
Introduction Background Attacks Conclusion

Caveat Implementor!
Key Recovery Attacks on MEGA

Martin R. Albrecht1 Miro Haller2,3 Lenka Mareková4 Kenneth G. Paterson3

1King’s College London
martin.albrecht@kcl.ac.uk

2UC San Diego
mhaller@ucsd.edu

3Applied Cryptography Group, ETH Zürich
kenny.paterson@inf.ethz.ch

4Information Security Group, Royal Holloway, University of London
lenka.marekova.2018@rhul.ac.uk

24 April 2023



Introduction Background Attacks Conclusion

Introduction

MEGA – E2EE cloud storage and communication platform with 280M registered
users

Previous work by Backendal, Haller and Paterson [BHP23] gave 5 attacks, the first
two completely breaking confidentiality of user files
MEGA did not implement suggested countermeasures, instead relying on validation
of plaintext payloads
These checks were sufficient to prevent the specific attacks, but (as we will show)
not sufficient in general

Caveat Implementor! Key Recovery Attacks on MEGA 2/19



Introduction Background Attacks Conclusion

Introduction

MEGA – E2EE cloud storage and communication platform with 280M registered
users
Previous work by Backendal, Haller and Paterson [BHP23] gave 5 attacks, the first
two completely breaking confidentiality of user files

MEGA did not implement suggested countermeasures, instead relying on validation
of plaintext payloads
These checks were sufficient to prevent the specific attacks, but (as we will show)
not sufficient in general

Caveat Implementor! Key Recovery Attacks on MEGA 2/19



Introduction Background Attacks Conclusion

Introduction

MEGA – E2EE cloud storage and communication platform with 280M registered
users
Previous work by Backendal, Haller and Paterson [BHP23] gave 5 attacks, the first
two completely breaking confidentiality of user files
MEGA did not implement suggested countermeasures, instead relying on validation
of plaintext payloads

These checks were sufficient to prevent the specific attacks, but (as we will show)
not sufficient in general

Caveat Implementor! Key Recovery Attacks on MEGA 2/19



Introduction Background Attacks Conclusion

Introduction

MEGA – E2EE cloud storage and communication platform with 280M registered
users
Previous work by Backendal, Haller and Paterson [BHP23] gave 5 attacks, the first
two completely breaking confidentiality of user files
MEGA did not implement suggested countermeasures, instead relying on validation
of plaintext payloads
These checks were sufficient to prevent the specific attacks, but (as we will show)
not sufficient in general

Caveat Implementor! Key Recovery Attacks on MEGA 2/19



Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by

the continued lack of key separation and integrity protection
an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack
detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]
the key overwriting attacks on OpenPGP [KR02, BPH22]

Caveat Implementor! Key Recovery Attacks on MEGA 3/19



Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by
the continued lack of key separation and integrity protection

an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack
detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]
the key overwriting attacks on OpenPGP [KR02, BPH22]

Caveat Implementor! Key Recovery Attacks on MEGA 3/19



Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by
the continued lack of key separation and integrity protection
an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack

detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]
the key overwriting attacks on OpenPGP [KR02, BPH22]

Caveat Implementor! Key Recovery Attacks on MEGA 3/19



Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by
the continued lack of key separation and integrity protection
an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack
detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]
the key overwriting attacks on OpenPGP [KR02, BPH22]

Caveat Implementor! Key Recovery Attacks on MEGA 3/19



Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by
the continued lack of key separation and integrity protection
an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack
detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]

the key overwriting attacks on OpenPGP [KR02, BPH22]

Caveat Implementor! Key Recovery Attacks on MEGA 3/19



Introduction Background Attacks Conclusion

Background

Our new attacks are enabled by
the continued lack of key separation and integrity protection
an ECB encryption oracle present in MEGAdrop, a feature unrelated to the protocol
under attack
detailed reporting of errors by the client to the server, added shortly after the patch
for the attacks of [BHP23]

and inspired by
the small-order subgroup attacks on DH [vW96, LL97]
the key overwriting attacks on OpenPGP [KR02, BPH22]

Caveat Implementor! Key Recovery Attacks on MEGA 3/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has

a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has

a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has
a 128-bit encryption key ke derived from their password

a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has
a 128-bit encryption key ke derived from their password
a 128-bit master key kM

a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has
a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)

file encryption keys kF1 , kF2 , . . .
The keys are encrypted using AES-ECB as

[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has
a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has
a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Bird’s-eye view of the MEGA key hierarchy

Each user has
a 128-bit encryption key ke derived from their password
a 128-bit master key kM
a 2048-bit RSA keypair (pk, sk)
file encryption keys kF1 , kF2 , . . .

The keys are encrypted using AES-ECB as
[kM]ke

[kF]kM
, [sk]kM

Shared-file encryption keys k′F are encrypted under pk
using RSA

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 4/19



Introduction Background Attacks Conclusion

Format of sk

Custom encoding of sk for RSA-CRT decryption, referred to as privk
the prime factors p, q of the RSA modulus
the secret exponent d
the value u = q−1 mod p

Each value is prefixed with a 2-byte length field
Split into 16-byte blocks for AES-ECB

Caveat Implementor! Key Recovery Attacks on MEGA 5/19



Introduction Background Attacks Conclusion

Format of sk

Custom encoding of sk for RSA-CRT decryption, referred to as privk

the prime factors p, q of the RSA modulus
the secret exponent d
the value u = q−1 mod p

Each value is prefixed with a 2-byte length field
Split into 16-byte blocks for AES-ECB

Caveat Implementor! Key Recovery Attacks on MEGA 5/19



Introduction Background Attacks Conclusion

Format of sk

Custom encoding of sk for RSA-CRT decryption, referred to as privk
the prime factors p, q of the RSA modulus
the secret exponent d
the value u = q−1 mod p

Each value is prefixed with a 2-byte length field
Split into 16-byte blocks for AES-ECB

Caveat Implementor! Key Recovery Attacks on MEGA 5/19



Introduction Background Attacks Conclusion

Format of sk

Custom encoding of sk for RSA-CRT decryption, referred to as privk
the prime factors p, q of the RSA modulus
the secret exponent d
the value u = q−1 mod p

Each value is prefixed with a 2-byte length field

Split into 16-byte blocks for AES-ECB

Caveat Implementor! Key Recovery Attacks on MEGA 5/19



Introduction Background Attacks Conclusion

Format of sk

Custom encoding of sk for RSA-CRT decryption, referred to as privk
the prime factors p, q of the RSA modulus
the secret exponent d
the value u = q−1 mod p

Each value is prefixed with a 2-byte length field
Split into 16-byte blocks for AES-ECB

Caveat Implementor! Key Recovery Attacks on MEGA 5/19



Introduction Background Attacks Conclusion

MEGA login procedure

User MEGA
login request(User)

get ([kM]ke
,[privk]kM

,uh) of User

pick 43-byte sid

[m]pk←RSA.Enc(pk, sid ∥ uh)

([kM]ke
,[privk]kM

,[m]pk ,uh)

kM←AES-ECB.Dec(ke, [kM]ke
)

sid′←MegaDec(kM, [privk]kM
,[m]pk ,uh)

sid′ or ⊥

sid′ ?= sid

Caveat Implementor! Key Recovery Attacks on MEGA 6/19



Introduction Background Attacks Conclusion

Client decryption and parsing

MegaDec(kM, [privk]kM
, [m]pk , uh):

1 sk ← DecryptPrivk(kM, [privk]kM
) // AES-ECB

2 sid′ ← DecryptSid(sk, [m]pk) // RSA-CRT

3 Return sid′

Both steps rely on validity checking of the decrypted values and return distinguishable
errors to the server!

Caveat Implementor! Key Recovery Attacks on MEGA 7/19



Introduction Background Attacks Conclusion

Client decryption and parsing

MegaDec(kM, [privk]kM
, [m]pk , uh):

1 sk ← DecryptPrivk(kM, [privk]kM
) // AES-ECB

2 sid′ ← DecryptSid(sk, [m]pk) // RSA-CRT

3 Return sid′

Both steps rely on validity checking of the decrypted values and return distinguishable
errors to the server!

Caveat Implementor! Key Recovery Attacks on MEGA 7/19



Introduction Background Attacks Conclusion

Oracles from error reporting

Explicit errors due to validity checking:
In DecryptSid(sk, ·), a length check on the plaintext together with a legacy padding
check reveal if the second byte of m is 0
=⇒ attack based on small subgroups (#2)

Implicit errors due to bugs in the low-level library:
In DecryptPrivk(kM, ·), failure in recomputing u′ ← q−1 mod p reveals if
gcd(p, q) ̸= 1
=⇒ attack based on modular inverses (#1)

Caveat Implementor! Key Recovery Attacks on MEGA 8/19



Introduction Background Attacks Conclusion

Oracles from error reporting

Explicit errors due to validity checking:
In DecryptSid(sk, ·), a length check on the plaintext together with a legacy padding
check reveal if the second byte of m is 0
=⇒ attack based on small subgroups (#2)

Implicit errors due to bugs in the low-level library:
In DecryptPrivk(kM, ·), failure in recomputing u′ ← q−1 mod p reveals if
gcd(p, q) ̸= 1
=⇒ attack based on modular inverses (#1)

Caveat Implementor! Key Recovery Attacks on MEGA 8/19



Introduction Background Attacks Conclusion

Oracles from error reporting

Explicit errors due to validity checking:
In DecryptSid(sk, ·), a length check on the plaintext together with a legacy padding
check reveal if the second byte of m is 0
=⇒ attack based on small subgroups (#2)

Implicit errors due to bugs in the low-level library:
In DecryptPrivk(kM, ·), failure in recomputing u′ ← q−1 mod p reveals if
gcd(p, q) ̸= 1
=⇒ attack based on modular inverses (#1)

Caveat Implementor! Key Recovery Attacks on MEGA 8/19



Introduction Background Attacks Conclusion

ECB encryption oracle from MEGAdrop

MEGAdrop lets anyone upload files to a folder in the cloud storage of the recipient
Clients automatically re-encrypt the received shared-file keys

MEGA User
MEGAdrop.upload(kF)

[F ]kF
, [kF]pk

Webclient.update()
[kF]kM

A malicious provider can construct an ECB encryption oracle without user interaction
and without leaving traces

Caveat Implementor! Key Recovery Attacks on MEGA 9/19



Introduction Background Attacks Conclusion

ECB encryption oracle from MEGAdrop

MEGAdrop lets anyone upload files to a folder in the cloud storage of the recipient

Clients automatically re-encrypt the received shared-file keys

MEGA User
MEGAdrop.upload(kF)

[F ]kF
, [kF]pk

Webclient.update()
[kF]kM

A malicious provider can construct an ECB encryption oracle without user interaction
and without leaving traces

Caveat Implementor! Key Recovery Attacks on MEGA 9/19



Introduction Background Attacks Conclusion

ECB encryption oracle from MEGAdrop

MEGAdrop lets anyone upload files to a folder in the cloud storage of the recipient
Clients automatically re-encrypt the received shared-file keys

MEGA User
MEGAdrop.upload(kF)

[F ]kF
, [kF]pk

Webclient.update()
[kF]kM

A malicious provider can construct an ECB encryption oracle without user interaction
and without leaving traces

Caveat Implementor! Key Recovery Attacks on MEGA 9/19



Introduction Background Attacks Conclusion

ECB encryption oracle from MEGAdrop

MEGAdrop lets anyone upload files to a folder in the cloud storage of the recipient
Clients automatically re-encrypt the received shared-file keys

MEGA User
MEGAdrop.upload(kF)

[F ]kF
, [kF]pk

Webclient.update()
[kF]kM

A malicious provider can construct an ECB encryption oracle without user interaction
and without leaving traces

Caveat Implementor! Key Recovery Attacks on MEGA 9/19



Introduction Background Attacks Conclusion

ECB encryption oracle from MEGAdrop

MEGAdrop lets anyone upload files to a folder in the cloud storage of the recipient
Clients automatically re-encrypt the received shared-file keys

MEGA User
MEGAdrop.upload(kF)

[F ]kF
, [kF]pk

Webclient.update()
[kF]kM

A malicious provider can construct an ECB encryption oracle without user interaction
and without leaving traces

Caveat Implementor! Key Recovery Attacks on MEGA 9/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attacks

Setting: a malicious service provider

Goal: obtain ECB decryption ability under kM
=⇒ recover sk (or any kF)

Cost measured mainly in the number of login attempts

ke

kM

AES-ECB

(pk, sk)kF1kF2
. . .

AES-ECB

k′F1k
′
F2

. . .

RSA

Caveat Implementor! Key Recovery Attacks on MEGA 10/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and

q contains B in the least-significant position
so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r

Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses

Let [B]kM
be the target ciphertext block, OECBkM be the ECB encryption oracle, and

⊥inv be the error output by MegaDec if gcd(p, q) ̸= 1

Main idea is to
Construct [privk∗]kM

(using OECBkM and [B]kM
) such that

p mod r = 0 for small prime r , and
q contains B in the least-significant position

so that ⊥inv ⇐⇒ q mod r = 0, so by adjusting q we can learn B mod r
Repeat for a set of primes ri such that their product R is 128 bits, so we can learn
B mod R via CRT

Average cost: 627 login attempts and 66-91 OECBkM queries

Caveat Implementor! Key Recovery Attacks on MEGA 11/19



Introduction Background Attacks Conclusion

Attack based on modular inverses (two versions)

Simple version could be prevented by extra validation checks
=⇒ full version using more valid-looking values and parts of the original [privk]kM

Caveat Implementor! Key Recovery Attacks on MEGA 12/19



Introduction Background Attacks Conclusion

Attack based on modular inverses (two versions)

Simple version could be prevented by extra validation checks
=⇒ full version using more valid-looking values and parts of the original [privk]kM

Caveat Implementor! Key Recovery Attacks on MEGA 12/19



Introduction Background Attacks Conclusion

Attack based on modular inverses (two versions)

Simple version could be prevented by extra validation checks
=⇒ full version using more valid-looking values and parts of the original [privk]kM

Caveat Implementor! Key Recovery Attacks on MEGA 12/19



Introduction Background Attacks Conclusion

Attack based on modular inverses (two versions)

Simple version could be prevented by extra validation checks
=⇒ full version using more valid-looking values and parts of the original [privk]kM

Caveat Implementor! Key Recovery Attacks on MEGA 12/19



Introduction Background Attacks Conclusion

Attack based on small subgroups

Exploit the behaviour of DecryptSid(sk, [m]pk):

. . .

m← RSA-CRT(sk, [m]pk)

if m[1] ̸= 00 then m′ ← 00 ∥ m

else m′ ← m

m′ ← m′[2 : bytelen(m′)]
if bytelen(m′) ̸= 255 then

return (⊥00, bytelen(m′))
. . .

for bytelen(m) = 256,
this means ⊥00 ⇐⇒ m[1] = 00

Caveat Implementor! Key Recovery Attacks on MEGA 13/19



Introduction Background Attacks Conclusion

Attack based on small subgroups

Exploit the behaviour of DecryptSid(sk, [m]pk):

. . .

m← RSA-CRT(sk, [m]pk)

if m[1] ̸= 00 then m′ ← 00 ∥ m

else m′ ← m

m′ ← m′[2 : bytelen(m′)]
if bytelen(m′) ̸= 255 then

return (⊥00, bytelen(m′))
. . .

for bytelen(m) = 256,
this means ⊥00 ⇐⇒ m[1] = 00

Caveat Implementor! Key Recovery Attacks on MEGA 13/19



Introduction Background Attacks Conclusion

Attack based on small subgroups

Exploit the behaviour of DecryptSid(sk, [m]pk):

. . .

m← RSA-CRT(sk, [m]pk)

if m[1] ̸= 00 then m′ ← 00 ∥ m

else m′ ← m

m′ ← m′[2 : bytelen(m′)]
if bytelen(m′) ̸= 255 then

return (⊥00, bytelen(m′))
. . .

for bytelen(m) = 256,
this means ⊥00 ⇐⇒ m[1] = 00

Caveat Implementor! Key Recovery Attacks on MEGA 13/19



Introduction Background Attacks Conclusion

Attack based on small subgroups

Exploit the behaviour of DecryptSid(sk, [m]pk):

. . .

m← RSA-CRT(sk, [m]pk)

if m[1] ̸= 00 then m′ ← 00 ∥ m

else m′ ← m

m′ ← m′[2 : bytelen(m′)]
if bytelen(m′) ̸= 255 then

return (⊥00, bytelen(m′))
. . .

for bytelen(m) = 256,
this means ⊥00 ⇐⇒ m[1] = 00

Caveat Implementor! Key Recovery Attacks on MEGA 13/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that

d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position

p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where

g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00

x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Attack based on small subgroups (cont’d)

Main idea is to
Construct [privk∗]kM

such that
d contains B in the least-significant position
p, q are such that (p − 1)(q − 1) has small prime factors ri

Replace [m]pk with c = gx mod pq where
g has order ri and ∃t ∈ {1, . . . , ri − 1} : gt mod pq has second byte 00
x ∈ {1, . . . , ri − 1} is a tested value so that ⊥00 reveals x · d ≡ t (mod ri), and we
learn B mod ri

Requires precomputation, ≈ 3200 logins and 15 OECBkM calls

The variety of errors used demonstrates the fragility of the system

Caveat Implementor! Key Recovery Attacks on MEGA 14/19



Introduction Background Attacks Conclusion

Recovering the full key

Naive use of previous attacks would require up to 9 blocks to recover sk, so instead

1 Recover 4 blocks of q
2 Run exhaustive search for the last 16 bits (non-aligned block)
3 Efficiently recover the remainder using lattice reduction

Caveat Implementor! Key Recovery Attacks on MEGA 15/19



Introduction Background Attacks Conclusion

Recovering the full key

Naive use of previous attacks would require up to 9 blocks to recover sk, so instead
1 Recover 4 blocks of q

2 Run exhaustive search for the last 16 bits (non-aligned block)
3 Efficiently recover the remainder using lattice reduction

Caveat Implementor! Key Recovery Attacks on MEGA 15/19



Introduction Background Attacks Conclusion

Recovering the full key

Naive use of previous attacks would require up to 9 blocks to recover sk, so instead
1 Recover 4 blocks of q
2 Run exhaustive search for the last 16 bits (non-aligned block)

3 Efficiently recover the remainder using lattice reduction

Caveat Implementor! Key Recovery Attacks on MEGA 15/19



Introduction Background Attacks Conclusion

Recovering the full key

Naive use of previous attacks would require up to 9 blocks to recover sk, so instead
1 Recover 4 blocks of q
2 Run exhaustive search for the last 16 bits (non-aligned block)
3 Efficiently recover the remainder using lattice reduction

Caveat Implementor! Key Recovery Attacks on MEGA 15/19



Introduction Background Attacks Conclusion

Attacks only get better

MEGA claimed the previous attacks of Backendal, Haller and Paterson [BHP23]
were not practical due to the number of login attempts needed
ECB encryption oracle can be used to optimise one of the attacks on unpatched
clients
Recover privk using only 2 login attempts (vs. 512 of [BHP23] and 6 of [RH23])

Caveat Implementor! Key Recovery Attacks on MEGA 16/19



Introduction Background Attacks Conclusion

Attacks only get better

MEGA claimed the previous attacks of Backendal, Haller and Paterson [BHP23]
were not practical due to the number of login attempts needed

ECB encryption oracle can be used to optimise one of the attacks on unpatched
clients
Recover privk using only 2 login attempts (vs. 512 of [BHP23] and 6 of [RH23])

Caveat Implementor! Key Recovery Attacks on MEGA 16/19



Introduction Background Attacks Conclusion

Attacks only get better

MEGA claimed the previous attacks of Backendal, Haller and Paterson [BHP23]
were not practical due to the number of login attempts needed
ECB encryption oracle can be used to optimise one of the attacks on unpatched
clients

Recover privk using only 2 login attempts (vs. 512 of [BHP23] and 6 of [RH23])

Caveat Implementor! Key Recovery Attacks on MEGA 16/19



Introduction Background Attacks Conclusion

Attacks only get better

MEGA claimed the previous attacks of Backendal, Haller and Paterson [BHP23]
were not practical due to the number of login attempts needed
ECB encryption oracle can be used to optimise one of the attacks on unpatched
clients
Recover privk using only 2 login attempts (vs. 512 of [BHP23] and 6 of [RH23])

Caveat Implementor! Key Recovery Attacks on MEGA 16/19



Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations
MEGA informed us that they were working on a larger redesign meant to

Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023
MEGA awarded a bug bounty

Caveat Implementor! Key Recovery Attacks on MEGA 17/19



Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations

MEGA informed us that they were working on a larger redesign meant to
Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023
MEGA awarded a bug bounty

Caveat Implementor! Key Recovery Attacks on MEGA 17/19



Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations
MEGA informed us that they were working on a larger redesign meant to

Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023
MEGA awarded a bug bounty

Caveat Implementor! Key Recovery Attacks on MEGA 17/19



Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations
MEGA informed us that they were working on a larger redesign meant to

Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023
MEGA awarded a bug bounty

Caveat Implementor! Key Recovery Attacks on MEGA 17/19



Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations
MEGA informed us that they were working on a larger redesign meant to

Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023

MEGA awarded a bug bounty

Caveat Implementor! Key Recovery Attacks on MEGA 17/19



Introduction Background Attacks Conclusion

Responsible disclosure

We disclosed to MEGA in September 2022, suggesting mitigations
MEGA informed us that they were working on a larger redesign meant to

Change how private keys are stored
Remove the ECB encryption oracle
Replace the low-level crypto/bigint library

Upgrade of clients in March 2023
MEGA awarded a bug bounty

Caveat Implementor! Key Recovery Attacks on MEGA 17/19



Introduction Background Attacks Conclusion

Discussion

Root causes highlighted in previous work [BHP23], but it took multiple series of
attacks for MEGA to agree to some of the suggested mitigations
ECB encryption oracle from an independent feature shows the fragility of the design
Our attacks serve as an example of key overwriting attacks, which deserve more
exploration

Cryptanalysis of protocols “in the wild” is needed to achieve the adoption of more secure
and formally analysed cryptographic solutions in practice

Caveat Implementor! Key Recovery Attacks on MEGA 18/19



Introduction Background Attacks Conclusion

Discussion

Root causes highlighted in previous work [BHP23], but it took multiple series of
attacks for MEGA to agree to some of the suggested mitigations

ECB encryption oracle from an independent feature shows the fragility of the design
Our attacks serve as an example of key overwriting attacks, which deserve more
exploration

Cryptanalysis of protocols “in the wild” is needed to achieve the adoption of more secure
and formally analysed cryptographic solutions in practice

Caveat Implementor! Key Recovery Attacks on MEGA 18/19



Introduction Background Attacks Conclusion

Discussion

Root causes highlighted in previous work [BHP23], but it took multiple series of
attacks for MEGA to agree to some of the suggested mitigations
ECB encryption oracle from an independent feature shows the fragility of the design

Our attacks serve as an example of key overwriting attacks, which deserve more
exploration

Cryptanalysis of protocols “in the wild” is needed to achieve the adoption of more secure
and formally analysed cryptographic solutions in practice

Caveat Implementor! Key Recovery Attacks on MEGA 18/19



Introduction Background Attacks Conclusion

Discussion

Root causes highlighted in previous work [BHP23], but it took multiple series of
attacks for MEGA to agree to some of the suggested mitigations
ECB encryption oracle from an independent feature shows the fragility of the design
Our attacks serve as an example of key overwriting attacks, which deserve more
exploration

Cryptanalysis of protocols “in the wild” is needed to achieve the adoption of more secure
and formally analysed cryptographic solutions in practice

Caveat Implementor! Key Recovery Attacks on MEGA 18/19



Introduction Background Attacks Conclusion

Discussion

Root causes highlighted in previous work [BHP23], but it took multiple series of
attacks for MEGA to agree to some of the suggested mitigations
ECB encryption oracle from an independent feature shows the fragility of the design
Our attacks serve as an example of key overwriting attacks, which deserve more
exploration

Cryptanalysis of protocols “in the wild” is needed to achieve the adoption of more secure
and formally analysed cryptographic solutions in practice

Caveat Implementor! Key Recovery Attacks on MEGA 18/19



Introduction Background Attacks Conclusion

Discussion

See more details in ia.cr/2023/329

Thank you for your attention. Any questions?

Caveat Implementor! Key Recovery Attacks on MEGA 19/19

ia.cr/2023/329


Introduction Background Attacks Conclusion

Discussion

See more details in ia.cr/2023/329

Thank you for your attention. Any questions?

Caveat Implementor! Key Recovery Attacks on MEGA 19/19

ia.cr/2023/329


References

[BHP23] Matilda Backendal, Miro Haller, and Kenneth G. Paterson. MEGA: Malleable Encryption Goes Awry. In
IEEE S&P 2023, to appear, 2023. https://eprint.iacr.org/2022/959.

[BPH22] Lara Bruseghini, Kenneth G Paterson, and Daniel Huigens. Victory by KO: Attacking OpenPGP using
key overwriting. In ACM Conference on Computer and Communications Security (ACM CCS), to
appear, 2022.

[KR02] Vlastimil Klima and Tomas Rosa. Attack on private signature keys of the OpenPGP format, PGP(TM)
programs and other applications compatible with OpenPGP. Cryptology ePrint Archive, Report
2002/076, 2002. https://eprint.iacr.org/2002/076.

[LL97] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based schemes using a prime
order subgroup. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 249–263.
Springer, Heidelberg, August 1997.

[RH23] Keegan Ryan and Nadia Heninger. The hidden number problem with small unknown multipliers:
Cryptanalyzing MEGA in six queries and other applications. In PKC 2023, to appear, 2023.
https://eprint.iacr.org/2022/914.

[vW96] Paul C. van Oorschot and Michael J. Wiener. On Diffie-Hellman key agreement with short exponents.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 332–343. Springer,
Heidelberg, May 1996.

https://eprint.iacr.org/2022/959
https://eprint.iacr.org/2002/076
https://eprint.iacr.org/2022/914

	Introduction
	

	Background
	
	Overview of the MEGA design
	Oracles from error reporting
	ECB encryption oracle

	Attacks
	
	Attack based on modular inverses
	Attack based on small subgroups
	Recovering the full key

	Conclusion
	

	
	

