ }^{\mathcal{P}}$ still holds, but our differentiators on $E 2^{\mathcal{P}}$ and $E 3^{\mathcal{P}}$ don't work. This matches existing indifferentiable key-length extension results [CDMS10, GLL16].

Section 2

Contributions

Main results: first general lower bound

- (Informal) No iterated blockcipher making 3 or less calls to the oracle \mathcal{P} is statistically indifferentiable from ideal ciphers.

■ The 4-call positive result [GL16] is thus optimal.

3-call iterated blockcipher $E 3^{\mathcal{P}}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Section 3

Results in detail

Four fundamental properties of a blockcipher oracle procedure $E^{\mathcal{P}}$

- By the definition of the notion of blockciphers:

1 Efficient invertibility: there is a corresponding oracle procedure $\left(E^{-1}\right)^{\mathcal{P}}$ computing its inverse;
2 Deterministic: evaluating $E^{\mathcal{P}}(K, x) \rightarrow y$ and $\left(E^{-1}\right)^{\mathcal{P}}(K, y)$ always yield the same transcript of \mathcal{P}-queries and responses.

Four fundamental properties of a blockcipher oracle procedure $E^{\mathcal{P}}$

- By the definition of the notion of blockciphers:

11 Efficient invertibility: there is a corresponding oracle procedure $\left(E^{-1}\right)^{\mathcal{P}}$ computing its inverse;
2 Deterministic: evaluating $E^{\mathcal{P}}(K, x) \rightarrow y$ and $\left(E^{-1}\right)^{\mathcal{P}}(K, y)$ always yield the same transcript of \mathcal{P}-queries and responses.

- By fixed descriptions of oracle procedures: sub-procedures in $E^{\mathcal{P}}$ are oracle-independent.

Four fundamental properties of a blockcipher oracle procedure $E^{\mathcal{P}}$

- By the definition of the notion of blockciphers:

1 Efficient invertibility: there is a corresponding oracle procedure $\left(E^{-1}\right)^{\mathcal{P}}$ computing its inverse;
2 Deterministic: evaluating $E^{\mathcal{P}}(K, x) \rightarrow y$ and $\left(E^{-1}\right)^{\mathcal{P}}(K, y)$ always yield the same transcript of \mathcal{P}-queries and responses.

- By fixed descriptions of oracle procedures: sub-procedures in $E^{\mathcal{P}}$ are oracle-independent.
- Non-degeneracy: no encipherment $E^{\mathcal{P}}(K, x)$ can be approximately computed using less \mathcal{P} calls than $E^{\mathcal{P}}$.

Model for 1-call cipher E1

- 1-call blockcipher/round $E 1^{\mathcal{P}}(K, x):=\varphi^{\text {out }}\left(K, \mathcal{P}\left(\varphi^{\text {in }}(K, x)\right), x\right): K \in \mathcal{K}, x \in\{0,1\}^{n}$
- Efficient inversion within $1 \mathcal{P}$-call: $\left(E 1^{-1}\right)^{\mathcal{P}}(K, y):=\gamma^{\text {out }}\left(K, \mathcal{P}\left(\gamma^{\text {in }}(K, y)\right), y\right)$ for two other input and output functions $\gamma^{i n}$ and $\gamma^{\text {out }}$

Full characterization of 1-call cipher E1

The Fundamental Properties already ensure a number of non-trivial properties (on oracle procedures of blockciphers):

1 Inv-freeness and its oracle-independence.
$\boxed{2}$ Properties of inv-free $E 1^{\mathcal{P}}(K, x)$.
3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$.

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence

- Inverse-free encipherments: $E 1^{\mathcal{P}}(K, x) \rightarrow y$ and $\left(E 1^{-1}\right)^{\mathcal{P}}(K, y) \rightarrow x$ call $\mathcal{P}(i, \delta, \star)$ on the same direction δ.
- Otherwise $E 1^{\mathcal{P}}(K, x)$ is non-inverse-free

2 Properties of inv-free $E 1^{\mathcal{P}}(K, x)$
3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence

- Inverse-free encipherments: $E 1^{\mathcal{P}}(K, x) \rightarrow y$ and $\left(E 1^{-1}\right)^{\mathcal{P}}(K, y) \rightarrow x$ call $\mathcal{P}(i, \delta, \star)$ on the same direction δ.
- Otherwise $E 1^{\mathcal{P}}(K, x)$ is non-inverse-free

- Observation: in $E 1^{\mathcal{P}}$, inv-freeness cannot depend on the oracle \mathcal{P}, i.e., one can decide if an encipherment $E 1^{\mathcal{P}}(K, x)$ is inv-free without querying \mathcal{P}.
2 Properties of inv-free $E 1^{\mathcal{P}}(K, x)$
3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence
2 Properties of inv-free $E 1^{\mathcal{P}}(K, x)$

Feistel:
$\operatorname{left}(x)=\operatorname{right}(y)$,
$2^{n / 2}$ distinct (K, x) call same $F(K \| \operatorname{left}(x))$

Lai-Massey:
left $(x) \oplus \operatorname{right}(x)=\sigma^{-1}(\operatorname{left}(y)) \oplus \operatorname{right}(y)$,
$2^{n / 2}$ distinct (K, x) call same $F(\operatorname{left}(x) \oplus \operatorname{right}(x)$

3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence
[Properties of inv-free $E 1^{\mathcal{P}}(K, x)$

3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence
2 Properties of inv-free $E 1^{\mathcal{P}}(K, x)$

3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence
2 Properties of inv-free $E 1^{\mathcal{P}}(K, x)$

3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Full characterization of 1-call cipher E1

1 Inv-freeness and its oracle-independence
2 Properties of inv-free $E 1^{\mathcal{P}}(K, x)$
3 Properties of non-inv-free $E 1^{\mathcal{P}}(K, x)$

Attack $E 1^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

With the above properties, we are able to bump into our differentiator $D 1$ on $E 1^{\mathcal{P}}$. In detail, the cipher $E 1^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ may fall into two cases.
Condition: $|\mathcal{K}| \geq 2\left|\mathcal{I}_{\leq n}\right|+1=O(\operatorname{poly}(n))$.

Attack $E 1^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
With the above properties, we are able to bump into our differentiator $D 1$ on $E 1^{\mathcal{P}}$. In detail, the cipher $E 1^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ may fall into two cases.
Condition: $|\mathcal{K}| \geq 2\left|\mathcal{I}_{\leq n}\right|+1=O(\operatorname{poly}(n))$.

- Case 1: there exists at least 1 inv-free encipherment $E 1^{\mathcal{P}}(K, x)$.

As discussed, there are $t=\Omega(\operatorname{poly}(n))$ distinct inv-free $E 1^{\mathcal{P}}\left(K, x_{1}\right), \ldots, E 1^{\mathcal{P}}\left(K, x_{t}\right)$ with $\varphi^{i n}\left(K, x_{1}\right)=\ldots=\varphi^{i n}\left(K, x_{t}\right)=(i, \delta, z)$. Thus, the restriction of $E 1^{\mathcal{P}}(K, \cdot)$ to $\left\{x_{1}, \ldots, x_{t}\right\}$ is a bijection defined upon a polynomial-length random string $z^{\prime}=\mathcal{P}(i, \delta, z)$.

Attack $E 1^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
With the above properties, we are able to bump into our differentiator $D 1$ on $E 1^{\mathcal{P}}$. In detail, the cipher $E 1^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ may fall into two cases.
Condition: $|\mathcal{K}| \geq 2\left|\mathcal{I}_{\leq n}\right|+1=O(\operatorname{poly}(n))$.

- Case 2: $E 1^{\mathcal{P}}(K, x)$ is non-inv-free for all $(K, x) \in \mathcal{K} \times\{0,1\}^{n}$.

The pigeonhole principle guarantees $\exists(K, x),\left(K^{\prime}, x^{\prime}\right) \in \mathcal{K} \times\{0,1\}^{n}$ with collision $\varphi^{i n}(K, x)=\varphi^{i n}\left(K^{\prime}, x^{\prime}\right)$ for attack.

2-call iterated blockcipher $E 2^{\mathcal{P}}(K, x): K \in \mathcal{K}, x \in\{0,1\}^{n}$

2-call iterated blockcipher $E 2^{\mathcal{P}}(K, x): K \in \mathcal{K}, x \in\{0,1\}^{n}$

- Key space can be partitioned: $\mathcal{K}=\mathcal{K}^{(0)} \sqcup \mathcal{K}^{(1)}$

2-call iterated blockcipher $E 2^{\mathcal{P}}(K, x): K \in \mathcal{K}, x \in\{0,1\}^{n}$

- Key space can be partitioned: $\mathcal{K}=\mathcal{K}^{(0)} \sqcup \mathcal{K}^{(1)}$
- For all $K \in \mathcal{K}^{(1)}: E 2^{\mathcal{P}}(K, x)=\Pi_{3}^{\mathcal{P}}\left(K \| \mathrm{kd}^{\mathcal{P}}(K), x\right)$ invokes a 1-call key derivation function $\mathrm{kd}^{\mathcal{P}}$
- $E 2^{\mathcal{P}}(K, x)=\Pi_{3}^{\mathcal{P}}\left(K \| \mathbf{k d}^{\mathcal{P}}(K), x\right)$ for a 1-call function $\mathbf{k d}^{\mathcal{P}}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{m_{\text {max }}}$ and a 1-call cipher $\Pi_{3}^{\mathcal{P}}:\{0,1\}^{\kappa+m_{\max }} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$;
- $\mathrm{kd}^{\mathcal{P}}(K)=\mathcal{P}(f(K))$ for another oracle-independent function f
- $\Pi_{3}^{\mathcal{P}}\left(K \| \mathrm{kd}^{\mathcal{P}}(K), x\right)=\varphi_{3}^{\text {out }}\left(K, \mathcal{P}\left(\varphi_{3}^{\text {in }}(K, x)\right), x\right)$

2-call iterated blockcipher $E 2^{\mathcal{P}}(K, x): K \in \mathcal{K}, x \in\{0,1\}^{n}$

- Key space can be partitioned: $\mathcal{K}=\mathcal{K}^{(0)} \sqcup \mathcal{K}^{(1)}$
- For all $K \in \mathcal{K}^{(1)}: E 2^{\mathcal{P}}(K, x)=\Pi_{3}^{\mathcal{P}}\left(K \| \mathrm{kd}^{\mathcal{P}}(K), x\right)$ invokes a 1-call key derivation function $\mathrm{kd}^{\mathcal{P}}$
- $E 2^{\mathcal{P}}(K, x)=\Pi_{3}^{\mathcal{P}}\left(K \| \mathbf{k d}^{\mathcal{P}}(K), x\right)$ for a 1-call function $\mathbf{k d}^{\mathcal{P}}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{m_{\text {max }}}$ and a 1 -call cipher $\Pi_{3}^{\mathcal{P}}:\{0,1\}^{\kappa+m_{\text {max }}} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$;
- $\mathrm{kd}^{\mathcal{P}}(K)=\mathcal{P}(f(K))$ for another oracle-independent function f
- $\Pi_{3}^{\mathcal{P}}\left(K \| \mathrm{kd}^{\mathcal{P}}(K), x\right)=\varphi_{3}^{\text {out }}\left(K, \mathcal{P}\left(\varphi_{3}^{\text {in }}(K, x)\right), x\right)$
- For all $K \in \mathcal{K}^{(0)}: E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$, there is no key derivation in the form of oracle procedures
- $\Pi_{1}^{\mathcal{P}}\left(K \| \mathrm{kd}^{\mathcal{P}}(K), x\right)=\varphi_{1}^{\text {out }}\left(K, \mathcal{P}\left(\varphi_{1}^{\text {in }}(K, x)\right), x\right)$ and
$\Pi_{2}^{\mathcal{P}}\left(K \| \mathrm{kd}^{\mathcal{P}}(K), x\right)=\varphi_{2}^{\text {out }}\left(K, \mathcal{P}\left(\varphi_{2}^{\text {in }}(K, x)\right), x\right)$ are two 1-call ciphers/rounds.

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 1: $E 2^{\mathcal{P}}$ invokes kd for sufficiently many keys. (Formally, $\left|\mathcal{K}^{(1)}\right| \geq 2\left|\mathcal{I}_{\leq n}\right|+1$.)

1 We simply pick $\lambda=2\left|\mathcal{I}_{\leq n}\right|+1$ keys $K_{1}, \ldots, K_{\lambda} \in \mathcal{K}^{(1)}$ and derive subkeys $s_{1}=\operatorname{kd}^{\mathcal{P}}\left(K_{1}\right), \ldots, s_{\lambda}=\overline{\mathrm{k}}^{\mathcal{P}}\left(K_{\lambda}\right)$. This consumes at most $\lambda=O($ poly $(n))$ P-queries.
2 We then view the round $\Pi_{3}^{\mathcal{P}}$ as a 1-call cipher with keyspace $\left\{K_{1}\left\|s_{1}, \ldots, K_{\lambda}\right\| s_{\lambda}\right\}$ and apply our differentiator $D 1$.
3 It is thus crucial that $D 1$ can break $E 1$ with polynomial-keyspace.

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property
2 Using graph theory on girth
3 From boomerang to yoyo
4 Non-degenerate input functions

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property

- In the 2-round Even-Mansour cipher $y=K \oplus \mathbf{P}_{2}\left(K \oplus \mathbf{P}_{1}(K \oplus x)\right)$
- Computing four distinct pairs $\left(K_{1}, u_{1}\right),\left(K_{2}, u_{2}\right),\left(K_{3}, u_{3}\right),\left(K_{4}, u_{4}\right)$ inducing two collided inputs to \mathbf{P}_{1}^{-1} and two collide inputs to \mathbf{P}_{2}.
- Can compute a 4-tuple of cipher inputs/outputs $\left(\left(K_{1}, x_{1}, y_{1}\right), \ldots,\left(K_{4}, x_{4}, y_{4}\right)\right)$ that has $K_{1} \oplus x_{1}=K_{2} \oplus x_{2}, K_{3} \oplus x_{3}=K_{4} \oplus x_{4} ; K_{1} \oplus y_{1}=K_{3} \oplus y_{3}, K_{2} \oplus y_{2}=K_{4} \oplus y_{4}$.

2 Using graph theory on girth
3 From boomerang to yoyo

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property

- Generalized boomerang: find pairs $\left(K_{1}, u_{1}\right),\left(K_{2}, u_{2}\right),\left(K_{3}, u_{3}\right),\left(K_{4}, u_{4}\right) \in \mathcal{K}^{(0)} \times\{0,1\}^{n}$ that induce similar collided \mathcal{P}-calls.
- Can computes a 4-tuple of cipher inputs/outputs $\left(\left(K_{1}, x_{1}, y_{1}\right), \ldots,\left(K_{4}, x_{4}, y_{4}\right)\right)$ that has $\varphi_{1}^{i n}\left(K_{1}, u_{1}\right)=\varphi_{1}^{i n}\left(K_{2}, u_{2}\right), \varphi_{1}^{i n}\left(K_{3}, u_{3}\right)=\varphi_{1}^{i n}\left(K_{4}, u_{4}\right), \gamma_{2}^{i n}\left(K_{1}, u_{1}\right)=\gamma_{2}^{i n}\left(K_{3}, u_{3}\right)$ and $\gamma_{2}^{i n}\left(K_{2}, u_{2}\right)=\gamma_{2}^{i n}\left(K_{4}, u_{4}\right)$.

2 Using graph theory on girth
3 From boomerang to yoyo

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property
2 Using graph theory on girth
■ Existence of $\left(K_{1}, u_{1}\right),\left(K_{2}, u_{2}\right),\left(K_{3}, u_{3}\right),\left(K_{4}, u_{4}\right) \in \mathcal{K}^{(0)} \times\{0,1\}^{n}$?

- A 4-cycle C_{4} in a bipartite graph with left and right shore size $\leq\left|\mathcal{I}_{\leq n}\right| 2^{n+1}$ and $\left|\mathcal{K}^{(0)}\right| 2^{n}$ edges

■ Hoory [Hoo02]: when $\left|\mathcal{K}^{(0)}\right|=\Theta\left(2^{n}\right)$ (key-length $\approx n$), cycles of length ≤ 4 must exist

3 From boomerang to yoyo

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property
2 Using graph theory on girth
3 From boomerang to yoyo
■ But with $\left|\mathcal{K}^{(0)}\right|=\Theta\left(2^{n}\right)$, we cannot invoke the attack for $E 3^{\mathcal{P}}$ with KDFs!
■ A general yoyo distinguisher [RBH17]: consider longer cycles $C_{2 \lambda}, \lambda \leq n+1$. I.e., find 2λ-tuple $\left(\left(K_{1}, u_{1}\right), \ldots,\left(K_{2 \lambda}, u_{2 \lambda}\right)\right)$ with $\varphi_{2}^{i n}\left(K_{1}, u_{1}\right)=\varphi_{2}^{i n}\left(K_{2}, u_{2}\right), \gamma_{1}^{i n}\left(K_{2}, u_{2}\right)=$ $\gamma_{1}^{i n}\left(K_{3}, u_{3}\right), \varphi_{2}^{i n}\left(K_{3}, u_{3}\right)=\varphi_{2}^{i n}\left(K_{4}, u_{4}\right), \gamma_{1}^{i n}\left(K_{4}, u_{4}\right)=$ $\gamma_{1}^{i n}\left(K_{5}, u_{5}\right), \ldots, \varphi_{2}^{i n}\left(K_{2 \lambda-1}, u_{2 \lambda-1}\right)=\varphi_{2}^{i n}\left(K_{2 \lambda}, u_{2 \lambda}\right), \gamma_{1}^{i n}\left(K_{2 \lambda}, u_{2 \lambda}\right)=\gamma_{1}^{i n}\left(K_{1}, u_{1}\right)$.

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property
2 Using graph theory on girth
3 From boomerang to yoyo
■ Can compute a 2λ-tuple of $E 2$ inputs/outputs $\left(\left(K_{1}, x_{1}, y_{1}\right), \ldots,\left(K_{2 \lambda}, x_{2 \lambda}, y_{2 \lambda}\right)\right)$ that has a "cycle of collisions". I.e., $\gamma_{2}^{i n}\left(K_{1}, y_{1}\right)=\gamma_{2}^{i n}\left(K_{2}, y_{2}\right), \varphi_{1}^{i n}\left(K_{2}, x_{2}\right)=$ $\varphi_{1}^{i n}\left(K_{3}, x_{3}\right), \ldots, \gamma_{2}^{i n}\left(K_{2 \lambda-1}, y_{2 \lambda-1}\right)=\gamma_{2}^{i n}\left(K_{2 \lambda}, y_{2 \lambda}\right), \varphi_{1}^{i n}\left(K_{2 \lambda}, x_{2 \lambda}\right)=\varphi_{1}^{i n}\left(K_{1}, x_{1}\right)$.

- By Hoory [Hoo02], $\left|\mathcal{K}^{(0)}\right| \geq\left(6\left(3\left|\mathcal{I}_{\leq n}\right|\right)^{\frac{1}{n}}+3\right)\left|\mathcal{I}_{\leq n}\right|=O($ poly $(n))$ suffices!

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property
2 Using graph theory on girth
3 From boomerang to yoyo
■ Hoory [Hoo02] does not apply when \mathcal{G} is a multigraph, but this implies existence of C_{2}, which is an even weaker case.

Attack $E 2^{\mathcal{P}}: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Built upon our above results on $E 1^{\mathcal{P}}$, we further consider our 2-call model $E 2^{\mathcal{P}}$.

- Case 2 (less obvious): $E 2^{\mathcal{P}}(K, x)=\Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)$ is 2-iteration for most keys.

1 Starting point: boomerang property
2 Using graph theory on girth
3 From boomerang to yoyo

+ Crucial to restrict our discussion to iterated blockciphers with a clear valid intermediate value set $\{0,1\}^{n}$: an attacker can pick such a u and compute forward or backward.

3-call iterated blockcipher $E 3^{\mathcal{P}}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- Partition the key space: $\mathcal{K}=\mathcal{K}^{(0)} \sqcup \mathcal{K}^{(1)} \sqcup \mathcal{K}^{(2)}$
- For all $K \in \mathcal{K}^{(2)}: E 3^{\mathcal{P}}(K, \cdot)$ invokes a 2 -call key derivation function
- $E 3^{\mathcal{P}}(K, x)=\Pi_{6}^{\mathcal{P}}\left(K \| \operatorname{kd}_{1}^{\mathcal{P}}(K), x\right)$ for a 2-call KDF $\operatorname{kd}_{1}^{\mathcal{P}}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{2 m_{\text {max }}}$ and a 1-call cipher $\Pi_{6}^{P}:\{0,1\}^{\kappa+2 m_{\max }} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$;
- For all $K \in \mathcal{K}^{(1)}: E 3^{\mathcal{P}}(K, \cdot)$ invokes a 1-call key derivation function
- $E 3^{\mathcal{P}}(K, x)=\Pi_{5}^{\mathcal{P}}\left(K \| \mathrm{kd}_{2}^{\mathcal{P}}(K), \Pi_{4}^{\mathcal{P}}\left(K \| \mathrm{kd}_{2}^{\mathcal{P}}(K), x\right)\right)$ for a 1-call KDF $\mathrm{kd}_{2}^{\mathcal{P}}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{m_{\text {max }}}$ and two 1 -call ciphers $\Pi_{4}^{\mathcal{P}}, \Pi_{5}^{\mathcal{P}}:\{0,1\}^{\kappa+m_{\max }} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} ;$
- For all $K \in \mathcal{K}^{(0)}$: there is no key derivation in the form of oracle procedures
- $E 3^{\mathcal{P}}(K, x)=\Pi_{3}^{\mathcal{P}}\left(K, \Pi_{2}^{\mathcal{P}}\left(K, \Pi_{1}^{\mathcal{P}}(K, x)\right)\right)$ for three 1 -call ciphers $\Pi_{1}^{\mathcal{P}}, \Pi_{2}^{\mathcal{P}}, \Pi_{3}^{\mathcal{P}}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.

Section 4

Conclusion

Conclusion

The first general lower bounds on indifferentiable blockciphers.
1 (Informal) No iterated blockcipher making 3 or less calls to the oracle \mathcal{P} is statistically indifferentiable from ideal ciphers.

- The 4-call positive result [GL16] is thus optimal.

2 Model of blockciphers: oracle procedures built upon the oracle $\mathcal{P}=\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{|\mathcal{I}|}\right)$
3 Fundamental Properties of blockciphers oracle procedures
4 Concrete models for 1-call blockciphers $E 1^{\mathcal{P}}$ and 2- and 3-call iterated blockciphers $E 2^{\mathcal{P}}$ and $E 3^{\mathcal{P}}$
5 Attack ideas: using invertibility; using Extremal Graph Theory

Discussion: on blockcipher designs

1 Expense of overcoming non-invertibility: inverse-free rounds must admit severe weakness, regardless of its design.
2 Unhelpfulness of wide permutations: wide permutations with width> n are not "more helpful" in constructing n-bit blockciphers.
3 "Excluding-type" theoretical support for popular structures, e.g., the IEM ciphers [DSST17, GL16]: no other choice can be better.
4 An anonymous reviewer: permutation-based cryptography are more efficient than ideal ciphers.

Discussion: on blockcipher designs

1 Expense of overcoming non-invertibility: inverse-free rounds must admit severe weakness, regardless of its design.
2 Unhelpfulness of wide permutations: wide permutations with width> n are not "more helpful" in constructing n-bit blockciphers.
3 "Excluding-type" theoretical support for popular structures, e.g., the IEM ciphers [DSST17, GL16]: no other choice can be better.
4 An anonymous reviewer: permutation-based cryptography are more efficient than ideal ciphers.
■ Usual caveats: information-theoretic security upper bounds only

Possible future Directions

1 Extending our treatments to fully general 2- and 3-call blockciphers

- Blockciphers are not necessarily iterated...

Possible future Directions

1 Extending our treatments to fully general 2- and 3-call blockciphers
2 Smart ideas to unify the complicated cases in E3 analysis
3 Fully concrete security characterizations of $E 2$ and $E 3$ (may need a new paradigm)
4 Other aspects: memory restrictions on adversaries/simulators, etc.
5 Achievability of computational indifferentiability with 3 calls

- Hardness assumptions on graph problems or key derivation functions might be helpful. б Relaxing the condition " $E t^{\mathcal{P}}$ computes a blockcipher for all \mathcal{P} and all n "?

Bibliography I

Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Steinberger.
On the indifferentiability of key-alternating ciphers.
In CRYPTO 2013, Part I, volume 8042 of LNCS, pages 531-550. Springer, 2013.Paul Baecher, Christina Brzuska, and Arno Mittelbach.
Reset indifferentiability and its consequences.
In ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 154-173. Springer, 2013.

Manuel Barbosa and Pooya Farshim.
Indifferentiable authenticated encryption.
In CRYPTO 2018, Part I, volume 10991 of LNCS, pages 187-220. Springer, 2018.

Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick Seurin
A domain extender for the ideal cipher.
In TCC 2010, volume 5978 of LNCS, pages 273-289. Springer, 2010

Wonseok Choi, ByeongHak Lee, and Jooyoung Lee.
Indifferentiability of truncated random permutations.
In ASIACRYPT 2019, Part I, LNCS, pages 175-195. Springer, 2019.

Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin
The random oracle model and the ideal cipher model are equivalent.
In CRYPTO 2008, volume 5157 of LNCS, pages 1-20. Springer, 2008

Gregory Demay, Peter Gaži, Martin Hirt, and Ueli Maurer

Resource-restricted indifferentiability.
In EUROCRYPT 2013, LNCS, pages 664-683. Springer, 2013.

Bibliography II

Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam.
10 -round Feistel is indifferentiable from an ideal cipher.
In EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 649-678. Springer, 2016.
Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro.
To hash or not to hash again? (In)differentiability results for H^{2} and HMAC.
In CRYPTO 2012, volume 7417 of LNCS, pages 348-366. Springer, 2012.
Yuanxi Dai and John P. Steinberger.
Indifferentiability of 8-round Feistel networks.
In CRYPTO 2016, Part I, volume 9814 of LNCS, pages 95-120. Springer, 2016.

Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu
Indifferentiability of confusion-diffusion networks.
In EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 679-704. Springer, 2016.
Yuanxi Dai, Yannick Seurin, John P. Steinberger, and Aishwarya Thiruvengadam.
Indifferentiability of iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are necessary and sufficient. In CRYPTO 2017, Part III, volume 10403 of LNCS, pages 524-555. Springer, 2017.

Shimon Even and Yishay Mansour.
A construction of a cipher from a single pseudorandom permutation.
J. Cryptology, 10(3):151-162, June 1997.

Chun Guo and Dongdai Lin.
Indifferentiability of 3-round Even-Mansour with random oracle key derivation.
Cryptology ePrint Archive, Report 2016/894, 2016
https://eprint.iacr.org/2016/894.

Bibliography III

Chun Guo, Dongdai Lin, and Meicheng Liu.
Cascade ciphers revisited: Indifferentiability analysis
Cryptology ePrint Archive, Report 2016/825, 2016.
https://eprint.iacr.org/2016/825.Thomas Holenstein, Robin Künzler, and Stefano Tessaro.
The equivalence of the random oracle model and the ideal cipher model, revisited. pages 89-98. ACM Press, 2011.

Shlomo Hoory
The Size of Bipartite Graphs with a Given Girth.
J. Comb. Theory, Ser. B, 86(2):215-220, 2002.Rodolphe Lampe and Yannick Seurin.
How to construct an ideal cipher from a small set of public permutations.
In ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 444-463. Springer, 2013.

Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth.
Yoyo tricks with AES.
In ASIACRYPT 2017, Part I, LNCS, pages 217-243. Springer, 2017
Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton.
Careful with composition: Limitations of the indifferentiability framework.
In EUROCRYPT 2011, volume 6632 of LNCS, pages 487-506. Springer, 2011

