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Introduction Background Attacks Conclusion

Introduction

MEGA – E2EE cloud storage and communication platform with 280M registered
users

Previous work by Backendal, Haller and Paterson [BHP23] gave 5 attacks, the first
two completely breaking confidentiality of user files
MEGA did not implement suggested countermeasures, instead relying on validation
of plaintext payloads
These checks were sufficient to prevent the specific attacks, but (as we will show)
not sufficient in general
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Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by

the continued lack of key separation and integrity protection
an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack
detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]
the key overwriting attacks on OpenPGP [KR02, BPH22]
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Bird’s-eye view of the MEGA key hierarchy

Each user has

a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA
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Format of sk

Custom encoding of sk for RSA-CRT decryption, referred to as privk
the prime factors p, q of the RSA modulus
the secret exponent d
the value u = q−1 mod p

Each value is prefixed with a 2-byte length field
Split into 16-byte blocks for AES-ECB
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MEGA login procedure

User MEGA
login request(User)

get ([kM]ke
,[privk]kM

,uh) of User

pick 43-byte sid

[m]pk←RSA.Enc(pk, sid ∥ uh)

([kM]ke
,[privk]kM

,[m]pk ,uh)

kM←AES-ECB.Dec(ke, [kM]ke
)

sid′←MegaDec(kM, [privk]kM
,[m]pk ,uh)

sid′ or ⊥

sid′ ?= sid
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Client decryption and parsing

MegaDec(kM, [privk]kM
, [m]pk , uh):

1 sk ← DecryptPrivk(kM, [privk]kM
) // AES-ECB

2 sid′ ← DecryptSid(sk, [m]pk) // RSA-CRT

3 Return sid′

Both steps rely on validity checking of the decrypted values and return distinguishable
errors to the server!
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Oracles from error reporting

Explicit errors due to validity checking:
In DecryptSid(sk, ·), a length check on the plaintext together with a legacy padding
check reveal if the second byte of m is 0
=⇒ attack based on small subgroups (#2)

Implicit errors due to bugs in the low-level library:
In DecryptPrivk(kM, ·), failure in recomputing u′ ← q−1 mod p reveals if
gcd(p, q) ̸= 1
=⇒ attack based on modular inverses (#1)
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ECB encryption oracle from MEGAdrop

MEGAdrop lets anyone upload files to a folder in the cloud storage of the recipient
Clients automatically re-encrypt the received shared-file keys

MEGA User
MEGAdrop.upload(kF)

[F ]kF
, [kF]pk

Webclient.update()
[kF]kM

A malicious provider can construct an ECB encryption oracle without user interaction
and without leaving traces
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Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries
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Introduction Background Attacks Conclusion

Attack based on modular inverses (two versions)

Simple version could be prevented by extra validation checks
=⇒ full version using more valid-looking values and parts of the original [privk]kM
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Introduction Background Attacks Conclusion

Attack based on small subgroups

Exploit the behaviour of DecryptSid(sk, [m]pk):

. . .

m← RSA-CRT(sk, [m]pk)

if m[1] ̸= 00 then m′ ← 00 ∥ m

else m′ ← m

m′ ← m′[2 : bytelen(m′)]
if bytelen(m′) ̸= 255 then

return (⊥00, bytelen(m′))
. . .

for bytelen(m) = 256,
this means ⊥00 ⇐⇒ m[1] = 00
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Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that

d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system
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Introduction Background Attacks Conclusion

Recovering the full key

Naive use of previous attacks would require up to 9 blocks to recover sk, so instead

1 Recover 4 blocks of q
2 Run exhaustive search for the last 16 bits (non-aligned block)
3 Efficiently recover the remainder using lattice reduction
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Introduction Background Attacks Conclusion

Attacks only get better

MEGA claimed the previous attacks of Backendal, Haller and Paterson [BHP23]
were not practical due to the number of login attempts needed
ECB encryption oracle can be used to optimise one of the attacks on unpatched
clients
Recover privk using only 2 login attempts (vs. 512 of [BHP23] and 6 of [RH23])
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Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations
MEGA informed us that they were working on a larger redesign meant to

Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023
MEGA awarded a bug bounty
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Introduction Background Attacks Conclusion

Discussion

Root causes highlighted in previous work [BHP23], but it took multiple series of
attacks for MEGA to agree to some of the suggested mitigations
ECB encryption oracle from an independent feature shows the fragility of the design
Our attacks serve as an example of key overwriting attacks, which deserve more
exploration

Cryptanalysis of protocols “in the wild” is needed to achieve the adoption of more secure
and formally analysed cryptographic solutions in practice
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Discussion

See more details in ia.cr/2023/329

Thank you for your attention. Any questions?
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