
An Incremental PoSW
for General Weight Distributions

Hamza Abusalah and Valerio Cini

Eurocrypt 2023 in Lyon, France

Outline

Proofs of Sequential Work, Standalone (PoSW) and
Incremental (iPoSW)

The Skiplist PoSW

Make it Incremental (iPoSW)

Generalize it to General Weight Distributions
(Motivated by Blockchain Applications)

All Constructions Are in the ROM

(We don’t cover (continuous) verifiable delay functions)

PoSW

Vτ(·)Pτ(·)
Parameter: n

[Mahmoody-Moran-Vadhan’13]

Completeness: Honest Pτ(·) making n sequential τ(·) queries makes V
accept w.p. 1

PoSW

Vτ(·)

poly(λ, log n) time

Pτ(·)
Parameter: n

[Mahmoody-Moran-Vadhan’13]

Completeness: Honest Pτ(·) making n sequential τ(·) queries makes V
accept w.p. 1

Succinctness: For every honest proof π :
|π| ≤ poly(λ, log n),Time(V) ≤ poly(λ, log n), and Time(P) ≤ poly(λ, n)

PoSW

(α, ε)-Soundness: A parallel P̃τ(·) making ≤ α · n sequential queries to
τ(·) makes V accept with prob. ≤ ε(λ)

...

P̃τ(·)

[Mahmoody-Moran-Vadhan’13]

Vτ(·)

poly(λ, log n) time

Parameter: n

All PoSW Constructions Look Like

Vτ(·)Pτ(·)

0 1 2 3 4 5 6 7 80 1 3 4

2 5

6

[Cohen-Pietrzak’18] [Abusalah-Kamath-Klein-Walter-Pietrzak’19][Abusalah-Fuchsbauer-Gaži-Klein’22]

Parameters: Gn, t, · · ·

All PoSW Constructions Look Like

χ

L(n)

Parameters: Gn, t, · · ·
Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

0 1 2 3 4 5 6 7 80 1 3 4

2 5

6

[Cohen-Pietrzak’18] [Abusalah-Kamath-Klein-Walter-Pietrzak’19][Abusalah-Fuchsbauer-Gaži-Klein’22]

All PoSW Constructions Look Like

χ

ri

i
$← C ⊆ {0, . . . , n}

L(n)

t

Parameters: Gn, t, · · ·
Pτ(·) Vτ(·)

L(i) :=

{
τ(i) if parents(i) = ∅,
τ
(
i, L(parents(i))

)
otherwise.

Random oracle τ : {0, 1}∗ → {0, 1}λ with τ := τ(χ, ·)

0 1 2 3 4 5 6 7 80 1 3 4

2 5

6

[Cohen-Pietrzak’18] [Abusalah-Kamath-Klein-Walter-Pietrzak’19][Abusalah-Fuchsbauer-Gaži-Klein’22]

The Skiplist PoSW

χ

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8)

i
$← {0, . . . , n}

L(n)

t

Pτ(·) Vτ(·)

∀j ∈ path(i)
L(j), L(parents(j))

[Abusalah-Fuchsbauer-Gaži-Klein’22]

The Skiplist PoSW

χ

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8)

i = 5

L(8)

t

Pτ(·) Vτ(·)

∀j ∈ path(i)
L(j), L(parents(j))

[Abusalah-Fuchsbauer-Gaži-Klein’22]

The Skiplist PoSW

χ

i = 5

t

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8)

L(8)

Pτ(·) Vτ(·)

∀j ∈ path(i)
L(j), L(parents(j))

[Abusalah-Fuchsbauer-Gaži-Klein’22]

The Skiplist PoSW

χ

i = 5

t

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8)

poly(λ, log n) time

L(8)

Pτ(·) Vτ(·)

∀j ∈ path(i)
L(j), L(parents(j))

[Abusalah-Fuchsbauer-Gaži-Klein’22]

The Skiplist PoSW

χ

i = 5

t

L(0) L(1) L(2) L(3) L(4) L(5) L(6) L(7) L(8)

poly(λ, log n) time

L(8)

Pτ(·) Vτ(·)

∀j ∈ path(i)
L(j), L(parents(j))

[Abusalah-Fuchsbauer-Gaži-Klein’22]

1. P̃1 made ≤ α · n sequential queries to τ(·) before sending L(n)
2. P̃ := (P̃1, P̃2) made a total of ≤ q queries to τ(·)
Then P̃ makes V accept w.p. ≤ αt + 3 · q2/2λ

Thm: If

On Our Way to iPoSW

To answer challenges, P has two extremes

• store all labels L(0), . . . , L(n): answering a challenge is just a
look-up

• store nothing and spend an extra n sequential steps to relabel and
answer

0 1 2 3 4 5 6 7 8
0 1 3 4

2 5

6

On Our Way to iPoSW

To answer challenges, P has two extremes

• store all labels L(0), . . . , L(n): answering a challenge is just a
look-up

• store nothing and spend an extra n sequential steps to relabel and
answer

Space-time tradeoffs:

store
√
n labels and spend an extra

√
n sequential steps

0 1 2 3 4 5 6 7 8
0 1 3 4

2 5

6

On Our Way to iPoSW

To answer challenges, P has two extremes

• store all labels L(0), . . . , L(n): answering a challenge is just a
look-up

• store nothing and spend an extra n sequential steps to relabel and
answer

Space-time tradeoffs:

store
√
n labels and spend an extra

√
n sequential steps

Question: Best of both worlds: can we store a succinct state and spend
no extra time?

0 1 2 3 4 5 6 7 8
0 1 3 4

2 5

6

iPoSW
[Döttling-Lai-Malavolta’19]

Vτ(·)Pτ(·)

πn

Parameter: n

An iPoSW is a non-interactive proof system (P,V, Inc) where

• (P,V) is a PoSW: complete, sound, and succinct

iPoSW

Vτ(·)Incτ(·)(1n2)

[Döttling-Lai-Malavolta’19]

πn1

πn:=n1+n2

An iPoSW is a non-interactive proof system (P,V, Inc) where

• (P,V) is a PoSW: complete, sound, and succinct

• Inc: given an accepting πn1 , Inc making n2 sequential τ(·) queries
makes V accept

iPoSW

Vτ(·)Incτ(·)(1n2)

[Döttling-Lai-Malavolta’19]

πn1

πn:=n1+n2

An iPoSW is a non-interactive proof system (P,V, Inc) where

• (P,V) is a PoSW: complete, sound, and succinct

• Inc: given an accepting πn1 , Inc making n2 sequential τ(·) queries
makes V accept

iPoSW

Vτ(·)

poly(λ, log n) time

Incτ(·)(1n2)

[Döttling-Lai-Malavolta’19]

πn1

πn:=n1+n2

πn1
→ Inc(n2)→ πn1+n2

→ Inc(n3)→ πn1+n2+n3
→ · · · → πn=n1+···+nk

An iPoSW is a non-interactive proof system (P,V, Inc) where

• (P,V) is a PoSW: complete, sound, and succinct

• Inc: given an accepting πn1 , Inc making n2 sequential τ(·) queries
makes V accept

An iPoSW Construction
[Döttling-Lai-Malavolta’19]

0 1 3 4

2 5

6• Döttling-Lai-Malavolta made
Cohen-Pietrzak’18 incremental by sampling
challenges on the fly

• Efficient, yet incurs an extra small security loss
[Cohen-Pietrzak’18]

An iPoSW Construction
[Döttling-Lai-Malavolta’19]

0 1 3 4

2 5

6• Döttling-Lai-Malavolta made
Cohen-Pietrzak’18 incremental by sampling
challenges on the fly

• Efficient, yet incurs an extra small security loss
[Cohen-Pietrzak’18]

In this work

1. We similarily make the skiplist PoSW incremental

We apply the same on-the-fly sampling

An iPoSW Construction
[Döttling-Lai-Malavolta’19]

0 1 3 4

2 5

6

[Cohen-Pietrzak’18]

In this work

1. We similarily make the skiplist PoSW incremental

We apply the same on-the-fly sampling

2. We generalize the skiplist iPoSW to general weight distributions

We devise a new variant of the on-the-fly sampling technique

• Döttling-Lai-Malavolta made
Cohen-Pietrzak’18 incremental by sampling
challenges on the fly

• Efficient, yet incurs an extra small security loss

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L4,0

* for t = 4

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L4,0 L8,0

* for t = 4

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L4,0 L8,0

Use randomness from L(8) to randomly sample a set of size 4 from
{1, . . . , 8}

* for t = 4

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,1 = {π1, π4, π6, π7}

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8]

We have all labels to complile πi

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,1 = {π1, π4, π6, π7}

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8]

* and the parents

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,1 = {π1, π4, π6, π7}

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[8:16]

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

Use randomness from L(16) to randomly sample a set of size 4 from
{9, . . . , 16}

Our Standalone iPoSW: The Prover P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Computing L16,2 from L8,1 and L16,1:

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8], G[8:18]respt.

Our Standalone iPoSW: The Prover P

Computing L16,2 from L8,1 and L16,1:

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8], G[8:18]respt.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

πi in G[0:8]︸ ︷︷ ︸
from L8,1

Our Standalone iPoSW: The Prover P

Computing L16,2 from L8,1 and L16,1:

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8], G[8:18]respt.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

πi in G[0:8]︸ ︷︷ ︸
from L8,1

+ L(16), parents(16) in G[8:16]︸ ︷︷ ︸
from L16,1

=⇒ πi in G16

Our Standalone iPoSW: The Prover P

πi in G[0:8]︸ ︷︷ ︸
from L8,1

+ L(16), parents(16) in G[8:16]︸ ︷︷ ︸
from L16,1

=⇒ πi in G16

Computing L16,2 from L8,1 and L16,1:

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8], G[8:18]respt.

πi in G[8:16]︸ ︷︷ ︸
from L16,1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Our Standalone iPoSW: The Prover P

πi in G[0:8]︸ ︷︷ ︸
from L8,1

+ L(16), parents(16) in G[8:16]︸ ︷︷ ︸
from L16,1

=⇒ πi in G16

Computing L16,2 from L8,1 and L16,1:

πi := L(j), L(parents(j)) ∀j ∈ path(i) in G[0:8], G[8:18]respt.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

πi in G[8:16]︸ ︷︷ ︸
from L16,1

+ L(8), parents(8) in G[0:8]︸ ︷︷ ︸
from L8,1

=⇒ πi in G16

Our Standalone iPoSW: The Inc Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Inc works exactly as P: it picks up the computation where P leaves it
and it constinues exactly as P would have continued

Standalone iPoSW Verifier V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

V recursively checks that challenges in are consistent with the sampling

Standalone iPoSW Verifier V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

V recursively checks that challenges in are consistent with the sampling

• P provides V for every πi with an index set Ii
• Ii = (i1, . . . , i`) ∈ [t]

` where ` = # of samplings in πi

• ij is associated with the jth sampling from sets S0,j and S1,j

• i ∈ Sb,j ⇒ ij is the index within Sb,j

Standalone iPoSW Verifier V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

V recursively checks that challenges in are consistent with the sampling

An important observation: the sampling sets are implictly given to V
and are of size t

• P provides V for every πi with an index set Ii

• ij is associated with the jth sampling from sets S0,j and S1,j

• i ∈ Sb,j ⇒ ij is the index within Sb,j

• Ii = (i1, . . . , i`) ∈ [t]
` where ` = # of samplings in πi

Standalone iPoSW Verifier V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

V recursively checks that challenges in are consistent with the sampling

An important observation: the sampling sets are implictly given to V
and are of size t

For general weight distributions: the sampling sets are of size t on
expectation

• P provides V for every πi with an index set Ii

• ij is associated with the jth sampling from sets S0,j and S1,j

• i ∈ Sb,j ⇒ ij is the index within Sb,j

• Ii = (i1, . . . , i`) ∈ [t]
` where ` = # of samplings in πi

Soundness

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}
Proof strategy:

1. Bound the advantage the on-the-fly sampling gives a malicous P̃

2. Reduce security to the standalone PoSW

Soundness

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}
Proof strategy:

1. Bound the advantage the on-the-fly sampling gives a malicous P̃

2. Reduce security to the standalone PoSW

The On-The-Fly Sampling Lemma:
1. S := L16,2 sampled from S0 := L8,1 ∪ S1 := L16,1 as above, or

2. S sampled directly from {1, . . . , 16}
Show that the % of incosnsistent nodes in S in 1. and 2. are close

Soundness

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}
Proof strategy:

1. Bound the advantage the on-the-fly sampling gives a malicous P̃

2. Reduce security to the standalone PoSW

The On-The-Fly Sampling Lemma:
1. S := L16,2 sampled from S0 := L8,1 ∪ S1 := L16,1 as above, or

2. S sampled directly from {1, . . . , 16}
Show that the % of incosnsistent nodes in S in 1. and 2. are close

This follows easily from a Hoeffding bound

Security Statement

Thm: If

Thm: (P,V, Inc) an (α, ε)-sound iPoSW for α ∈ (0, 1] and

ε =
1 + q2

2λ
+
q(q − 1)

2λ+1
+ q · e−2t·(

1−α
logn)

2

.

Security Statement

Thm: If

Thm: (P,V, Inc) an (α, ε)-sound iPoSW for α ∈ (0, 1] and

ε =
1 + q2

2λ
+
q(q − 1)

2λ+1
+ q · e−2t·(

1−α
logn)

2

.

Thm (Standalone PoSW): (P,V) is an (α, ε)-sound PoSW
for α ∈ (0, 1] and

ε =
3 · q2

2λ
+ αt .

General Weight/Challenge Distributions

χ

rS

S
$← C ⊆ {0, . . . , n}

L(n)

Parameters: Gn, t, · · ·
Pτ(·) Vτ(·)

0 1 2 3 4 5 6 7 80 1 3 4

2 5

6

Parameters: Gn, t, · · ·

Standalone (i)PoSW: Sample a random S of size t from C

General Weight/Challenge Distributions

χ

rS

S
$← C ⊆ {0, . . . , n}

L(n)

Parameters: Gn, t, · · ·
Pτ(·) Vτ(·)

0 1 2 3 4 5 6 7 80 1 3 4

2 5

6

Parameters: Gn, t, · · ·

Standalone (i)PoSW: Sample a random S of size t from C

For some applications, not all challenges in C are treated equally

The SNACK Weight Distribution

The SNACK weight distribution Ωn(i) ∼ 1
n−i+c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cheating on blocks closer to the tip is cheaper
than on blocks deeper into the chain

Ωn : [n]→ [0, 1] s.t.
∑n
i=1 Ωn(i) = 1

The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution Ωn(i) ∼ 1
n−i+c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution Ωn(i) ∼ 1
n−i+c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,1 = {π3, π5, π6, π8}

Add πi to L8,1 w.p. t · Ωn(i) ⇒ |L8,1| = t on expectation

The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution Ωn(i) ∼ 1
n−i+c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π12, π14, π15, π16}L8,1 = {π3, π5, π6, π8}

Add πi to L16,1 w.p. t ·Ωn(i− 8) ⇒ |L16,1| = t on expectation

The SNACK Weight Distribution Is Incrementable

The SNACK weight distribution Ωn(i) ∼ 1
n−i+c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π12, π14, π15, π16}L8,1 = {π3, π5, π6, π8}

L16,2 = {π6, π8, π14, π15}

Add πi to L16,2 w.p. t · Ωn(i) ⇒ |L16,2| = t on expectation

Our iPoSW for General Weight Distributions

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

Our iPoSW for General Weight Distributions

Give a constrution for any t-incrementally sampleable distribution over
the skiplist graph

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

Our iPoSW for General Weight Distributions

Give a constrution for any t-incrementally sampleable distribution over
the skiplist graph

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

New challenges to resolve:

• In the standalone case: the sampling sets are implicitly defined and are
of size t exactly

Our iPoSW for General Weight Distributions

Give a constrution for any t-incrementally sampleable distribution over
the skiplist graph

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

New challenges to resolve:

• In the standalone case: the sampling sets are implicitly defined and are
of size t exactly

• In the general case: the sampling sets are no longer implicitly defined
and are of size t on expectation

Our iPoSW for General Weight Distributions

Give a constrution for any t-incrementally sampleable distribution over
the skiplist graph

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

New challenges to resolve:

Solution:

• P commits to the sampling sets in a tree fashion

• In the standalone case: the sampling sets are implicitly defined and are
of size t exactly

• In the general case: the sampling sets are no longer implicitly defined
and are of size t on expectation

Our iPoSW for General Weight Distributions

Give a constrution for any t-incrementally sampleable distribution over
the skiplist graph

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

New challenges to resolve:

Solution:

• P commits to the sampling sets in a tree fashion

• P now provides the sampling sets explicitly as part of the proof

• In the standalone case: the sampling sets are implicitly defined and are
of size t exactly

• In the general case: the sampling sets are no longer implicitly defined
and are of size t on expectation

Our iPoSW for General Weight Distributions

Give a constrution for any t-incrementally sampleable distribution over
the skiplist graph

We characterize distributions that can be sampled incrementally:
t-Incrementally Sampleable Distributions

New challenges to resolve:

Solution:

• P commits to the sampling sets in a tree fashion

• P now provides the sampling sets explicitly as part of the proof

• V recursively checks the consistency of the samplings as before and
that these sets are within their expected size

• In the standalone case: the sampling sets are implicitly defined and are
of size t exactly

• In the general case: the sampling sets are no longer implicitly defined
and are of size t on expectation

Soundness

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Proof strategy:

1. Bound the advantage P̃ get from choosing malicious sampling sets

2. Generalize the on-the-fly sampling bound to t-incrementally
sampleable distributions

3. Reduce security to the standalone PoSW

Soundness

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Proof strategy:

1. Bound the advantage P̃ get from choosing malicious sampling sets

2. Generalize the on-the-fly sampling bound to t-incrementally
sampleable distributions

3. Reduce security to the standalone PoSW

We give bounds for any t-incrementally sampleable weight distributions

We give concrete bounds for the uniform and SNACK distributions

Thank you

Additional Material

Efficiency Measures

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Prover space complexity:
1. The skiplist Gn can be topologically labeled with space (log n+ 1)λ

bits
2. At no time P or Inc keeps more than log n+ 1 lists Lv,i, each of

succinct size
⇒ proof size: O(λ · t · log3 n)

Our Standalone iPoSW: The Verifier V

I1 = {1, 1}
S0,1 = {1, 2, 3, 4} ∪ S1,1 = {5, 6, 7, 8}

→L(8) S1 = {1, 4, 6, 7}

S0,2 = {1, 4, 6, 7} ∪ S1,2 = {10, 13, 14, 16}

→L(16) S2 = {1, 6, 10, 13}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

Note: L(8), L(16) ∈ π1

Our Standalone iPoSW: The Verifier V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,1 = {π10, π13, π14, π16}L8,1 = {π1, π4, π6, π7}

L16,2 = {π1, π6, π10, π13}

S0,1 = {9, 10, 11, 12} ∪ S1,1 = {13, 14, 15, 16}

→L(16) S1 = {10, 13, 14, 16}

S0,2 = {1, 4, 6, 7} ∪ S1,2 = {10, 13, 14, 16}

→L(16) S2 = {1, 6, 10, 13}

Note: L(16) ∈ π13

I13 = {1, 2}

Succinct Non-interactive Arguments of Chain Knowledge

Weighted Blockchain: Γn = (Hn,Ωn) with weight function

Ωn : [n]→ [0, 1] s.t.
∑n
i=1 Ωn(i) = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[Abusalah-Fuchsbauer-Gaži-Klein’22]

Succinct Non-interactive Arguments of Chain Knowledge

PoSW Gn

+
VP

Weighted Blockchain: Γn = (Hn,Ωn) with weight function

Ωn : [n]→ [0, 1] s.t.
∑n
i=1 Ωn(i) = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[Abusalah-Fuchsbauer-Gaži-Klein’22]

Succinct Non-interactive Arguments of Chain Knowledge

PoSW Gn

Augmented DAG (K := ([n]0, EK := EH ∪ EG),Ωn)

+

=

VP

Weighted Blockchain: Γn = (Hn,Ωn) with weight function

Ωn : [n]→ [0, 1] s.t.
∑n
i=1 Ωn(i) = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[Abusalah-Fuchsbauer-Gaži-Klein’22]

Succinct Non-interactive Arguments of Chain Knowledge

V′P′

PoSW Gn

Augmented DAG (K := ([n]0, EK := EH ∪ EG),Ωn)

+

=

VP

≈ ≈
Weighted Blockchain: Γn = (Hn,Ωn) with weight function

Ωn : [n]→ [0, 1] s.t.
∑n
i=1 Ωn(i) = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[Abusalah-Fuchsbauer-Gaži-Klein’22]

Not All Distributions Are Incrementable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Not All Distributions Are Incrementable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Give a constrution for any t-sampleable distribution over the skiplist graph

We characterize distributions that can be sampled incrementally:
t-incrementally Sampleable Distributions

Malicious Sampling Sets

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ malicoulsy manipulates S0 into S̃0 s.t. i /∈ S where S is sampled from
S̃0 ∪ S1

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ malicoulsy manipulates S0 into S̃0 s.t. i /∈ S where S is sampled from
S̃0 ∪ S1

S contains some j ∈ S̃0

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ malicoulsy manipulates S0 into S̃0 s.t. i /∈ S where S is sampled from
S̃0 ∪ S1

S contains some j ∈ S̃0

V catches P̃ in level k − 1 unless
P̃ breaks the commitment

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

S doesn’t contain any j ∈ S̃0

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ malicoulsy manipulates S0 into S̃0 s.t. i /∈ S where S is sampled from
S̃0 ∪ S1

S contains some j ∈ S̃0

V catches P̃ in level k − 1 unless
P̃ breaks the commitment

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

S doesn’t contain any j ∈ S̃0

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ malicoulsy manipulates S0 into S̃0 s.t. i /∈ S where S is sampled from
S̃0 ∪ S1

S contains some j ∈ S̃0

P̃ gains advantageV catches P̃ in level k − 1 unless
P̃ breaks the commitment

P̃ can maliciously choose the sampling sets

Malicious Sampling Sets

Let S0 and S1 be the sampling sets from which S is sampled at level k

S doesn’t contain any j ∈ S̃0

Assume i ∈ S0 is inconsistent and that i ∈ S

P̃ malicoulsy manipulates S0 into S̃0 s.t. i /∈ S where S is sampled from
S̃0 ∪ S1

S contains some j ∈ S̃0

P̃ gains advantageV catches P̃ in level k − 1 unless
P̃ breaks the commitment

P̃ can maliciously choose the sampling sets

We bound the advantage of P̃ in these cases and give concrete bounds
for the uniform and SNACK distributions

Security Statement

Thm: If

Thm (Standalone iPoSW): (P,V, Inc) an (α, ε)-sound
iPoSW for α ∈ (0, 1] and

ε =
1 + q2

2λ
+
q(q − 1)

2λ+1
+ q · e−2t·(

1−α
logn)

2

.

Thm (iPoSW for the uniform weight distribution):
(P,V, Inc) an (α, ε)-sound iPoSW for α ∈ (0, 1] and

ε =
1 + q2

2λ
+
q(q − 1)

2λ+1
+ q · e−2t·(

1−α
logn)

2

+ q · 2−ζ·t .

Thm (Standalone PoSW): (P,V) is an (α, ε)-sound PoSW
for α ∈ (0, 1] and

ε =
3 · q2

2λ
+ αt .

