Weighted ORAM, with Applications to Searchable Symmetric Encryption

Léonard Assouline Brice Minaud

Eurocrypt 2023
April 25th
Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app. Wants to check with Signal’s server if her contact Bob uses Signal.

Binary search on sorted list of phone numbers

Figure: Looking for Bob’s phone number: 212-555-2368
Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Binary search on sorted list of phone numbers

Figure: Looking for Bob’s phone number: 212-555-2368
Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Binary search on sorted list of phone numbers

Figure: Looking for Bob’s phone number: 212-555-2368
Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app. Wants to check with Signal’s server if her contact Bob uses Signal.

Binary search on sorted list of phone numbers

Alice's computation:

Server's view

Figure: Looking for Bob’s phone number: 212-555-2368
Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Binary search on sorted list of phone numbers

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks
Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Goal: Hide the access pattern

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks
Oblivious RAM framework

Introduced by Goldreich in 1987: obfuscate the access pattern.
ORAM protocol: tuple (Setup, Access):
Oblivious RAM framework

Introduced by Goldreich in 1987: obfuscate the access pattern. ORAM protocol: tuple (Setup, Access):

![Diagram of Oblivious RAM framework]
Oblivious RAM framework

Introduced by Goldreich in 1987: obfuscate the access pattern.
ORAM protocol: tuple (Setup, Access):
ORAM Security

Each access:
- \(\text{op} \in \{ \text{write}, \text{read} \} \): type of operation.
- \(\text{addr} \): address of object.
- \(\text{data} \): new value (if \(\text{op} = \text{read} \), \(\text{data} = \bot \)).
ORAM Security

Each access:

- $\text{op} \in \{\text{write}, \text{read}\}$: type of operation.
- addr: address of object.
- data: new value (if $\text{op} = \text{read}$, $\text{data} = \bot$).

Definition: Security

Let: $\mathbf{s} = (\text{op}_i, \text{addr}_i, \text{data}_i)_{i \in [m]}$, $\mathbf{t} = (\text{op}'_i, \text{addr}'_i, \text{data}'_i)_{i \in [m]}$: sequences of accesses of same size.

ORAM secure iff, in server’s view: $\mathbf{s} \approx \mathbf{t}$.

Proving security: easy part (access patterns are information theoretically hidden).

Challenge: prove correctness (does the ORAM run without failure?)
ORAM Security

Each access:
- $op \in \{\text{write, read}\}$: type of operation.
- $addr$: address of object.
- $data$: new value (if $op = \text{read}$, $data = \bot$).

Definition: Security

Let: $s = (op_i, addr_i, data_i)_{i \in [m]}$, $t = (op'_i, addr'_i, data'_i)_{i \in [m]}$: sequences of accesses of same size.

ORAM secure iff, in server’s view: $s \approx t$.

Proving security: easy part (access patterns are information theoretically hidden).
Each access:
 ▶ $\text{op} \in \{\text{write, read}\}$: type of operation.
 ▶ addr: address of object.
 ▶ data: new value (if $\text{op} = \text{read}$, $\text{data} = \bot$).

Definition: Security

Let: $\mathbf{s} = (\text{op}_i, \text{addr}_i, \text{data}_i)_{i \in [m]}$, $\mathbf{t} = (\text{op}'_i, \text{addr}'_i, \text{data}'_i)_{i \in [m]}$: sequences of accesses of same size.

ORAM secure iff, in server’s view: $\mathbf{s} \approx \mathbf{t}$.

Proving security: easy part (access patterns are information theoretically hidden).

Challenge: prove correctness (does the ORAM run without failure?)
This Work

Goal: ORAM that handles many objects of different sizes, without changing communication cost

Naïve solutions:

- Padding (to largest object size) → inefficient
- Divide into regular small chunks → too many accesses

Our solution:

Build ORAM for total size N, handles $m > N$ objects, each of weight w_i

Constraint:

$$m \sum_{i} w_i \leq N$$

and $\forall i \in \{m\}$, $w_i \leq 1$

As long as constraint is respected, w_i can change after a Write.

We call that a Weighted Oblivious RAM ($wORAM$)
This Work

Goal: ORAM that handles many objects of different sizes, without changing communication cost

Naïve solutions:

- padding (to largest object size) \rightarrow inefficient

Our solution:

Build ORAM for total size N, handles $m > N$ objects, each of weight w_i

Constraint:

$m \sum_{i=1}^{m} w_i \leq N$ and $\forall i \in [m]$, $w_i \leq 1$

As long as constraint is respected, w_i can change after a Write.

We call that a Weighted Oblivious RAM (wORAM)
This Work

Goal: ORAM that handles many objects of different sizes, without changing communication cost

Naïve solutions:

- padding (to largest object size) → inefficient
- divide into regular small chunks → too many accesses

Our solution:

Build ORAM for total size N, handles $m > N$ objects, each of weight w_i.

Constraint:

$m \sum_{i} w_i \leq N$ and $\forall i \in \{m\}$, $w_i \leq 1$

As long as constraint is respected, w_i can change after a Write.

We call that a Weighted Oblivious RAM (wORAM)
This Work

Goal: ORAM that handles many objects of different sizes, without changing communication cost

Naïve solutions:
- padding (to largest object size) → inefficient
- divide into regular small chunks → too many accesses

Our solution: Build ORAM for total size N, handles $m > N$ objects, each of weight w_i

Constraint: $\sum_{i=1}^{m} w_i \leq N$ and $\forall i \in [m], w_i \leq 1$

As long as constraint is respected, w_i can change after a Write.
This Work

Goal: ORAM that handles many objects of different sizes, without changing communication cost

Naïve solutions:
- padding (to largest object size) \rightarrow inefficient
- divide into regular small chunks \rightarrow too many accesses

Our solution: Build ORAM for total size N, handles $m > N$ objects, each of weight w_i

Constraint: $\sum_{i=1}^{m} w_i \leq N$ and $\forall i \in [m], w_i \leq 1$

As long as constraint is respected, w_i can change after a Write.

We call that a **Weighted Oblivious RAM (wORAM)**
Existing ORAM paradigms

- Trivial: download everything
- Hierarchical ORAM
- Tree-ORAM (focus of this work)
Existing ORAM paradigms

- Trivial: download everything
- Hierarchical ORAM
- Tree-ORAM (focus of this work)

Also results (with complexity blowup) for arbitrary ORAM protocols.
Existing ORAM paradigms

- Trivial: download everything
- Hierarchical ORAM
- Tree-ORAM (focus of this work)

Also results (with complexity blowup) for arbitrary ORAM protocols.

Next:

- Path-ORAM
- Generic Criterion
- Proof
Path-ORAM (Stefanov et al, 2013)

Idea

- Store N objects (blocks) in several buckets, each with max Z blocks
- Store buckets in complete binary tree of depth $\approx \log(N)$
- Associate block with leaf: block is in a bucket along path to leaf
Path-ORAM (Stefanov et al, 2013)

Idea

- Store N objects (blocks) in several buckets, each with max Z blocks
- Store buckets in complete binary tree of depth $\approx \log(N)$
- Associate block with leaf: block is in a bucket along path to leaf
Path-ORAM (Stefanov et al, 2013)

Access (orange block), associated with leaf 2
Path-ORAM (Stefanov et al, 2013)

Identify associated path (leaf 2)
Path-ORAM (Stefanov et al, 2013)

Download each bucket in path
Path-ORAM (Stefanov et al, 2013)

Download each bucket in path
Path-ORAM (Stefanov et al, 2013)

Download each bucket in path

[Diagram of a tree structure with nodes labeled Block, 1, 2, 3, 4]
Path-ORAM (Stefanov et al, 2013)

Modify block’s content and reencrypt it (orange \rightarrow grey)
Sample new leaf randomly (leaf 3)
Write back at intersection of paths
Path-ORAM (Stefanov et al, 2013)

Modify block’s content and reencrypt it (orange → grey)
Sample new leaf randomly (leaf 3)
Write back at intersection of paths
Path-ORAM (Stefanov et al, 2013)

What if I run out of space?
Offline memory: client stash

Client has stash of size $\omega(\log(N))$, stores blocks when unable to write them online.
Offline memory: client stash

Client has stash of size $\omega(\log(N))$, stores blocks when unable to write them online.

From Path-ORAM paper:

$$P(|\text{stash}| > R) \leq 14 \cdot 0.6002^R$$

Our contribution: Transformation to handle blocks of variable sizes.
Offline memory: client stash

Client has stash of size $\omega(\log(N))$, stores blocks when unable to write them online.

Security: new random leaf (i.e. path) every access.
Offline memory: client stash

Client has stash of size $\omega(\log(N))$, stores blocks when unable to write them online.

Security: new random leaf (i.e. path) every access.

Correctness: Stash never overflows (with overwhelming probability).

![Block Diagram](image-url)
Offline memory: client stash

Client has stash of size $\omega(\log(N))$, stores blocks when unable to write them online.

Security: new random leaf (i.e. path) every access.

Correctness: Stash never overflows (with overwhelming probability).

From Path-ORAM paper: $\mathbb{P}(\text{stash size} > R) \leq 14 \cdot (0.6002)^R$

Our contribution: Transformation to handle blocks of variable sizes.
Offline memory: client stash

Client has stash of size $\omega(\log(N))$, stores blocks when unable to write them online.

Security: new random leaf (i.e. path) every access.

Correctness: Stash never overflows (with overwhelming probability).

From Path-ORAM paper: $\Pr(|\text{stash}| > R) \leq 14 \cdot (0.6002)^R$

Our contribution: Transformation to handle blocks of variable sizes.
Standard Tree-ORAM protocol \rightarrow Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
Standard Tree-ORAM protocol → Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
- $\sum w_i = N \cdot B$
Standard Tree-ORAM protocol \rightarrow Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
- $\sum w_i = N \cdot B$ (Consider $B = 1$)
Standard Tree-ORAM protocol → Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
- $\sum w_i = N \cdot B$ (Consider $B = 1$)
- Buckets: Can store objects until threshold Z is reached (total capacity $Z + 1$)
Standard Tree-ORAM protocol \rightarrow Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
- $\sum w_i = N \cdot B$ (Consider $B = 1$)
- Buckets: Can store objects until threshold Z is reached (total capacity $Z + 1$)
Standard Tree-ORAM protocol \(\rightarrow\) Weighted Tree-ORAM

- \(m\) blocks, each of size \(w_i \leq B\)
- \(\sum w_i = N \cdot B\) (Consider \(B = 1\))
- Buckets: Can store objects until threshold \(Z\) is reached (total capacity \(Z + 1\))
Standard Tree-ORAM protocol \rightarrow Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
- $\sum w_i = N \cdot B$ (Consider $B = 1$)
- Buckets: Can store objects until threshold Z is reached (total capacity $Z + 1$)
Standard Tree-ORAM protocol \rightarrow Weighted Tree-ORAM

- m blocks, each of size $w_i \leq B$
- $\sum w_i = N \cdot B$ (Consider $B = 1$)
- Buckets: Can store objects until threshold Z is reached (total capacity $Z + 1$), remaining blocks stay in the stash.
Main Theorem

Consider an ORAM protocol. If:

1. Reading a bucket is done via a Trivial ORAM
2. Stash load comes from collection of subsets of buckets in ∞-ORAM
3. For any subset in this collection, overflow is negligible

Then this ORAM can be turned into a weighted ORAM.
Proof of correctness

From Path-ORAM paper

Given a sequence of accesses \(s = (\text{op}_i, \text{addr}_i, \text{data}_i)_{i \in [m]}, \)

1. Consider execution of \(s \) on the \(\infty\text{-ORAM} \) (\(Z = \infty \))
Proof of correctness

From Path-ORAM paper
Given a sequence of accesses $s = (op_i, addr_i, data_i)_{i \in [m]}$,
1. Consider execution of s on the ∞-ORAM ($Z = \infty$)
2. Apply post-processing algorithm G_Z

Thus, $P(stash\, overflow)$ is negligible in our case too.
Proof of correctness

From Path-ORAM paper
Given a sequence of accesses $s = (op_i, addr_i, data_i)_{i \in [m]}$,
1. Consider execution of s on the ∞-ORAM ($Z = \infty$)
2. Apply post-processing algorithm G_Z
3. Prove that: normal ORAM’s stash load $= \infty$-ORAM’s stash load after applying G_Z
Proof of correctness

From Path-ORAM paper
Given a sequence of accesses \(s = (op_i, addr_i, data_i)_{i \in [m]} \),

1. Consider execution of \(s \) on the \(\infty\)-ORAM \((Z = \infty) \)
2. Apply post-processing algorithm \(G_Z \)
3. Prove that: normal ORAM’s stash load = \(\infty\)-ORAM’s stash load after applying \(G_Z \)
4. For \(\infty\)-ORAM, prove \(\mathbb{P}(\text{stash overflow}) \) is negligible.

For weighted objects (this work):

5. Prove that standard ORAM size distribution is the worst case.

Thus, \(\mathbb{P}(\text{stash overflow}) \) is negligible in our case too.
Proof of correctness

From Path-ORAM paper
Given a sequence of accesses \(s = (op_i, addr_i, data_i)_{i \in [m]} \),

1. Consider execution of \(s \) on the \(\infty\text{-ORAM} \) \((Z = \infty)\)
2. Apply post-processing algorithm \(G_Z \)
3. Prove that: normal ORAM’s stash load = \(\infty\text{-ORAM} \)’s stash load after applying \(G_Z \)
4. For \(\infty\text{-ORAM} \), prove \(\mathbb{P}(\text{stash overflow}) \) is negligible.

For weighted objects (this work):

5. Prove that standard ORAM size distribution is the worst case. Thus, \(\mathbb{P}(\text{stash overflow}) \) is negligible in our case too.
Post-processing algorithm

State of the ∞-ORAM after execution:
Post-processing algorithm

Application of G_Z:
Post-processing algorithm

Application of G_Z:

1 2 3 4
Post-processing algorithm

Application of G_Z:

```
1 <-- ? --> 2
```

3 --> 4
Post-processing algorithm

Application of G_Z:

Stash!
Reduction to the standard case

- Notice that stash load of $G_Z(\infty$-ORAM) \geq stash load of ORAM.
Reduction to the standard case

- Notice that stash load of $G_Z(\infty\text{-ORAM}) \geq$ stash load of ORAM.
- We have m objects, with weights $w \in [0, 1]^m$ s.t. $\sum w_i \leq N$.
Reduction to the standard case

- Notice that stash load of $G_Z(∞$-ORAM) \geq stash load of ORAM.
- We have m objects, with weights $w \in [0, 1]^m$ s.t. $\sum w_i \leq N$.
- For a given access sequence s, let $X(w)$ be the random variable of max stash load in post-processed $∞$-ORAM for any permutation of w.

We show that $\forall w$, $E(X(w)) \leq E(X(u))$ where $u = (1, \ldots, 1^N, 0, \ldots, 0^{m-N})$. (Corresponds to standard case, where correctness is proven)
Reduction to the standard case

- Notice that stash load of $G_Z(\infty\text{-ORAM}) \geq$ stash load of ORAM.
- We have m objects, with weights $w \in [0, 1]^m$ s.t. $\sum w_i \leq N$.
- For a given access sequence s, let $X(w)$ be the random variable of max stash load in post-processed $\infty\text{-ORAM}$ for any permutation of w.

- We show that $\forall w$, $\mathbb{E}(X(w)) \leq \mathbb{E}(X(u))$ where $u = (1, \ldots, 1, 0, \ldots, 0)$.
 \[
 u = (\underbrace{1, \ldots, 1}_N, \underbrace{0, \ldots, 0}_{m-N})
 \]

 (Corresponds to standard case, where correctness is proven)
Majorization argument

For a vector \mathbf{v}, define \mathbf{v}^\downarrow as \mathbf{v} with components sorted in decreasing order.

Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^m$ such that $\sum_{i=1}^{m} v_i = \sum_{i=1}^{m} w_i$.
Majorization argument

For a vector \mathbf{v}, define \mathbf{v}^\downarrow as \mathbf{v} with components sorted in decreasing order.

Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^m$ such that $\sum_{i=1}^{m} v_i = \sum_{i=1}^{m} w_i$

v majorizes w ($\mathbf{w} \preceq \mathbf{v}$) if: $\forall k \in [m]$, $\sum_{i=1}^{k} v_i^\downarrow \geq \sum_{i=1}^{k} w_i^\downarrow$.
Majorization argument

For a vector \mathbf{v}, define \mathbf{v}^\downarrow as \mathbf{v} with components sorted in decreasing order.

Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^m$ such that $\sum_{i=1}^m v_i = \sum_{i=1}^m w_i$

v majorizes w ($\mathbf{w} \prec \mathbf{v}$) if: $\forall k \in [m], \sum_{i=1}^k v^\downarrow_i \geq \sum_{i=1}^k w^\downarrow_i$.

Figure: $\mathbf{w} \prec \mathbf{v}$
Proof

Lemma

If:

- $f : \mathbf{v} \mapsto f(\mathbf{v})$ is convex
- $\forall \mathbf{v}, \forall$ permutation P, $f(\mathbf{v} \cdot P) = f(\mathbf{v})$

(We say that f is Schur-convex)

Then, $\mathbf{w} \prec \mathbf{v} \implies f(\mathbf{w}) \leq f(\mathbf{v})$
Proof

Lemma

If:

- $f : \mathbf{v} \mapsto f(\mathbf{v})$ is convex
- $\forall \mathbf{v}, \forall$ permutation P, $f(\mathbf{v} \cdot P) = f(\mathbf{v})$

(We say that f is Schur-convex)

Then, $\mathbf{w} \prec \mathbf{v} \implies f(\mathbf{w}) \leq f(\mathbf{v})$

Notice:

1. Random variable X is Schur-convex
2. Expectation function is convex
3. \forall weight distribution \mathbf{w}, $\mathbf{w} \prec \mathbf{u}$

$\text{E}(X(\mathbf{w})) \leq \text{E}(X(\mathbf{u}))$ is negligible (cf Path-ORAM)

\implies expected overflow negligible.
Proof

Lemma

If:

- $f : \mathbf{v} \mapsto f(\mathbf{v})$ is convex
- $\forall \mathbf{v}, \forall$ permutation P, $f(\mathbf{v} \cdot P) = f(\mathbf{v})$

(We say that f is Schur-convex)

Then, $\mathbf{w} \prec \mathbf{v} \implies f(\mathbf{w}) \leq f(\mathbf{v})$

Notice:

1. Random variable X is Schur-convex
2. Expectation function is convex
3. \forall weight distribution \mathbf{w}, $\mathbf{w} \prec \mathbf{u}$

Thus $\mathbb{E}(X(\mathbf{w})) \leq \mathbb{E}(X(\mathbf{u}))$
Proof

Lemma
If:

- $f : v \mapsto f(v)$ is convex
- $\forall v, \forall$ permutation P, $f(v \cdot P) = f(v)$

(We say that f is Schur-convex)

Then, $w \prec v \implies f(w) \leq f(v)$

Notice:
1. Random variable X is Schur-convex
2. Expectation function is convex
3. \forall weight distribution $w, w \prec u$

Thus $\mathbb{E}(X(w)) \leq \mathbb{E}(X(u))$

$\mathbb{E}(X(u))$ is negligible (cf Path-ORAM)

\implies expected overflow negligible.
Experimental results

For $Z = 3$

For $Z = 4$

Maximum Observed Stash Load

L such that $N = 2^L$

- Standard ORAM
- Weighted ORAM
Takaway

- Tree-ORAMs are powerful enough to naturally (no added cost) support items of variable sizes (variable in time too).
- Criterion to judge of an ORAM’s ability to handle weighted objects.
Takaway

- Tree-ORAMs are powerful enough to naturally (no added cost) support items of variable sizes (variable in time too).
- Criterion to judge of an ORAM’s ability to handle weighted objects.
- Any ORAM can handle them with small blowup ($O(\log(N))$).
- Weighted ORAM can be used to build Searchable Symmetric Encryption.
Tree-ORAMs are powerful enough to naturally (no added cost) support items of variable sizes (variable in time too).

Criterion to judge of an ORAM’s ability to handle weighted objects.

Any ORAM can handle them with small blowup \(O(\log(N)) \).

Weighted ORAM can be used to build Searchable Symmetric Encryption.

Thank You!

ia.cr/2023/350