# An Incremental PoSW for General Weight Distributions 

Hamza Abusalah and Valerio Cini

## - m Idea software



Eurocrypt 2023 in Lyon, France

## Outline

# Proofs of Sequential Work, Standalone (PoSW) and Incremental (iPoSW) 

## The Skiplist PoSW

## Make it Incremental (iPoSW)

Generalize it to General Weight Distributions (Motivated by Blockchain Applications)

All Constructions Are in the ROM

## PoSW

[Mahmoody-Moran-Vadhan'13]

## Parameter: $n$



Completeness: Honest $\mathrm{P}^{\tau(\cdot)}$ making $n$ sequential $\tau(\cdot)$ queries makes V accept w.p. 1

## PoSW

[Mahmoody-Moran-Vadhan'13]

## Parameter: $n$



Completeness: Honest $\mathrm{P}^{\tau(\cdot)}$ making $n$ sequential $\tau(\cdot)$ queries makes V accept w.p. 1

Succinctness: For every honest proof $\pi$ :
$|\pi| \leq \operatorname{poly}(\lambda, \log n)$, Time $(\mathrm{V}) \leq \operatorname{poly}(\lambda, \log n)$, and Time $(\mathrm{P}) \leq \operatorname{poly}(\lambda, n)$

## PoSW

[Mahmoody-Moran-Vadhan'13]


Parameter: $n$

$(\alpha, \epsilon)$-Soundness: A parallel $\tilde{\mathcal{P}}^{\tau(\cdot)}$ making $\leq \alpha \cdot n$ sequential queries to $\tau(\cdot)$ makes V accept with prob. $\leq \epsilon(\lambda)$

## All PoSW Constructions Look Like

Parameters: $G_{n}, t, \cdots$


## All PoSW Constructions Look Like

Parameters: $G_{n}, t, \cdots$


Random oracle $\tau:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$ with $\tau:=\tau(\chi, \cdot)$

$$
L(i):= \begin{cases}\tau(i) & \text { if parents }(i)=\emptyset \\ \tau(i, L(\text { parents }(i))) & \text { otherwise }\end{cases}
$$


[Cohen-Pietrzak'18]

[Abusalah-Kamath-Klein-Walter-Pietrzak'19][Abusalah-Fuchsbauer-Gaži-Klein'22]

## All PoSW Constructions Look Like

Parameters: $G_{n}, t, \cdots$


Random oracle $\tau:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$ with $\tau:=\tau(\chi, \cdot)$

$$
L(i):= \begin{cases}\tau(i) & \text { if parents }(i)=\emptyset \\ \tau(i, L(\text { parents }(i))) & \text { otherwise }\end{cases}
$$


[Cohen-Pietrzak'18]

[Abusalah-Kamath-Klein-Walter-Pietrzak'19][Abusalah-Fuchsbauer-Gaži-Klein'22]

## The Skiplist PoSW

[Abusalah-Fuchsbauer-Gaži-Klein'22]


Thm: If 1. $\tilde{\mathrm{P}}_{1}$ made $\leq \alpha \cdot n$ sequential queries to $\tau(\cdot)$ before sending $L(n)$ 2. $\tilde{\mathrm{P}}:=\left(\tilde{\mathrm{P}}_{1}, \hat{\mathrm{P}}_{2}\right)$ made a total of $\leq q$ queries to $\tau(\cdot)$

Then $\tilde{\mathrm{P}}$ makes V accept w.p. $\leq \alpha^{t}+3 \cdot q^{2} / 2^{\lambda}$


## On Our Way to iPoSW

To answer challenges, P has two extremes

- store all labels $L(0), \ldots, L(n)$ : answering a challenge is just a look-up
- store nothing and spend an extra $n$ sequential steps to relabel and answer



## On Our Way to iPoSW

To answer challenges, P has two extremes

- store all labels $L(0), \ldots, L(n)$ : answering a challenge is just a look-up
- store nothing and spend an extra $n$ sequential steps to relabel and answer



## Space-time tradeoffs:

store $\sqrt{n}$ labels and spend an extra $\sqrt{n}$ sequential steps

## On Our Way to iPoSW

To answer challenges, P has two extremes

- store all labels $L(0), \ldots, L(n)$ : answering a challenge is just a look-up
- store nothing and spend an extra $n$ sequential steps to relabel and answer


Space-time tradeoffs:
store $\sqrt{n}$ labels and spend an extra $\sqrt{n}$ sequential steps
Question: Best of both worlds: can we store a succinct state and spend no extra time?
iPoSW
[Döttling-Lai-Malavolta'19]


An iPoSW is a non-interactive proof system ( $\mathrm{P}, \mathrm{V}, \mathrm{Inc}$ ) where

- $(\mathrm{P}, \mathrm{V})$ is a PoSW: complete, sound, and succinct
iPoSW
[Döttling-Lai-Malavolta'19]


An iPoSW is a non-interactive proof system ( $\mathrm{P}, \mathrm{V}, \mathrm{Inc}$ ) where

- $(P, V)$ is a PoSW: complete, sound, and succinct
- Inc: given an accepting $\pi_{n_{1}}$, Inc making $n_{2}$ sequential $\tau(\cdot)$ queries makes V accept
iPoSW
[Döttling-Lai-Malavolta'19]


An iPoSW is a non-interactive proof system ( $\mathrm{P}, \mathrm{V}, \mathrm{Inc}$ ) where

- $(P, V)$ is a PoSW: complete, sound, and succinct
- Inc: given an accepting $\pi_{n_{1}}$, Inc making $n_{2}$ sequential $\tau(\cdot)$ queries makes V accept


## iPoSW

[Döttling-Lai-Malavolta'19]


An iPoSW is a non-interactive proof system ( $\mathrm{P}, \mathrm{V}, \mathrm{Inc}$ ) where

- $(P, V)$ is a PoSW: complete, sound, and succinct
- Inc: given an accepting $\pi_{n_{1}}$, Inc making $n_{2}$ sequential $\tau(\cdot)$ queries makes V accept
$\pi_{n_{1}} \rightarrow \operatorname{Inc}\left(n_{2}\right) \rightarrow \pi_{n_{1}+n_{2}} \rightarrow \operatorname{Inc}\left(n_{3}\right) \rightarrow \pi_{n_{1}+n_{2}+n_{3}} \rightarrow \cdots \rightarrow \pi_{n=n_{1}+\cdots+n_{k}}$


## An iPoSW Construction

[Döttling-Lai-Malavolta'19]

- Döttling-Lai-Malavolta made Cohen-Pietrzak'18 incremental by sampling challenges on the fly
- Efficient, yet incurs an extra small security loss



## An iPoSW Construction

[Döttling-Lai-Malavolta'19]

- Döttling-Lai-Malavolta made Cohen-Pietrzak'18 incremental by sampling challenges on the fly
- Efficient, yet incurs an extra small security loss


In this work

1. We similarily make the skiplist PoSW incremental

We apply the same on-the-fly sampling

## An iPoSW Construction

[Döttling-Lai-Malavolta'19]

- Döttling-Lai-Malavolta made Cohen-Pietrzak'18 incremental by sampling challenges on the fly
- Efficient, yet incurs an extra small security loss


In this work

1. We similarily make the skiplist PoSW incremental

We apply the same on-the-fly sampling
2. We generalize the skiplist iPoSW to general weight distributions

We devise a new variant of the on-the-fly sampling technique

## Our Standalone iPoSW: The Prover P



## Our Standalone iPoSW: The Prover P



## Our Standalone iPoSW: The Prover P



Use randomness from $L(8)$ to randomly sample a set of size 4 from $\{1, \ldots, 8\}$

## Our Standalone iPoSW: The Prover P



$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}
$$

We have all labels to complile $\pi_{i}$

## Our Standalone iPoSW: The Prover P



$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}
$$

## Our Standalone iPoSW: The Prover P



## Our Standalone iPoSW: The Prover P



$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[8: 16]}
$$

## Our Standalone iPoSW: The Prover P



Use randomness from $L(16)$ to randomly sample a set of size 4 from $\{9, \ldots, 16\}$

## Our Standalone iPoSW: The Prover P



Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$ :

$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}, G_{[8: 18]} \text { respt. }
$$

## Our Standalone iPoSW: The Prover P



Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$ :

$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}, G_{[8: 18]} \text { respt. }
$$



## Our Standalone iPoSW: The Prover P



Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$ :

$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}, G_{[8: 18]} \text { respt. }
$$



## Our Standalone iPoSW: The Prover P



Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$ :

$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}, G_{[8: 18]} \text { respt. }
$$


from $\mathcal{L}_{16,1}$

## Our Standalone iPoSW: The Prover P



Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$ :

$$
\pi_{i}:=L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text { in } G_{[0: 8]}, G_{[8: 18]} \text { respt. }
$$



## Our Standalone iPoSW: The Inc Algorithm



Inc works exactly as $P$ : it picks up the computation where $P$ leaves it and it constinues exactly as $P$ would have continued

## Standalone iPoSW Verifier V



V recursively checks that challenges in are consistent with the sampling

## Standalone iPoSW Verifier V



V recursively checks that challenges in are consistent with the sampling

- P provides V for every $\pi_{i}$ with an index set $\mathcal{I}_{i}$
- $\mathcal{I}_{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in[t]^{\ell}$ where $\ell=\#$ of samplings in $\pi_{i}$
- $i_{j}$ is associated with the $j$ th sampling from sets $S_{0, j}$ and $S_{1, j}$
- $i \in S_{b, j} \quad \Rightarrow \quad i_{j}$ is the index within $S_{b, j}$


## Standalone iPoSW Verifier V



V recursively checks that challenges in are consistent with the sampling

- P provides V for every $\pi_{i}$ with an index set $\mathcal{I}_{i}$
- $\mathcal{I}_{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in[t]^{\ell}$ where $\ell=\#$ of samplings in $\pi_{i}$
- $i_{j}$ is associated with the $j$ th sampling from sets $S_{0, j}$ and $S_{1, j}$
- $i \in S_{b, j} \quad \Rightarrow \quad i_{j}$ is the index within $S_{b, j}$

An important observation: the sampling sets are implictly given to V and are of size $t$

## Standalone iPoSW Verifier V



V recursively checks that challenges in are consistent with the sampling

- P provides V for every $\pi_{i}$ with an index set $\mathcal{I}_{i}$
- $\mathcal{I}_{i}=\left(i_{1}, \ldots, i_{\ell}\right) \in[t]^{\ell}$ where $\ell=\#$ of samplings in $\pi_{i}$
- $i_{j}$ is associated with the $j$ th sampling from sets $S_{0, j}$ and $S_{1, j}$
- $i \in S_{b, j} \quad \Rightarrow \quad i_{j}$ is the index within $S_{b, j}$

An important observation: the sampling sets are implictly given to V and are of size $t$
For general weight distributions: the sampling sets are of size $t$ on expectation

## Soundness



Proof strategy:

1. Bound the advantage the on-the-fly sampling gives a malicous $\tilde{P}$
2. Reduce security to the standalone PoSW

## Soundness



Proof strategy:

1. Bound the advantage the on-the-fly sampling gives a malicous $\tilde{P}$
2. Reduce security to the standalone PoSW

## The On-The-Fly Sampling Lemma:

1. $S:=\mathcal{L}_{16,2}$ sampled from $S_{0}:=\mathcal{L}_{8,1} \cup S_{1}:=\mathcal{L}_{16,1}$ as above, or
2. $S$ sampled directly from $\{1, \ldots, 16\}$

Show that the $\%$ of incosnsistent nodes in $S$ in 1. and 2. are close

## Soundness



Proof strategy:

1. Bound the advantage the on-the-fly sampling gives a malicous $\tilde{P}$
2. Reduce security to the standalone PoSW

## The On-The-Fly Sampling Lemma:

1. $S:=\mathcal{L}_{16,2}$ sampled from $S_{0}:=\mathcal{L}_{8,1} \cup S_{1}:=\mathcal{L}_{16,1}$ as above, or
2. $S$ sampled directly from $\{1, \ldots, 16\}$

Show that the \% of incosnsistent nodes in $S$ in 1. and 2. are close
This follows easily from a Hoeffding bound

## Security Statement

Thm: $(\mathrm{P}, \mathrm{V}, \operatorname{lnc})$ an $(\alpha, \epsilon)$-sound $\mathbf{i P o S W}$ for $\alpha \in(0,1]$ and

$$
\epsilon=\frac{1+q^{2}}{2^{\lambda}}+\frac{q(q-1)}{2^{\lambda+1}}+q \cdot e^{-2 t \cdot\left(\frac{1-\alpha}{\log n}\right)^{2}} .
$$

## Security Statement

Thm: $(\mathrm{P}, \mathrm{V}, \operatorname{lnc})$ an $(\alpha, \epsilon)$-sound $\mathbf{i P o S W}$ for $\alpha \in(0,1]$ and

$$
\epsilon=\frac{1+q^{2}}{2^{\lambda}}+\frac{q(q-1)}{2^{\lambda+1}}+q \cdot e^{-2 t \cdot\left(\frac{1-\alpha}{\log n}\right)^{2}} .
$$

Thm (Standalone PoSW): $(\mathrm{P}, \mathrm{V})$ is an $(\alpha, \epsilon)$-sound PoSW for $\alpha \in(0,1]$ and

$$
\epsilon=\frac{3 \cdot q^{2}}{2^{\lambda}}+\alpha^{t} .
$$

## General Weight/Challenge Distributions

Parameters: $G_{n}, t, \cdots$


Standalone (i)PoSW: Sample a random $S$ of size $t$ from $\mathcal{C}$


## General Weight/Challenge Distributions

Parameters: $G_{n}, t, \cdots$


Standalone (i)PoSW: Sample a random $S$ of size $t$ from $\mathcal{C}$
For some applications, not all challenges in $\mathcal{C}$ are treated equally


## The SNACK Weight Distribution

The SNACK weight distribution $\quad \Omega_{n}(i) \sim \frac{1}{n-i+c}$
$\Omega_{n}:[n] \rightarrow[0,1]$ s.t. $\sum_{i=1}^{n} \Omega_{n}(i)=1$
Cheating on blocks closer to the tip is cheaper than on blocks deeper into the chain


## The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution $\quad \Omega_{n}(i) \sim \frac{1}{n-i+c}$


## The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution $\quad \Omega_{n}(i) \sim \frac{1}{n-i+c}$


Add $\pi_{i}$ to $\mathcal{L}_{8,1}$ w.p. $t \cdot \Omega_{n}(i) \quad \Rightarrow \quad\left|\mathcal{L}_{8,1}\right|=t$ on expectation

## The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution $\quad \Omega_{n}(i) \sim \frac{1}{n-i+c}$


Add $\pi_{i}$ to $\mathcal{L}_{16,1}$ w.p. $t \cdot \Omega_{n}(i-8) \quad \Rightarrow \quad\left|\mathcal{L}_{16,1}\right|=t$ on expectation

## The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution $\quad \Omega_{n}(i) \sim \frac{1}{n-i+c}$


Add $\pi_{i}$ to $\mathcal{L}_{16,2}$ w.p. $t \cdot \Omega_{n}(i) \quad \Rightarrow \quad\left|\mathcal{L}_{16,2}\right|=t$ on expectation

## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

Give a constrution for any $t$-incrementally sampleable distribution over the skiplist graph

## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

Give a constrution for any $t$-incrementally sampleable distribution over the skiplist graph
New challenges to resolve:

- In the standalone case: the sampling sets are implicitly defined and are of size $t$ exactly


## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

Give a constrution for any $t$-incrementally sampleable distribution over the skiplist graph
New challenges to resolve:

- In the standalone case: the sampling sets are implicitly defined and are of size $t$ exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size $t$ on expectation


## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

Give a constrution for any $t$-incrementally sampleable distribution over the skiplist graph
New challenges to resolve:

- In the standalone case: the sampling sets are implicitly defined and are of size $t$ exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size $t$ on expectation

Solution:

- P commits to the sampling sets in a tree fashion


## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

Give a constrution for any $t$-incrementally sampleable distribution over the skiplist graph
New challenges to resolve:

- In the standalone case: the sampling sets are implicitly defined and are of size $t$ exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size $t$ on expectation


## Solution:

- P commits to the sampling sets in a tree fashion
- P now provides the sampling sets explicitly as part of the proof


## Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally: $t$-Incrementally Sampleable Distributions

Give a constrution for any $t$-incrementally sampleable distribution over the skiplist graph
New challenges to resolve:

- In the standalone case: the sampling sets are implicitly defined and are of size $t$ exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size $t$ on expectation


## Solution:

- P commits to the sampling sets in a tree fashion
- P now provides the sampling sets explicitly as part of the proof
- V recursively checks the consistency of the samplings as before and that these sets are within their expected size


## Soundness



Proof strategy:

1. Bound the advantage $\tilde{P}$ get from choosing malicious sampling sets
2. Generalize the on-the-fly sampling bound to $t$-incrementally sampleable distributions
3. Reduce security to the standalone PoSW

## Soundness



Proof strategy:

1. Bound the advantage $\tilde{P}$ get from choosing malicious sampling sets
2. Generalize the on-the-fly sampling bound to $t$-incrementally sampleable distributions
3. Reduce security to the standalone PoSW

We give bounds for any $t$-incrementally sampleable weight distributions We give concrete bounds for the uniform and SNACK distributions

Thank you


Additional Material

## Efficiency Measures



Prover space complexity:

1. The skiplist $G_{n}$ can be topologically labeled with space $(\log n+1) \lambda$ bits
2. At no time $\mathbf{P}$ or Inc keeps more than $\log n+1$ lists $\mathcal{L}_{v, i}$, each of succinct size
$\Rightarrow$ proof size: $O\left(\lambda \cdot t \cdot \log ^{3} n\right)$

## Our Standalone iPoSW: The Verifier V



$$
\mathcal{I}_{1}=\{1,1\}
$$

$$
\begin{aligned}
& S_{0,1}=\{1,2,3,4\} \cup S_{1,1}=\{5,6,7,8\} \\
& \rightarrow_{L(8)} S_{1}=\{1,4,6,7\} \\
& S_{0,2}=\{1,4,6,7\} \cup S_{1,2}=\{10,13,14,16\} \\
& \rightarrow_{L(16)} S_{2}=\{1,6,10,13\}
\end{aligned}
$$

Note: $L(8), L(16) \in \pi_{1}$

## Our Standalone iPoSW: The Verifier V



$$
\mathcal{I}_{13}=\{1,2\}
$$

$$
\begin{aligned}
S_{0,1}=\{ & 9,10,11,12\} \cup S_{1,1}=\{13,14,15,16\} \\
& \rightarrow_{L(16)} S_{1}=\{10,13,14,16\} \\
S_{0,2}= & \{1,4,6,7\} \cup S_{1,2}=\{10,13,14,16\} \\
& \rightarrow_{L(16)} S_{2}=\{1,6,10,13\}
\end{aligned}
$$

Note: $L(16) \in \pi_{13}$

## Succinct Non-interactive Arguments of Chain Knowledge

Weighted Blockchain: $\Gamma_{n}=\left(H_{n}, \Omega_{n}\right)$ with weight function

$$
\Omega_{n}:[n] \rightarrow[0,1] \text { s.t. } \sum_{i=1}^{n} \Omega_{n}(i)=1
$$



## Succinct Non-interactive Arguments of Chain Knowledge

Weighted Blockchain: $\Gamma_{n}=\left(H_{n}, \Omega_{n}\right)$ with weight function

$$
\Omega_{n}:[n] \rightarrow[0,1] \text { s.t. } \sum_{i=1}^{n} \Omega_{n}(i)=1
$$



## Succinct Non-interactive Arguments of Chain Knowledge

[Abusalah-Fuchsbauer-Gaži-Klein'22]

Weighted Blockchain: $\Gamma_{n}=\left(H_{n}, \Omega_{n}\right)$ with weight function

$$
\Omega_{n}:[n] \rightarrow[0,1] \text { s.t. } \sum_{i=1}^{n} \Omega_{n}(i)=1
$$



## Succinct Non-interactive Arguments of Chain Knowledge

## [Abusalah-Fuchsbauer-Gaži-Klein'22]

Weighted Blockchain: $\Gamma_{n}=\left(H_{n}, \Omega_{n}\right)$ with weight function

$$
\Omega_{n}:[n] \rightarrow[0,1] \text { s.t. } \sum_{i=1}^{n} \Omega_{n}(i)=1
$$



Not All Distributions Are Incrementable


## Not All Distributions Are Incrementable



We characterize distributions that can be sampled incrementally: $t$-incrementally Sampleable Distributions

Give a constrution for any $t$-sampleable distribution over the skiplist graph

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$ Assume $i \in S_{0}$ is inconsistent and that $i \in S$

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$ Assume $i \in S_{0}$ is inconsistent and that $i \in S$
$\tilde{\mathrm{P}}$ malicoulsy manipulates $S_{0}$ into $\tilde{S}_{0}$ s.t. $i \notin S$ where $S$ is sampled from $\tilde{S}_{0} \cup S_{1}$

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$ Assume $i \in S_{0}$ is inconsistent and that $i \in S$
$\tilde{\mathrm{P}}$ malicoulsy manipulates $S_{0}$ into $\tilde{S}_{0}$ s.t. $i \notin S$ where $S$ is sampled from $\tilde{S}_{0} \cup S_{1}$

$S$ contains some $j \in \tilde{S}_{0}$

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$
Assume $i \in S_{0}$ is inconsistent and that $i \in S$
$\tilde{\mathrm{P}}$ malicoulsy manipulates $S_{0}$ into $\tilde{S}_{0}$ s.t. $i \notin S$ where $S$ is sampled from $\tilde{S}_{0} \cup S_{1}$

$S$ contains some $j \in \tilde{S}_{0}$
$\vee$ catches $\tilde{\mathrm{P}}$ in level $k-1$ unless
$\tilde{P}$ breaks the commitment

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$
Assume $i \in S_{0}$ is inconsistent and that $i \in S$
$\tilde{\mathrm{P}}$ malicoulsy manipulates $S_{0}$ into $\tilde{S}_{0}$ s.t. $i \notin S$ where $S$ is sampled from $\tilde{S}_{0} \cup S_{1}$

$S$ contains some $j \in \tilde{S}_{0}$
$S$ doesn't contain any $j \in \tilde{S}_{0}$
V catches $\tilde{\mathrm{P}}$ in level $k-1$ unless
$\tilde{P}$ breaks the commitment

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$
Assume $i \in S_{0}$ is inconsistent and that $i \in S$
$\tilde{\mathrm{P}}$ malicoulsy manipulates $S_{0}$ into $\tilde{S}_{0}$ s.t. $i \notin S$ where $S$ is sampled from $\tilde{S}_{0} \cup S_{1}$

$S$ contains some $j \in \tilde{S}_{0}$
V catches $\tilde{\mathrm{P}}$ in level $k-1$ unless
$\tilde{P}$ breaks the commitment

## Malicious Sampling Sets

$\tilde{P}$ can maliciously choose the sampling sets
Let $S_{0}$ and $S_{1}$ be the sampling sets from which $S$ is sampled at level $k$
Assume $i \in S_{0}$ is inconsistent and that $i \in S$
$\tilde{\mathrm{P}}$ malicoulsy manipulates $S_{0}$ into $\tilde{S}_{0}$ s.t. $i \notin S$ where $S$ is sampled from $\tilde{S}_{0} \cup S_{1}$

$S$ contains some $j \in \tilde{S}_{0}$
$S$ doesn't contain any $j \in \tilde{S}_{0}$
$\vee$ catches $\tilde{\mathrm{P}}$ in level $k-1$ unless
$\tilde{P}$ gains advantage
$\tilde{P}$ breaks the commitment
We bound the advantage of $\tilde{P}$ in these cases and give concrete bounds for the uniform and SNACK distributions

## Security Statement

Thm (iPoSW for the uniform weight distribution): $(\mathrm{P}, \mathrm{V}, \mathrm{Inc})$ an $(\alpha, \epsilon)$-sound $\mathbf{i P o S W}$ for $\alpha \in(0,1]$ and

$$
\epsilon=\frac{1+q^{2}}{2^{\lambda}}+\frac{q(q-1)}{2^{\lambda+1}}+q \cdot e^{-2 t \cdot\left(\frac{1-\alpha}{\log n}\right)^{2}}+q \cdot 2^{-\zeta \cdot t} .
$$

Thm (Standalone iPoSW): ( $\mathrm{P}, \mathrm{V}, \operatorname{lnc}$ ) an $(\alpha, \epsilon)$-sound iPoSW for $\alpha \in(0,1]$ and

$$
\epsilon=\frac{1+q^{2}}{2^{\lambda}}+\frac{q(q-1)}{2^{\lambda+1}}+q \cdot e^{-2 t \cdot\left(\frac{1-\alpha}{\log n}\right)^{2}} .
$$

Thm (Standalone PoSW): $(\mathrm{P}, \mathrm{V})$ is an $(\alpha, \epsilon)$-sound PoSW for $\alpha \in(0,1]$ and

$$
\epsilon=\frac{3 \cdot q^{2}}{2^{\lambda}}+\alpha^{t} .
$$

