Broadcast, Trace and Revoke with Optimal Parameters from Polynomial Hardness

Shweta Agrawal IIT Madras, India Simran Kumari IIT Madras, India

Anshu Yadav IIT Madras, India Shota Yamada AIST, Japan

EUROCRYPT 2023

A better approach? Can we have a **short** common ct for all the users?

Correctness: Any user in S can decrypt

Correctness: Any user outside L can decrypt

Correctness: Any user outside L can decrypt

User Index	User Identity
1	Nisha
2	Sampan
3	Rohin
4	Anuja
5	Anshu

'Rohin' is the traitor. Revoke 'Rohin'

User Index	User Identity
1	Nisha
2	Sampan
3	Rohin
4	Anuja
5	Anshu

Limitations

- The authority needs to maintain user indexidentity mapping
- Violates user's identity privacy.

Challenges:

- Traditional tracing method *linear search* on the user space.
- Identity space can be exponential -- *exponential time* to output traitors

Solutions:

- [Nishimaki-Wichs-Zhandry16] Traitor Tracing & Trace and Revoke schemes with embedded identities.
- [Goyal-Koppula-Waters19] Traitor tracing scheme with embedded identities

|ct|, |pk| and |sk| independent of no. of users

Adaptive Security w.r.t Revocation List L $ct \leftarrow Enc(m, L)$

Adaptive: L can be chosen after the adversary gets the public parameters and user secret keys.

Prior Work : Public Traceability

	CT	SK	PK	Trace Space	Selective/ Adaptive	Asspn	Identities
[NWZ16]	1	1	1	Exp	Selective	Subexp (iO)	Yes

Prior Work : Public Traceability

	CT	SK	PK	Trace Space	Selective/ Adaptive	Asspn	Identities
[NWZ16]	1	1	1	Exp	Selective	Subexp (iO)	Yes
[GVW19]	1	1	1	Poly	Adaptive	Subexp (subexp Positional Witness Enc)	No

Prior Work : Public Traceability

	CT	SK	PK	Trace Space	Selective/ Adaptive	Asspn	Identities
[NWZ16]	1	1	1	Exp	Selective	Subexp (iO)	Yes
[GVW19]	1	1	1	Poly	Adaptive	Subexp (subexp PWE)	No
This Work	1	1	1	Ехр	Adaptive	Poly (FE and Spcl ABE)	Yes

Public Traceability : Assumptions

Public Traceability : Assumptions

Building Blocks

Functional Encryption (FE)

$$sk_{C} + Enc(m) \xrightarrow{\text{Decrypt}} C(m)$$

The decryptor learns **only** $C(m)$ and nothing else.

Building Blocks

$$\frac{\text{Functional Encryption (FE)}}{\text{Sk}_{C} + \text{Enc}(m)} \xrightarrow{\text{Decrypt}} C(m)$$

The decryptor learns **only** C(m) and nothing else.

Key Policy Attribute Based Encryption (KP-ABE) $sk_{C} + Enc(m, x)$ Decryptm iff C(x) = 1Restricted access using the secret key

Building Blocks

$$\frac{\text{Functional Encryption (FE)}}{\text{Sk}_{C} + \text{Enc}(m)} \xrightarrow{\text{Decrypt}} C(m)$$

The decryptor learns **only** C(m) and nothing else.

CT Policy Attribute Based Encryption (CP-ABE) $sk_x + Enc(m, C)$ $\overrightarrow{Decrypt} m$ iff C(x) = 1Restricted access using the secret key

Public Traceability : Assumptions

	CT	SK	P K	Trace Space	Asspn	Identities
[GQWW19]	N ^a	N ^c	Ν	Poly	LWE and Pairings	No

0 < a < 1, c large constant.

	CT	SK	PK	Trace Space	Asspn	Identities
[GQWW19]	N ^a	N ^c	Ν	Poly	LWE and Pairings	No
[Zha20]	N ^a	<i>N</i> ^{1-<i>a</i>}	N^{1-a}	Poly	GGM Pairings	No

	CT	SK	P K	Trace Space	Asspn	Identities
[GQWW19]	N ^a	N ^c	Ν	Poly	LWE and Pairings	No
[Zha20]	N ^a	N ^{1-a}	N ^{1-a}	Poly	GGM Pairings	No
This Work: Modified [GQWW19]	1	N ^c	Ν	Poly	LWE and Pairings	No

polylog(N, L) and poly(sec param) shown as 1. 0 < a < 1, c large constant.

	CT	SK	P K	Trace Space	Asspn	Identities
[GQWW19]	Ne	N ^c	Ν	Poly	LWE and Pairings	No
[Zha20]	N ^a	<i>N</i> ^{1-a}	<i>N</i> ^{1-<i>a</i>}	Poly	GGM Pairings	No
This Work: Modified [GQWW19]	1	N ^c	Ν	Poly	LWE and Pairings	No
[KW20]	L	1	1	Exp	Subexp LWE	Yes

polylog(N, L) and poly(sec param) shown as 1. 0 < a < 1, c large constant.

	CT	SK	P K	Trace Space	Asspn	Identities
[GQWW19]	Ne	N ^c	Ν	Poly	LWE and Pairings	No
[Zha20]	N ^a	<i>N</i> ^{1-<i>a</i>}	<i>N</i> ^{1-<i>a</i>}	Poly	GGM Pairings	No
This Work: Modified [GQWW19]	1	N ^c	Ν	Poly	LWE and Pairings	No
[KW20]	L	1	1	Exp	Subexp LWE	Yes
This Work	1	1	1	Exp	Poly (spcl CP-ABE & KP-ABE)	Yes

Post-Quantum insecure

Public-Key vs Secret-Key BTR

- Succinct KP-ABE
- Compact FE

- Succinct KP-ABE
- Compact CP-ABE

Public-Key vs Secret-Key BTR

- Succinct KP-ABE
- Compact FE

- Succinct KP-ABE
- Compact CP-ABE

ABE is weaker than FE since ABE is an all or nothing primitive in contrast to FE.

Outline

Revoked labels $L=\{lb_2, lb_5\}$

Correctness : A user with associated (lb_i, x_i) can recover message *m* if $f(x_i) = 1$ and $lb_i \notin L$

Message Hiding Security

Enc(mpk, f, m_0, L) \approx Enc(mpk, f, m_1, L); if for all key queries (lb, x) f(x) = 0 or $lb \in L$

Function Hiding Security

Enc(mpk, f_0, m, L) \approx Enc(mpk, f_1, m, L); if for all key queries (*lb*, *x*) $f_0(x) = f_1(x)$ or $lb \in L$

Outline

Public Key RPE : Outline

Public Key RPE : Optimal Parameters

Secret Key RPE : Outline

Secret Key RPE : Outline

Secret Key RPE: Optimal Parameters

Unified framework for secret and public EI-BTR via RPE

Summary

Unified framework for secret and public EI-BTR via RPE

Public Traceability

- Optimal size of CT, PK, SK
- Embedded Identities
- Adaptive security
- Poly hard assumptions: FE, ABE

Open: Weaker version of FE to allow post quantum scheme?

Summary

Unified framework for secret and public EI-BTR via RPE

Public Traceability

- Optimal size of CT, PK, SK
- Embedded Identities
- Adaptive security
- Poly hard assumptions: FE, ABE

Open: Weaker version of FE to allow post quantum scheme?

Secret Traceability

- Optimal size of CT, PK, SK
- Embedded Identities
- Poly hard assumptions
 ABEs instead of FE

Open: Adaptive Security? Remove reliance on evasive/tensor LWE?

Summary

Unified framework for secret and public EI-BTR via RPE

Public Traceability

- Optimal size of CT, PK, SK
- Embedded Identities
- Adaptive security
- Poly hard assumptions: FE, ABE

Open: Weaker version of FE to allow post quantum scheme?

Secret Traceability

- Optimal size of CT, PK, SK
- Embedded Identities
- Poly hard assumptions
 ABEs instead of FE

Open: Adaptive Security? Remove reliance on evasive/tensor LWE?

First work to support superpoly revocation list size! (with efficient representation & membership testing)

Thank you!