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• We present XOCB, a new block cipher mode of operation for 

nonce-based authenticated encryption.

• XOCB has the following features:

1. mostly follows the structure of OCB,

2. has beyond-birthday-bound security,

3. is parallelizable with rate-1 computation.

Overview



• OCB3 (Offset CodeBook)
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• OCB3 (Offset CodeBook) : Δ𝑖 is the masking generated from 

the scheme - all the maskings are distinct.
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• The security of OCB is up to the birthday bound.

• The computational power and the amount of data have been 

increased recently.

• In particular, exabyte (1018) data is already in use and 

zettabyte (1021) is in near future.

• Therefore, a higher level of security is desirable.

Beyond-Birthday-Bound Security Requirement



• XORP

• XORing two outputs of the 

permutation. 

• XORP is secure PRF up to 

𝑶(𝟐𝒏) queries.(1)

Design Principle to Enhance Security
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(1) W. Dai, V. T. Hoang, and S. Tessaro. Information-Theoretic Indistinguishability via the Chi-Squared Method. CRYPTO 2018



• CENC (1)

Design Principle to Enhance Security
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(1) Tetsu Iwata. New blockcipher modes of operation with beyond the birthday bound security. FSE 2006



• The main point of enhancing security is XORing two outputs 

of a block cipher.

• To obtain a BBB authenticated encryption, the message 

should be fed to the input of the block cipher.

Design Principle to Enhance Security



Structure of XOCB
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1) auth is the hash value of the associated data.
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Masking Generation
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• To ensure the randomness of the inputs of the block cipher, 

we constructed each masking as follows:

• For the 𝑖-th message block : 2𝑖Δ1 ⊕Δ2

• For a partial message block : 2𝑖Δ1

• For the 𝑖-th associated data block : 2𝑖Δ2

• For tag generation blocks : 2𝑚Δ1 ⊕Δ3, 2
𝑚Δ1 ⊕Δ3

Masking Generation



• We use H-coefficient technique.

• For the probability to get good transcripts in the ideal world, 

we use extended Mirror theory

• first, for evaluations in the mask generations and message 

encryptions,

• second, for evaluations in the tag generations.

Proof Sketch : Overview



• H-coefficient Technique upper bounds the adversarial 

distinguishing advantage between a real construction and its 

ideal counterpart.

Proof Technique : H-coefficient Technique
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• After the adversary finishes the queries, the adversary gets a 

"transcript", which consists of all the information the 

adversary has obtained during the attack.

• The oracle also gives the evaluations determined in the query 

phase. (This information is also added to the transcript.)

• In the real world, the oracle gives the real evaluations.

• In the ideal world, the oracle gives the evaluations by a certain 

process.

Proof Technique : H-coefficient Technique

Jacques Patarin. The “coefficients H” technique. SAC 2008



• We can divide the set of all possible transcripts into two subsets, say 

"Good" transcripts (ΓGood) and "Bad" transcripts (ΓBad).

• If there exists non-negative numbers 𝜀1 and 𝜀2 such that

Pr Tre=𝜏

Pr Tid=𝜏
≥ 1 − 𝜀1 for any 𝜏 ∈ ΓGood,

Pr[Tid ∈ Γbad] ≤ 𝜀2,

then for any adversary 𝒟, one has 

Pr 𝒟𝒪𝑟𝑒𝑎𝑙 = 1 − Pr 𝒟𝒪𝑖𝑑𝑒𝑎𝑙 = 1 ≤ 𝜀1 + 𝜀2.

Proof Technique : H-coefficient Technique

Jacques Patarin. The “coefficients H” technique. SAC 2008



• Mirror theory is a very powerful tool to estimate the number 

of solutions to a certain type of system of equations.

Proof Technique : Mirror Theory
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Patarin, Jacques. Mirror theory and cryptography. Applicable Algebra in Engineering, Communication and 

Computing 28 (2017): 321-338.



• We use the extended Mirror theory, which estimates the 

number of solutions to a system of equations as well as 

non-equations.

Proof Technique : Mirror Theory
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• In our proof, we applied Mirror theory to compute the upper bound of 

the number of solutions for the equations.

Proof Technique : Mirror Theory
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• In our proof, we applied Mirror theory to compute the upper bound of 

the number of solutions for the equations. 

Proof Technique : Mirror Theory
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• Then the probability that those evaluations (related to the ciphertexts) 

are determined is the inverse of the number of the solutions.

Proof Technique : Mirror Theory
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• As a result, XOCB has the following security.

Result

AdvXOCB
nAE 𝒟 ≤

28𝑞 + 2𝜎 + 1.5𝑞𝑙 + 1.5𝑙𝜎

2𝑛

+
4𝑞𝜎2 + 30𝑞2 + 10𝑞 𝜎 + 93𝑞3 + 44𝑞2

22𝑛

+
8𝜎2𝑞 + 45𝜎𝑞2 + 6𝑞3 𝑙 + 𝜎3𝑙

22𝑛+1
.

Lead term : 
1.5𝑙𝜎

2𝑛
+

𝜎3𝑙

22𝑛+1

𝑞 : total number of queries.

𝜎 : total number of queried blocks of 𝑛 bits

𝑙 : maximum query length in 𝑛-bit blocks.



• We can conclude that XOCB has BBB security when 𝑙 < 2
𝑛

2 ,

and has
2

3
𝑛-bit security when 𝑙 = 𝑂 1 .

• This might not be a practical problem in real-world

applications since many practical communication protocols

specify a maximum packet length (MTU, Maximum

transmission unit).

Result



Scheme Primitive Rate Security Lead Terms*

OCB SPRP 1 𝑛/2
𝜎2 + 𝑞

2𝑛

GCM PRP, MUL 1/2 𝑛/2
𝜎2 + 𝑞

2𝑛

CHM, CIP PRP, MUL 1/2 2𝑛/3
𝜎3

22𝑛
+

𝜎

2𝑛

XOCB SPRP 1 2𝑛/3
𝑙𝜎3

22𝑛
+
𝑙𝜎

2𝑛

Comparison

* 𝜎 : total queried blocks in 𝑛-bit blocks, 𝑞 : total number of queries, and 𝑙 : the maximum 
block length of a query. (We assume 𝑂(1) AD blocks.)



Implementation

Speeds on an x86-64 CPU Speeds on an 8-bit AVR

• The performance of XOCB is quite close to OCB and faster than CIP for x64 platforms with 
AES-NI. 

• For 8-bit AVR, the initialization cost is not negligible and affects the total performance.



• XOCB is a new authenticated encryption mode which mostly 

follows the structure of OCB.

• It has a quantitatively stronger security than the seminal OCB while 

inheriting most of the efficiency advantages.

• Further reseach topics:

• Optimizing the scheme to reduce computational overhead

• Reducing the length contribution to the bound

• More comprehensive benchmarks

Conclusion



Thank you
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