
Weighted ORAM, with Applications to
Searchable Symmetric Encryption

Léonard Assouline Brice Minaud

Eurocrypt 2023
April 25th

Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks

2 / 17

Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks

2 / 17

Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks

2 / 17

Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks

2 / 17

Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks
2 / 17

Motivation (from https://signal.org/blog/building-faster-oram/)

Alice downloads the Signal app.
Wants to check with Signal’s server if her contact Bob uses Signal.

Figure: Looking for Bob’s phone number: 212-555-2368

Despite encryption, information leaks

2 / 17

Oblivious RAM framework

Introduced by Goldreich in 1987: obfuscate the access pattern.
ORAM protocol: tuple (Setup, Access):

3 / 17

Oblivious RAM framework

Introduced by Goldreich in 1987: obfuscate the access pattern.
ORAM protocol: tuple (Setup, Access):

3 / 17

Oblivious RAM framework

Introduced by Goldreich in 1987: obfuscate the access pattern.
ORAM protocol: tuple (Setup, Access):

3 / 17

ORAM Security

Each access:
▶ op ∈ {write, read}: type of operation.
▶ addr: address of object.
▶ data: new value (if op = read, data = ⊥).

Definition: Security
Let: s = (opi , addri , datai)i∈[m] , t = (op′

i , addr ′
i , data′

i)i∈[m] : sequences of accesses
of same size.
ORAM secure iff, in server’s view: s ≈ t .

Proving security: easy part (access patterns are information
theoretically hidden).
Challenge: prove correctness (does the ORAM run without
failure?)

4 / 17

ORAM Security

Each access:
▶ op ∈ {write, read}: type of operation.
▶ addr: address of object.
▶ data: new value (if op = read, data = ⊥).

Definition: Security
Let: s = (opi , addri , datai)i∈[m] , t = (op′

i , addr ′
i , data′

i)i∈[m] : sequences of accesses
of same size.
ORAM secure iff, in server’s view: s ≈ t .

Proving security: easy part (access patterns are information
theoretically hidden).
Challenge: prove correctness (does the ORAM run without
failure?)

4 / 17

ORAM Security

Each access:
▶ op ∈ {write, read}: type of operation.
▶ addr: address of object.
▶ data: new value (if op = read, data = ⊥).

Definition: Security
Let: s = (opi , addri , datai)i∈[m] , t = (op′

i , addr ′
i , data′

i)i∈[m] : sequences of accesses
of same size.
ORAM secure iff, in server’s view: s ≈ t .

Proving security: easy part (access patterns are information
theoretically hidden).

Challenge: prove correctness (does the ORAM run without
failure?)

4 / 17

ORAM Security

Each access:
▶ op ∈ {write, read}: type of operation.
▶ addr: address of object.
▶ data: new value (if op = read, data = ⊥).

Definition: Security
Let: s = (opi , addri , datai)i∈[m] , t = (op′

i , addr ′
i , data′

i)i∈[m] : sequences of accesses
of same size.
ORAM secure iff, in server’s view: s ≈ t .

Proving security: easy part (access patterns are information
theoretically hidden).
Challenge: prove correctness (does the ORAM run without
failure?)

4 / 17

This Work
Goal: ORAM that handles many objects of different sizes, without
changing communication cost

Näıve solutions:
▶ padding (to largest object size) → inefficient
▶ divide into regular small chunks → too many accesses

Our solution: Build ORAM for total size N , handles m > N
objects, each of weight wi

Constraint:
m∑

i=1
wi ≤ N and ∀i ∈ [m], wi ≤ 1

As long as constraint is respected, wi can change after a Write.

We call that a
Weighted Oblivious RAM (wORAM)

5 / 17

This Work
Goal: ORAM that handles many objects of different sizes, without
changing communication cost
Näıve solutions:
▶ padding (to largest object size) → inefficient

▶ divide into regular small chunks → too many accesses

Our solution: Build ORAM for total size N , handles m > N
objects, each of weight wi

Constraint:
m∑

i=1
wi ≤ N and ∀i ∈ [m], wi ≤ 1

As long as constraint is respected, wi can change after a Write.

We call that a
Weighted Oblivious RAM (wORAM)

5 / 17

This Work
Goal: ORAM that handles many objects of different sizes, without
changing communication cost
Näıve solutions:
▶ padding (to largest object size) → inefficient
▶ divide into regular small chunks → too many accesses

Our solution: Build ORAM for total size N , handles m > N
objects, each of weight wi

Constraint:
m∑

i=1
wi ≤ N and ∀i ∈ [m], wi ≤ 1

As long as constraint is respected, wi can change after a Write.

We call that a
Weighted Oblivious RAM (wORAM)

5 / 17

This Work
Goal: ORAM that handles many objects of different sizes, without
changing communication cost
Näıve solutions:
▶ padding (to largest object size) → inefficient
▶ divide into regular small chunks → too many accesses

Our solution: Build ORAM for total size N , handles m > N
objects, each of weight wi

Constraint:
m∑

i=1
wi ≤ N and ∀i ∈ [m], wi ≤ 1

As long as constraint is respected, wi can change after a Write.

We call that a
Weighted Oblivious RAM (wORAM)

5 / 17

This Work
Goal: ORAM that handles many objects of different sizes, without
changing communication cost
Näıve solutions:
▶ padding (to largest object size) → inefficient
▶ divide into regular small chunks → too many accesses

Our solution: Build ORAM for total size N , handles m > N
objects, each of weight wi

Constraint:
m∑

i=1
wi ≤ N and ∀i ∈ [m], wi ≤ 1

As long as constraint is respected, wi can change after a Write.

We call that a
Weighted Oblivious RAM (wORAM)

5 / 17

Existing ORAM paradigms

▶ Trivial: download everything
▶ Hierarchical ORAM

▶ Tree-ORAM (focus of this work)

Also results (with complexity blowup) for arbitrary ORAM protocols.
Next:
▶ Path-ORAM
▶ Generic Criterion
▶ Proof

6 / 17

Existing ORAM paradigms

▶ Trivial: download everything
▶ Hierarchical ORAM

▶ Tree-ORAM (focus of this work)
Also results (with complexity blowup) for arbitrary ORAM protocols.

Next:
▶ Path-ORAM
▶ Generic Criterion
▶ Proof

6 / 17

Existing ORAM paradigms

▶ Trivial: download everything
▶ Hierarchical ORAM

▶ Tree-ORAM (focus of this work)
Also results (with complexity blowup) for arbitrary ORAM protocols.
Next:
▶ Path-ORAM
▶ Generic Criterion
▶ Proof

6 / 17

Path-ORAM (Stefanov et al, 2013)
Idea
▶ Store N objects (blocks) in several buckets, each with max Z blocks
▶ Store buckets in complete binary tree of depth ≈ log(N)
▶ Associate block with leaf: block is in a bucket along path to leaf

7 / 17

Path-ORAM (Stefanov et al, 2013)
Idea
▶ Store N objects (blocks) in several buckets, each with max Z blocks
▶ Store buckets in complete binary tree of depth ≈ log(N)
▶ Associate block with leaf: block is in a bucket along path to leaf

7 / 17

Path-ORAM (Stefanov et al, 2013)

Access(orange block), associated with leaf 2

7 / 17

Path-ORAM (Stefanov et al, 2013)

Identify associated path (leaf 2)

7 / 17

Path-ORAM (Stefanov et al, 2013)

Download each bucket in path

7 / 17

Path-ORAM (Stefanov et al, 2013)

Download each bucket in path

7 / 17

Path-ORAM (Stefanov et al, 2013)

Download each bucket in path

7 / 17

Path-ORAM (Stefanov et al, 2013)
Modify block’s content and reencrypt it (orange → grey)
Sample new leaf randomly (leaf 3)
Write back at intersection of paths

7 / 17

Path-ORAM (Stefanov et al, 2013)
Modify block’s content and reencrypt it (orange → grey)
Sample new leaf randomly (leaf 3)
Write back at intersection of paths

7 / 17

Path-ORAM (Stefanov et al, 2013)

What if I run out of space?

7 / 17

Offline memory: client stash

Client has stash of size ω(log(N)), stores blocks when unable to
write them online.

Security: new random leaf (i.e. path) every access.
Correctness: Stash never overflows (with overwhelming
probability).
From Path-ORAM paper: P(|stash| > R) ≤ 14 · (0.6002)R

Our contribution: Transformation to handle blocks of variable
sizes.

8 / 17

Offline memory: client stash

Client has stash of size ω(log(N)), stores blocks when unable to
write them online.

Security: new random leaf (i.e. path) every access.
Correctness: Stash never overflows (with overwhelming
probability).
From Path-ORAM paper: P(|stash| > R) ≤ 14 · (0.6002)R

Our contribution: Transformation to handle blocks of variable
sizes.

8 / 17

Offline memory: client stash

Client has stash of size ω(log(N)), stores blocks when unable to
write them online.
Security: new random leaf (i.e. path) every access.

Correctness: Stash never overflows (with overwhelming
probability).
From Path-ORAM paper: P(|stash| > R) ≤ 14 · (0.6002)R

Our contribution: Transformation to handle blocks of variable
sizes.

8 / 17

Offline memory: client stash

Client has stash of size ω(log(N)), stores blocks when unable to
write them online.
Security: new random leaf (i.e. path) every access.
Correctness: Stash never overflows (with overwhelming
probability).

From Path-ORAM paper: P(|stash| > R) ≤ 14 · (0.6002)R

Our contribution: Transformation to handle blocks of variable
sizes.

8 / 17

Offline memory: client stash

Client has stash of size ω(log(N)), stores blocks when unable to
write them online.
Security: new random leaf (i.e. path) every access.
Correctness: Stash never overflows (with overwhelming
probability).
From Path-ORAM paper: P(|stash| > R) ≤ 14 · (0.6002)R

Our contribution: Transformation to handle blocks of variable
sizes.

8 / 17

Offline memory: client stash

Client has stash of size ω(log(N)), stores blocks when unable to
write them online.
Security: new random leaf (i.e. path) every access.
Correctness: Stash never overflows (with overwhelming
probability).
From Path-ORAM paper: P(|stash| > R) ≤ 14 · (0.6002)R

Our contribution: Transformation to handle blocks of variable
sizes.

8 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B

▶
∑

wi = N · B (Consider B = 1)
▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1) ,

remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B

(Consider B = 1)
▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1) ,

remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B (Consider B = 1)

▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1) ,
remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B (Consider B = 1)

▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1)

,
remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B (Consider B = 1)

▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1)

,
remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B (Consider B = 1)

▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1)

,
remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B (Consider B = 1)

▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1)

,
remaining blocks stay in the stash.

9 / 17

Standard Tree-ORAM protocol → Weighted Tree-ORAM

▶ m blocks, each of size wi ≤ B
▶

∑
wi = N · B (Consider B = 1)

▶ Buckets: Can store objects until threshold Z is reached (total capacity Z + 1) ,
remaining blocks stay in the stash.

9 / 17

Main Theorem

Consider an ORAM protocol. If:
1. Reading a bucket is done via a Trivial ORAM
2. Stash load comes from collection of subsets of buckets in

∞-ORAM
3. For any subset in this collection, overflow is negligible

Then this ORAM can be turned into a weighted ORAM.

10 / 17

Proof of correctness

From Path-ORAM paper
Given a sequence of accesses s = (opi , addri , datai)i∈[m],
1. Consider execution of s on the ∞-ORAM (Z = ∞)

2. Apply post-processing algorithm GZ

3. Prove that : normal ORAM’s stash load = ∞-ORAM’s stash
load after applying GZ

4. For ∞-ORAM, prove P(stash overflow) is negligible.
For weighted objects (this work):
5. Prove that standard ORAM size distribution is the worst case.

Thus, P(stash overflow) is negligible in our case too.

11 / 17

Proof of correctness

From Path-ORAM paper
Given a sequence of accesses s = (opi , addri , datai)i∈[m],
1. Consider execution of s on the ∞-ORAM (Z = ∞)
2. Apply post-processing algorithm GZ

3. Prove that : normal ORAM’s stash load = ∞-ORAM’s stash
load after applying GZ

4. For ∞-ORAM, prove P(stash overflow) is negligible.
For weighted objects (this work):
5. Prove that standard ORAM size distribution is the worst case.

Thus, P(stash overflow) is negligible in our case too.

11 / 17

Proof of correctness

From Path-ORAM paper
Given a sequence of accesses s = (opi , addri , datai)i∈[m],
1. Consider execution of s on the ∞-ORAM (Z = ∞)
2. Apply post-processing algorithm GZ

3. Prove that : normal ORAM’s stash load = ∞-ORAM’s stash
load after applying GZ

4. For ∞-ORAM, prove P(stash overflow) is negligible.
For weighted objects (this work):
5. Prove that standard ORAM size distribution is the worst case.

Thus, P(stash overflow) is negligible in our case too.

11 / 17

Proof of correctness

From Path-ORAM paper
Given a sequence of accesses s = (opi , addri , datai)i∈[m],
1. Consider execution of s on the ∞-ORAM (Z = ∞)
2. Apply post-processing algorithm GZ

3. Prove that : normal ORAM’s stash load = ∞-ORAM’s stash
load after applying GZ

4. For ∞-ORAM, prove P(stash overflow) is negligible.

For weighted objects (this work):
5. Prove that standard ORAM size distribution is the worst case.

Thus, P(stash overflow) is negligible in our case too.

11 / 17

Proof of correctness

From Path-ORAM paper
Given a sequence of accesses s = (opi , addri , datai)i∈[m],
1. Consider execution of s on the ∞-ORAM (Z = ∞)
2. Apply post-processing algorithm GZ

3. Prove that : normal ORAM’s stash load = ∞-ORAM’s stash
load after applying GZ

4. For ∞-ORAM, prove P(stash overflow) is negligible.
For weighted objects (this work):
5. Prove that standard ORAM size distribution is the worst case.

Thus, P(stash overflow) is negligible in our case too.

11 / 17

Post-processing algorithm
State of the ∞-ORAM after execution:

Application of GZ :

12 / 17

Post-processing algorithm

State of the ∞-ORAM after execution:

Application of GZ :

12 / 17

Post-processing algorithm

State of the ∞-ORAM after execution:

Application of GZ :

12 / 17

Post-processing algorithm

State of the ∞-ORAM after execution:

Application of GZ :

12 / 17

Post-processing algorithm

State of the ∞-ORAM after execution:

Application of GZ :

12 / 17

Reduction to the standard case

▶ Notice that stash load of GZ (∞-ORAM) ≥ stash load of ORAM.

▶ We have m objects, with weights w ∈ [0, 1]m s.t. ∑ wi ≤ N .
▶ For a given access sequence s, let X (w) be the random variable of max stash

load in post-processed ∞-ORAM for any permutation of w.
▶ We show that ∀w, E(X (w)) ≤ E(X (u)) where

u = (1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
m−N

).

(Corresponds to standard case, where correctness is proven)

13 / 17

Reduction to the standard case

▶ Notice that stash load of GZ (∞-ORAM) ≥ stash load of ORAM.
▶ We have m objects, with weights w ∈ [0, 1]m s.t. ∑ wi ≤ N .

▶ For a given access sequence s, let X (w) be the random variable of max stash
load in post-processed ∞-ORAM for any permutation of w.

▶ We show that ∀w, E(X (w)) ≤ E(X (u)) where
u = (1, . . . , 1︸ ︷︷ ︸

N

, 0, . . . , 0︸ ︷︷ ︸
m−N

).

(Corresponds to standard case, where correctness is proven)

13 / 17

Reduction to the standard case

▶ Notice that stash load of GZ (∞-ORAM) ≥ stash load of ORAM.
▶ We have m objects, with weights w ∈ [0, 1]m s.t. ∑ wi ≤ N .
▶ For a given access sequence s, let X (w) be the random variable of max stash

load in post-processed ∞-ORAM for any permutation of w.

▶ We show that ∀w, E(X (w)) ≤ E(X (u)) where
u = (1, . . . , 1︸ ︷︷ ︸

N

, 0, . . . , 0︸ ︷︷ ︸
m−N

).

(Corresponds to standard case, where correctness is proven)

13 / 17

Reduction to the standard case

▶ Notice that stash load of GZ (∞-ORAM) ≥ stash load of ORAM.
▶ We have m objects, with weights w ∈ [0, 1]m s.t. ∑ wi ≤ N .
▶ For a given access sequence s, let X (w) be the random variable of max stash

load in post-processed ∞-ORAM for any permutation of w.
▶ We show that ∀w, E(X (w)) ≤ E(X (u)) where

u = (1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
m−N

).

(Corresponds to standard case, where correctness is proven)

13 / 17

Majorization argument
For a vector v, define v↓ as v with components sorted in decreasing order.
Let v, w ∈ Rm such that

m∑
i=1

vi =
m∑

i=1
wi

v majorizes w (w ≺ v) if: ∀k ∈ [m],
k∑

i=1
v ↓

i ≥
k∑

i=1
w↓

i .

Figure: w ≺ v

14 / 17

Majorization argument
For a vector v, define v↓ as v with components sorted in decreasing order.
Let v, w ∈ Rm such that

m∑
i=1

vi =
m∑

i=1
wi

v majorizes w (w ≺ v) if: ∀k ∈ [m],
k∑

i=1
v ↓

i ≥
k∑

i=1
w↓

i .

Figure: w ≺ v

14 / 17

Majorization argument
For a vector v, define v↓ as v with components sorted in decreasing order.
Let v, w ∈ Rm such that

m∑
i=1

vi =
m∑

i=1
wi

v majorizes w (w ≺ v) if: ∀k ∈ [m],
k∑

i=1
v ↓

i ≥
k∑

i=1
w↓

i .

Figure: w ≺ v

14 / 17

Proof

Lemma
If:
▶ f : v 7→ f (v) is convex
▶ ∀v, ∀ permutation P, f (v · P) = f (v)

(We say that f is Schur-convex)
Then, w ≺ v =⇒ f (w) ≤ f (v)

Notice:
1. Random variable X is Schur-convex
2. Expectation function is convex
3. ∀ weight distribution w, w ≺ u

Thus E(X (w)) ≤ E(X (u))
E(X (u)) is negligible (cf Path-ORAM)
=⇒ expected overflow negligible.

15 / 17

Proof

Lemma
If:
▶ f : v 7→ f (v) is convex
▶ ∀v, ∀ permutation P, f (v · P) = f (v)

(We say that f is Schur-convex)
Then, w ≺ v =⇒ f (w) ≤ f (v)
Notice:

1. Random variable X is Schur-convex
2. Expectation function is convex
3. ∀ weight distribution w, w ≺ u

Thus E(X (w)) ≤ E(X (u))
E(X (u)) is negligible (cf Path-ORAM)
=⇒ expected overflow negligible.

15 / 17

Proof

Lemma
If:
▶ f : v 7→ f (v) is convex
▶ ∀v, ∀ permutation P, f (v · P) = f (v)

(We say that f is Schur-convex)
Then, w ≺ v =⇒ f (w) ≤ f (v)
Notice:

1. Random variable X is Schur-convex
2. Expectation function is convex
3. ∀ weight distribution w, w ≺ u

Thus E(X (w)) ≤ E(X (u))

E(X (u)) is negligible (cf Path-ORAM)
=⇒ expected overflow negligible.

15 / 17

Proof

Lemma
If:
▶ f : v 7→ f (v) is convex
▶ ∀v, ∀ permutation P, f (v · P) = f (v)

(We say that f is Schur-convex)
Then, w ≺ v =⇒ f (w) ≤ f (v)
Notice:

1. Random variable X is Schur-convex
2. Expectation function is convex
3. ∀ weight distribution w, w ≺ u

Thus E(X (w)) ≤ E(X (u))
E(X (u)) is negligible (cf Path-ORAM)
=⇒ expected overflow negligible.

15 / 17

Experimental results

10 12 14 16 18 20

5
10
15
20
25
30
35
40
45
50
55
60
65

L such that N = 2L

M
ax

im
um

O
bs

er
ve

d
St

as
h

Lo
ad

For Z = 3

12 14 16 18 20 22

2
4
6
8

10
12
14
16
18
20
22

L such that N = 2L

For Z = 4

Standard ORAM
Weighted ORAM

16 / 17

Takaway

▶ Tree-ORAMs are powerful enough to naturally (no added cost)
support items of variable sizes (variable in time too)

▶ Criterion to judge of an ORAM’s ability to handle weighted
objects.

▶ Any ORAM can handle them with small blowup (O(log(N)))
▶ Weighted ORAM can be used to build Searchable Symmetric

Encryption

Thank You!
ia.cr/2023/350

17 / 17

Takaway

▶ Tree-ORAMs are powerful enough to naturally (no added cost)
support items of variable sizes (variable in time too)

▶ Criterion to judge of an ORAM’s ability to handle weighted
objects.

▶ Any ORAM can handle them with small blowup (O(log(N)))
▶ Weighted ORAM can be used to build Searchable Symmetric

Encryption

Thank You!
ia.cr/2023/350

17 / 17

Takaway

▶ Tree-ORAMs are powerful enough to naturally (no added cost)
support items of variable sizes (variable in time too)

▶ Criterion to judge of an ORAM’s ability to handle weighted
objects.

▶ Any ORAM can handle them with small blowup (O(log(N)))
▶ Weighted ORAM can be used to build Searchable Symmetric

Encryption

Thank You!
ia.cr/2023/350

17 / 17

