CISPA

HELMHOLTZ CENTER FOR INFORMATION SECURITY

On the hardness of the Finite Field Isomorphism Problem

Dipayan Das, Antoine Joux

Hard Problems

- Cryptography relies on the assumptions of hard problems.
- Most assumptions in the literature of lattice-based cryptography are conjectured hard based on a transformation to a lattice problem.
- This talk: The approach is not always reliable (by counterexample).

Reminders from Finite field theory

- Finite field with q elements : F_{q}
- Finite field with q^{n} elements (n degree extension of F_{q}): $F_{q^{n}}$
- Isomorphic representations of $\mathrm{F}_{\mathrm{q}^{n}}$ using irreducible polynomials over F_{q}

$$
F_{q}[x] / f(x) \approx F_{q}[y] / F(y) \approx \ldots
$$

- To find an explicit isomorphism, it is enough to know the roots of one polynomial in $F_{q^{n}}$ in terms of the other representation

Finite Field Isomorphism (FFI) distribution

FFI problem [DHP+18,HSWZ20]

Given $F(y), A_{1}(y), A_{2}(y), \ldots, A_{k}(y)$ decide if $A_{i}(y)$ s come from FFI distribution or uniform distribution.

This is the Decisional FFI (DFFI) problem.
[DHP+18]: Y. Doröz, J. Hoffstein, J. Pipher, J. Silverman, B. Sunar, W. Whyte, and Z. Zhang. Fully homomorphic encryption from the finite field isomorphism problem. PKC'18.
[HSWZ20]: J. Hoffstein, J. Silverman, W. Whyte, Z. Zhang. A signature scheme from the finite field isomorphism problem. JoMC'20.

Toy example:

```
l}\begin{array}{l}{n=16}\\{q=32771}
*)
27721* y^4 + 1198*y^3 + 14942* `^2 + 14544* % + 11277
```



```
c
```



```
l
```



```
lol
-x^15 + x^12 -x^11 -x^10 + x^8 -x^6 -x^5 -x^3 -x^2 -*x -1
```

$25606 \star y^{\wedge} 15+24744 \star y^{\wedge} 14+20203^{*} y^{\wedge} 13+1563 * y^{\wedge} 12+10690 * y^{\wedge} 11$
$20096 * y^{\wedge} 10+22744 * y^{\wedge} 9+30083 * y^{\wedge} 8+16058 * y^{\wedge} 7+10331 * y^{\wedge}{ }^{\wedge}+30479 * y^{\wedge} 5$
$27544 * y^{\wedge} 4+19920 * y^{\wedge} 3+3869 * y^{\wedge} 2+6833 * y+2377$

Previous attack on DFFI problem [DHP+18,HSWZ20]

FHE from FFI problem (oversimplified)
 [DHP+18]

Let $p=2$
$m_{a}, m_{b} \in\{0,1\}$

- $\operatorname{Enc}\left(m_{a}\right)=C_{a}=p C(y)+m_{a}, \operatorname{Enc}\left(m_{b}\right)=C_{b}=p C^{\prime}(y)+m_{b}$
- $\operatorname{Dec}\left(C_{a}\right)=\left(p c(x)+m_{a}\right) \bmod p=m_{a}$
- $\operatorname{Dec}\left(C_{a}+C_{b}\right)=\left(p c(x)+p c^{\prime}(x)+m_{a}+m_{b}\right) \bmod p=m_{a}+m_{b}$

Bounded Expansion factor The sparse ternary choice of $f(x)$ bounds the noise growth after multiplications

- $\operatorname{Dec}\left(C_{a} \cdot C_{b}\right)=\left(p^{2} c(x) c^{\prime}(x)+p c(x) m_{b}+p c^{\prime}(x) m_{a}+m_{a} \cdot m_{b}\right) \bmod p=m_{a} \cdot m_{b}$

Correctness: Choose q sufficiently large to avoid modular reductions in x-basis representations

Trace of finite field

Let $\alpha \in F_{q^{n}}$,

$$
\operatorname{Tr}(\alpha)=\alpha+\alpha^{q}+\cdots+\alpha^{q^{n-1}} \in F_{q}
$$

- Trace is linear.
- Trace computation is polynomial time.
- Trace is invariant under representations.

Trace of polynomial x-basis

$$
\begin{aligned}
f(x)=x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n} \text { where } \sigma_{d} & =0 \text { for } 1 \leq d \leq \frac{n}{2}-1 \\
\sigma_{d} & \in\{0, \pm 1\} \text { for } \frac{n}{2} \leq d \leq n
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|\operatorname{Tr}\left(x^{d}\right)\right| & =n \bmod q \text { for } d=0 \\
& =0 \bmod q \text { for } 1 \leq d \leq \frac{n}{2}-1 \\
& =d \bmod q \text { when } \sigma_{d} \neq 0 \square \square \frac{\mathrm{n}}{2} \leq d \leq n-1
\end{aligned} \left\lvert\, \begin{array}{ll}
\operatorname{Tr}\left(x^{d}\right)
\end{array} \quad \begin{aligned}
& \text { Using Newton-Girard formula: } \\
& \left.{ }^{2}-1\right)^{d} d \sum_{r_{i} \in \mathbb{N}: r_{1}+2 r_{2}+\cdots+d r_{d}=d} \frac{\left(r_{1}+r_{2}+\cdots r_{d}-1\right)!}{r_{1}!r_{2}!\ldots r_{d}!} \prod_{j=1}^{d}\left(-\sigma_{j}\right)^{r_{j}}
\end{aligned}\right.
$$

Trace of polynomial x-basis

$f(x)=x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n}$ where $\sigma_{d}=0$ for $1 \leq d \leq \frac{n}{2}-1$

$$
\sigma_{d} \in\{0, \pm 1\} \text { for } \frac{n}{2} \leq d \leq n
$$

Then for $1 \leq d \leq \frac{n}{2}-1$

- $\sigma_{d}=0$
$\operatorname{Tr}\left(x^{d}\right)=0 \bmod q$

Using Newton-Girard formula:
$\operatorname{Tr}\left(x^{d}\right)$
$=(-1)^{d} d \sum_{r_{i} \in \mathbb{N}: r_{1}+2 r_{2}+\cdots+d r_{d}=d} \frac{\left(r_{1}+r_{2}+\cdots r_{d}-1\right)!}{r_{1}!r_{2}!\ldots r_{d}!} \prod_{j=1}^{d}\left(-\sigma_{j}\right)^{r_{j}}$

Trace of polynomial x-basis

$f(x)=x^{n}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n}$ where $\sigma_{d}=0$ for $1 \leq d \leq \frac{n}{2}-1$

$$
\sigma_{d} \in\{0, \pm 1\} \text { for } \frac{n}{2} \leq d \leq n
$$

Then for $\frac{\mathrm{n}}{2} \leq d \leq n-1$

- Only one solution for $r_{i}: r_{1}+2 r_{2}+\cdots+d r_{d}=d$ that contributes in the sum:

$$
\begin{aligned}
& \quad\left(r_{1}=0, r_{2}=0, \ldots, r_{d}=1\right) \\
& \begin{aligned}
\left|\operatorname{Tr}\left(x^{d}\right)\right| & =d \bmod q \text { when } \sigma_{d} \neq 0 \\
& =0 \bmod q \text { when } \sigma_{d}=0
\end{aligned}
\end{aligned}
$$

Using Newton-Girard formula:
$\operatorname{Tr}\left(x^{d}\right)$
$=(-1)^{d} d \sum_{r_{i} \in \mathbb{N}: r_{1}+2 r_{2}+\cdots+d r_{d}=d} \frac{\left(r_{1}+r_{2}+\cdots r_{d}-1\right)!}{r_{1}!r_{2}!\ldots r_{d}!} \prod_{j=1}^{d}\left(-\sigma_{j}\right)^{r_{j}}$

Trace of FFI samples

Let $a_{i}(x)$ is a β-bounded linear combinations of polynomial x-basis.

Then $\left|\operatorname{Tr}\left(a_{i}(x)\right)\right|=\left|\operatorname{Tr}\left(A_{i}(y)\right)\right| \leq \beta n^{2}$

Polynomial-time attack on DFFI problem

- Let $q>4 \beta n^{2}$
- Let $A_{1}(y), A_{2}(y), \ldots, A_{k}(y)$ be the given samples.

Compute the trace of the samples.

Absolute value of traces $\leq \beta n^{2}$,
Otherwise, output uniform distribution.

Advantage of the attack: $1-\frac{1}{2^{k}}$

Trace is uniformly distributed over F_{q} for uniform samples.

Polynomial-time semantic attack on the FHE

Let p is not a divisor of n
$C_{a}=p C(y)+m$, where $m \in\{0,1\}$
$\operatorname{Tr}\left(C_{a}\right)=p \operatorname{Tr}(c(x))+\operatorname{Tr}(m)$ is small.

$$
\begin{aligned}
\operatorname{Tr}\left(C_{a}\right) \bmod p & =0, \text { Return } m=0 \\
& =1, \text { Return } m=1
\end{aligned}
$$

Polynomial-time semantic attack on the FHE

Let p is a divisor of n
$C_{a}=p C(y)+m$, where $m \in\{0,1\}$
Pick any FFI sample C^{*} such that p is not a divisor of $\operatorname{Tr}\left(C^{*}\right)$
$\operatorname{Tr}\left(C_{a} \cdot C^{*}\right)=p \operatorname{Tr}\left(c^{*}(x) \cdot c(x)\right)+m \operatorname{Tr}\left(c^{*}(x)\right)$ is still small.
The choice of $f(x)$ makes sure the coefficients of the product in x-basis are small.

$$
\begin{aligned}
\operatorname{Tr}\left(C_{a} C^{*}\right) \bmod p & =0, \text { Return } m=0 \\
& =1, \text { Return } m=1
\end{aligned}
$$

The large modulus makes sure there is no modular reduction!

Questions??

Paper details: https://eprint.iacr.org/2022/998

QR Code:

