An Incremental PoSW for General Weight Distributions

Hamza Abusalah and Valerio Cini

Eurocrypt 2023 in Lyon, France

Der Wissenschaftsfonds.

Outline

Proofs of Sequential Work, Standalone (PoSW) and Incremental (iPoSW)

The Skiplist PoSW

Make it Incremental (iPoSW)

Generalize it to *General Weight Distributions* (Motivated by Blockchain Applications)

All Constructions Are in the ROM

(We don't cover (continuous) verifiable delay functions)

Completeness: Honest $\mathsf{P}^{\tau(\cdot)}$ making n sequential $\tau(\cdot)$ queries makes V accept w.p. 1

Completeness: Honest $\mathsf{P}^{\tau(\cdot)}$ making n sequential $\tau(\cdot)$ queries makes V accept w.p. 1

Succinctness: For every honest proof π : $|\pi| \leq \text{poly}(\lambda, \log n)$, Time(V) $\leq \text{poly}(\lambda, \log n)$, and Time(P) $\leq \text{poly}(\lambda, n)$

 (α, ϵ) -Soundness: A parallel $\tilde{\mathcal{P}}^{\tau(\cdot)}$ making $\leq \alpha \cdot n$ sequential queries to $\tau(\cdot)$ makes V accept with prob. $\leq \epsilon(\lambda)$

All PoSW Constructions Look Like

All PoSW Constructions Look Like

Random oracle $\tau: \{0,1\}^* \to \{0,1\}^{\lambda}$ with $\tau:=\tau(\chi,\cdot)$

 $L(i) := \begin{cases} \tau(i) & \text{if } \text{parents}(i) = \emptyset, \\ \tau(i, L(\text{parents}(i))) & \text{otherwise.} \end{cases}$

[Cohen-Pietrzak'18]

[Abusalah-Kamath-Klein-Walter-Pietrzak'19][Abusalah-Fuchsbauer-Gaži-Klein'22]

All PoSW Constructions Look Like

Random oracle $\tau: \{0,1\}^* \to \{0,1\}^{\lambda}$ with $\tau:=\tau(\chi,\cdot)$

$$L(i) := egin{cases} au(i) & ext{if parents}(i) = \emptyset, \\ au(i, L(ext{parents}(i))) & ext{otherwise}. \end{cases}$$

[Cohen-Pietrzak'18]

[Abusalah-Kamath-Klein-Walter-Pietrzak'19][Abusalah-Fuchsbauer-Gaži-Klein'22]

[Abusalah-Fuchsbauer-Gaži-Klein'22]

[Abusalah-Fuchsbauer-Gaži-Klein'22]

[Abusalah-Fuchsbauer-Gaži-Klein'22]

[Abusalah-Fuchsbauer-Gaži-Klein'22]

[Abusalah-Fuchsbauer-Gaži-Klein'22]

Thm: If 1. $\tilde{\mathsf{P}}_1$ made $\leq \alpha \cdot n$ sequential queries to $\tau(\cdot)$ before sending L(n)2. $\tilde{\mathsf{P}} := (\tilde{\mathsf{P}}_1, \tilde{\mathsf{P}}_2)$ made a total of $\leq q$ queries to $\tau(\cdot)$ Then $\tilde{\mathsf{P}}$ makes V accept w.p. $\leq \alpha^t + 3 \cdot q^2/2^{\lambda}$

On Our Way to iPoSW

To answer challenges, P has two extremes

- store all labels $L(0), \ldots, L(n)$: answering a challenge is just a look-up
- store nothing and spend an extra n sequential steps to relabel and answer

On Our Way to iPoSW

To answer challenges, P has two extremes

- store all labels $L(0), \ldots, L(n)$: answering a challenge is just a look-up
- store nothing and spend an extra n sequential steps to relabel and answer

Space-time tradeoffs:

store \sqrt{n} labels and spend an extra \sqrt{n} sequential steps

On Our Way to iPoSW

To answer challenges, P has two extremes

- store all labels $L(0), \ldots, L(n)$: answering a challenge is just a look-up
- store nothing and spend an extra n sequential steps to relabel and answer

Space-time tradeoffs:

store \sqrt{n} labels and spend an extra \sqrt{n} sequential steps

Question: Best of both worlds: can we store a succinct state and spend no extra time?

An iPoSW is a *non-interactive* proof system (P, V, Inc) where

• (P, V) is a PoSW: complete, sound, and succinct

An iPoSW is a *non-interactive* proof system (P, V, Inc) where

- (P, V) is a PoSW: complete, sound, and succinct
- Inc: given an accepting π_{n_1} , Inc making n_2 sequential $\tau(\cdot)$ queries makes V accept

iPoSW [Döttling-Lai-Malavolta'19]

An iPoSW is a *non-interactive* proof system (P, V, Inc) where

- (P, V) is a PoSW: complete, sound, and succinct
- Inc: given an accepting π_{n_1} , Inc making n_2 sequential $\tau(\cdot)$ queries makes V accept

iPoSW [Döttling-Lai-Malavolta'19]

An iPoSW is a *non-interactive* proof system (P, V, Inc) where

- (P, V) is a PoSW: complete, sound, and succinct
- Inc: given an accepting π_{n_1} , Inc making n_2 sequential $\tau(\cdot)$ queries makes V accept

$$\pi_{n_1} \to \operatorname{Inc}(n_2) \to \pi_{n_1+n_2} \to \operatorname{Inc}(n_3) \to \pi_{n_1+n_2+n_3} \to \cdots \to \pi_{n=n_1+\cdots+n_k}$$

An iPoSW Construction

[Döttling-Lai-Malavolta'19]

- Döttling-Lai-Malavolta made Cohen-Pietrzak'18 incremental by *sampling challenges on the fly*
- Efficient, yet incurs an extra small security loss

An iPoSW Construction

[Döttling-Lai-Malavolta'19]

- Döttling-Lai-Malavolta made Cohen-Pietrzak'18 incremental by *sampling challenges on the fly*
- Efficient, yet incurs an extra small security loss

In this work

 We similarly make the skiplist PoSW incremental We apply the same on-the-fly sampling

An iPoSW Construction

[Döttling-Lai-Malavolta'19]

- Döttling-Lai-Malavolta made Cohen-Pietrzak'18 incremental by *sampling challenges on the fly*
- Efficient, yet incurs an extra small security loss

In this work

- We similarly make the skiplist PoSW incremental We apply the same on-the-fly sampling
- We generalize the skiplist iPoSW to general weight distributions
 We devise a new variant of the on-the-fly sampling technique

Use randomness from L(8) to randomly sample a set of size 4 from $\{1,\ldots,8\}$

 $\pi_i := L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text{ in } G_{[0:8]}$

We have all labels to complile π_i

$$\pi_i := L(j), L(\mathsf{parents}(j)) \quad \forall j \in \mathsf{path}(i) \text{ in } G_{[0:8]}$$

 $\mathcal{L}_{8,1} = \{\pi_1, \pi_4, \pi_6, \pi_7\}$

$$\pi_i := L(j), L(\mathsf{parents}(j)) \quad \forall j \in \mathsf{path}(i) \text{ in } G_{[8:16]}$$

Use randomness from L(16) to randomly sample a set of size 4 from $\{9,\ldots,16\}$

Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$:

 $\pi_i := L(j), L(\operatorname{parents}(j)) \quad \forall j \in \operatorname{path}(i) \text{ in } G_{[0:8]}, G_{[8:18]} \text{ respt.}$

Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$:

Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$:

Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$:

$$\underbrace{\pi_i \text{ in } G_{[0:8]}}_{\text{from } \mathcal{L}_{8,1}} + \underbrace{L(16), \text{parents}(16) \text{ in } G_{[8:16]}}_{\text{from } \mathcal{L}_{16,1}} \implies \pi_i \text{ in } G_{16}$$

 π_i in $G_{[8:16]}$ from $\mathcal{L}_{16,1}$

Computing $\mathcal{L}_{16,2}$ from $\mathcal{L}_{8,1}$ and $\mathcal{L}_{16,1}$:

$$\underbrace{\pi_{i} \text{ in } G_{[0:8]}}_{\text{from } \mathcal{L}_{8,1}} + \underbrace{L(16), \text{ parents}(16) \text{ in } G_{[8:16]}}_{\text{from } \mathcal{L}_{16,1}} \implies \pi_{i} \text{ in } G_{16}$$

$$\underbrace{\pi_{i} \text{ in } G_{[8:16]}}_{\text{from } \mathcal{L}_{16,1}} + \underbrace{L(8), \text{ parents}(8) \text{ in } G_{[0:8]}}_{\text{from } \mathcal{L}_{8,1}} \implies \pi_{i} \text{ in } G_{16}$$

Our Standalone iPoSW: The Inc Algorithm

Inc **works exactly as** P: it picks up the computation where P leaves it and it constinues exactly as P would have continued

V recursively checks that challenges in are consistent with the sampling

- V recursively checks that challenges in are consistent with the sampling • P provides V for every π_i with an index set \mathcal{I}_i
 - $\mathcal{I}_i = (i_1, \ldots, i_\ell) \in [t]^\ell$ where $\ell = \#$ of samplings in π_i
 - i_j is associated with the *j*th sampling from sets $S_{0,j}$ and $S_{1,j}$

•
$$i \in S_{b,j} \implies i_j$$
 is the index within $S_{b,j}$

- V recursively checks that challenges in are consistent with the sampling • P provides V for every π_i with an index set \mathcal{I}_i
 - $\mathcal{I}_i = (i_1, \ldots, i_\ell) \in [t]^\ell$ where $\ell = \#$ of samplings in π_i
 - i_j is associated with the *j*th sampling from sets $S_{0,j}$ and $S_{1,j}$
 - $i \in S_{b,j} \implies i_j$ is the index within $S_{b,j}$

An important observation: the sampling sets are implicitly given to V and are of size t

- V recursively checks that challenges in are consistent with the sampling • P provides V for every π_i with an index set \mathcal{I}_i
 - $\mathcal{I}_i = (i_1, \ldots, i_\ell) \in [t]^\ell$ where $\ell = \#$ of samplings in π_i
 - i_j is associated with the *j*th sampling from sets $S_{0,j}$ and $S_{1,j}$
 - $i \in S_{b,j} \implies i_j$ is the index within $S_{b,j}$
 - An important observation: the sampling sets are implicitly given to V and are of size t

For general weight distributions: the sampling sets are of size t on expectation

Proof strategy:

- 1. Bound the advantage the on-the-fly sampling gives a malicous $\tilde{\mathsf{P}}$
- 2. Reduce security to the standalone PoSW

Proof strategy:

- 1. Bound the advantage the on-the-fly sampling gives a malicous P
- 2. Reduce security to the standalone PoSW

The On-The-Fly Sampling Lemma:

- 1. $S := \mathcal{L}_{16,2}$ sampled from $S_0 := \mathcal{L}_{8,1} \cup S_1 := \mathcal{L}_{16,1}$ as above, or
- 2. S sampled directly from $\{1, \ldots, 16\}$

Show that the % of incosnsistent nodes in S in 1. and 2. are close

Proof strategy:

- 1. Bound the advantage the on-the-fly sampling gives a malicous \tilde{P}
- 2. Reduce security to the standalone PoSW

The On-The-Fly Sampling Lemma:

- 1. $S := \mathcal{L}_{16,2}$ sampled from $S_0 := \mathcal{L}_{8,1} \cup S_1 := \mathcal{L}_{16,1}$ as above, or
- 2. S sampled directly from $\{1, \ldots, 16\}$

Show that the % of incosnsistent nodes in S in 1. and 2. are close

This follows easily from a Hoeffding bound

Security Statement

Thm: (P,V,Inc) an
$$(\alpha, \epsilon)$$
-sound **iPoSW** for $\alpha \in (0,1]$ and

$$\epsilon = \frac{1+q^2}{2^{\lambda}} + \frac{q(q-1)}{2^{\lambda+1}} + q \cdot e^{-2t \cdot \left(\frac{1-\alpha}{\log n}\right)^2}$$
.

Security Statement

Thm: (P,V,Inc) an
$$(\alpha, \epsilon)$$
-sound **iPoSW** for $\alpha \in (0,1]$ and

$$\epsilon = \frac{1+q^2}{2^{\lambda}} + \frac{q(q-1)}{2^{\lambda+1}} + q \cdot e^{-2t \cdot \left(\frac{1-\alpha}{\log n}\right)^2}$$
.

Thm (Standalone PoSW): (P,V) is an (α, ϵ) -sound PoSW for $\alpha \in (0,1]$ and $\epsilon = \frac{3 \cdot q^2}{2^{\lambda}} + \alpha^t$.

General Weight/Challenge Distributions

Standalone (i)PoSW: Sample a random S of size t from C

General Weight/Challenge Distributions

Standalone (i)PoSW: Sample a random S of size t from C

For some applications, not all challenges in ${\mathcal C}$ are treated equally

The SNACK Weight Distribution

Add π_i to $\mathcal{L}_{8,1}$ w.p. $t \cdot \Omega_n(i) \implies |\mathcal{L}_{8,1}| = t$ on expectation

Add π_i to $\mathcal{L}_{16,1}$ w.p. $t \cdot \Omega_n(i-8) \implies |\mathcal{L}_{16,1}| = t$ on expectation

Add π_i to $\mathcal{L}_{16,2}$ w.p. $t \cdot \Omega_n(i) \implies |\mathcal{L}_{16,2}| = t$ on expectation

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

Give a constrution for any *t*-incrementally sampleable distribution over the skiplist graph

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

Give a constrution for any *t*-incrementally sampleable distribution over the skiplist graph

New challenges to resolve:

 \bullet In the standalone case: the sampling sets are implicitly defined and are of size t exactly

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

Give a constrution for any *t*-incrementally sampleable distribution over the skiplist graph

New challenges to resolve:

- \bullet In the standalone case: the sampling sets are implicitly defined and are of size t exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size t on expectation

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

Give a constrution for any *t*-incrementally sampleable distribution over the skiplist graph

New challenges to resolve:

- \bullet In the standalone case: the sampling sets are implicitly defined and are of size t exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size t on expectation

Solution:

• P commits to the sampling sets in a tree fashion

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

Give a constrution for any *t*-incrementally sampleable distribution over the skiplist graph

New challenges to resolve:

- \bullet In the standalone case: the sampling sets are implicitly defined and are of size t exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size t on expectation

<u>Solution</u>:

- P commits to the sampling sets in a tree fashion
- P now provides the sampling sets explicitly as part of the proof

We characterize distributions that can be sampled incrementally: t-Incrementally Sampleable Distributions

Give a constrution for any *t*-incrementally sampleable distribution over the skiplist graph

New challenges to resolve:

- \bullet In the standalone case: the sampling sets are implicitly defined and are of size t exactly
- In the general case: the sampling sets are no longer implicitly defined and are of size t on expectation

Solution:

- P commits to the sampling sets in a tree fashion
- P now provides the sampling sets explicitly as part of the proof

• V recursively checks the consistency of the samplings as before and that these sets are within their expected size

Proof strategy:

- 1. Bound the advantage \tilde{P} get from choosing malicious sampling sets
- 2. Generalize the on-the-fly sampling bound to t-incrementally sampleable distributions
- 3. Reduce security to the standalone PoSW

Proof strategy:

- 1. Bound the advantage \tilde{P} get from choosing malicious sampling sets
- 2. Generalize the on-the-fly sampling bound to t-incrementally sampleable distributions
- 3. Reduce security to the standalone PoSW

We give bounds for any t-incrementally sampleable weight distributions We give concrete bounds for the uniform and SNACK distributions Thank you

Additional Material

Efficiency Measures

Prover space complexity:

- 1. The skiplist G_n can be topologically labeled with space $(\log n + 1)\lambda$ bits
- 2. At no time P or Inc keeps more than $\log n + 1$ lists $\mathcal{L}_{v,i}$, each of succinct size
- \Rightarrow proof size: $O(\lambda \cdot t \cdot \log^3 n)$

Our Standalone iPoSW: The Verifier V

 $\mathcal{I}_1 = \{1,1\}$

 $S_{0,1} = \{1, 2, 3, 4\} \cup S_{1,1} = \{5, 6, 7, 8\}$ $\rightarrow_{L(8)} S_1 = \{1, 4, 6, 7\}$ $S_{0,2} = \{1, 4, 6, 7\} \cup S_{1,2} = \{10, 13, 14, 16\}$ $\rightarrow_{L(16)} S_2 = \{1, 6, 10, 13\}$

Note: $L(8), L(16) \in \pi_1$

Our Standalone iPoSW: The Verifier V

 $\mathcal{I}_{13} = \{1, 2\}$ $S_{0,1} = \{9, 10, 11, 12\} \cup S_{1,1} = \{13, 14, 15, 16\}$ $\rightarrow_{L(16)} S_1 = \{10, 13, 14, 16\}$ $S_{0,2} = \{1, 4, 6, 7\} \cup S_{1,2} = \{10, 13, 14, 16\}$ $\rightarrow_{L(16)} S_2 = \{1, 6, 10, 13\}$

Note: $L(16) \in \pi_{13}$

[Abusalah-Fuchsbauer-Gaži-Klein'22]

Weighted Blockchain: $\Gamma_n = (H_n, \Omega_n)$ with weight function $\Omega_n : [n] \to [0, 1]$ s.t. $\sum_{i=1}^n \Omega_n(i) = 1$

[Abusalah-Fuchsbauer-Gaži-Klein'22]

Weighted Blockchain: $\Gamma_n = (H_n, \Omega_n)$ with weight function $\Omega_n : [n] \to [0, 1] \text{ s.t. } \sum_{i=1}^n \Omega_n(i) = 1$

[Abusalah-Fuchsbauer-Gaži-Klein'22]

Weighted Blockchain: $\Gamma_n = (H_n, \Omega_n)$ with weight function $\Omega_n : [n] \to [0, 1] \text{ s.t. } \sum_{i=1}^n \Omega_n(i) = 1$

Augmented DAG $(K := ([n]_0, E_K := E_H \cup E_G), \Omega_n)$

[Abusalah-Fuchsbauer-Gaži-Klein'22]

Weighted Blockchain: $\Gamma_n = (H_n, \Omega_n)$ with weight function $\Omega_n : [n] \to [0, 1] \text{ s.t. } \sum_{i=1}^n \Omega_n(i) = 1$

Not All Distributions Are Incrementable

Not All Distributions Are Incrementable

We characterize distributions that can be sampled incrementally: *t*-incrementally Sampleable Distributions

Give a constrution for any t-sampleable distribution over the skiplist graph

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ malicoulsy manipulates S_0 into $\tilde{S_0}$ s.t. $i \notin S$ where S is sampled from $\tilde{S_0} \cup S_1$

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ malicoulsy manipulates S_0 into \tilde{S}_0 s.t. $i \notin S$ where S is sampled from $\tilde{S}_0 \cup S_1$

S contains some $j\in \tilde{S_0}$

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ malicoulsy manipulates S_0 into $\tilde{S_0}$ s.t. $i \notin S$ where S is sampled from $\tilde{S_0} \cup S_1$

S contains some $j \in \tilde{S_0}$

V catches $\tilde{\mathsf{P}}$ in level k-1 unless \tilde{P} breaks the commitment

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ malicoulsy manipulates S_0 into $\tilde{S_0}$ s.t. $i \notin S$ where S is sampled from $\tilde{S_0} \cup S_1$

S contains some $j\in \tilde{S_0}$

S doesn't contain any $j\in \tilde{S_0}$

V catches $\tilde{\mathsf{P}}$ in level k-1 unless \tilde{P} breaks the commitment

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ malicoulsy manipulates S_0 into $\tilde{S_0}$ s.t. $i \notin S$ where S is sampled from $\tilde{S_0} \cup S_1$

S contains some $j \in \tilde{S_0}$

V catches $\tilde{\mathsf{P}}$ in level k-1 unless \tilde{P} breaks the commitment

S doesn't contain any $j\in \tilde{S}_0$

 $\tilde{\mathsf{P}}$ gains advantage

 $\tilde{\mathsf{P}}$ can maliciously choose the sampling sets

Let S_0 and S_1 be the sampling sets from which S is sampled at level k

Assume $i \in S_0$ is inconsistent and that $i \in S$

 $\tilde{\mathsf{P}}$ malicoulsy manipulates S_0 into \tilde{S}_0 s.t. $i \notin S$ where S is sampled from $\widetilde{S}_0 \cup S_1$

S doesn't contain any $j \in \tilde{S}_0$ S contains some $j \in \tilde{S}_0$ $\tilde{\mathsf{P}}$ gains advantage V catches \tilde{P} in level k-1 unless

 \tilde{P} breaks the commitment

We bound the advantage of \tilde{P} in these cases and give concrete bounds for the uniform and SNACK distributions

Security Statement

Thm (iPoSW for the uniform weight distribution): (P,V,Inc) an (α, ϵ) -sound iPoSW for $\alpha \in (0, 1]$ and

$$\epsilon = \frac{1+q^2}{2^{\lambda}} + \frac{q(q-1)}{2^{\lambda+1}} + q \cdot e^{-2t \cdot \left(\frac{1-\alpha}{\log n}\right)^2} + q \cdot 2^{-\zeta \cdot t}$$

Thm (Standalone iPoSW): (P,V,Inc) an (α, ϵ) -sound **iPoSW** for $\alpha \in (0, 1]$ and

$$\epsilon = \frac{1+q^2}{2^{\lambda}} + \frac{q(q-1)}{2^{\lambda+1}} + q \cdot e^{-2t \cdot \left(\frac{1-\alpha}{\log n}\right)^2}$$

Thm (Standalone PoSW): (P, V) is an (α, ϵ) -sound PoSW for $\alpha \in (0, 1]$ and

$$\epsilon = \frac{3 \cdot q^2}{2^{\lambda}} + \alpha^t$$