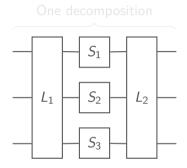
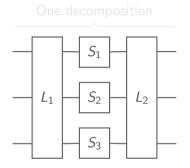


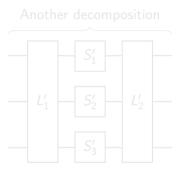
Pitfalls and Shortcomings for Decompositions and Alignment Lyon, April 25

Baptiste Lambin^{1,2} Gregor Leander¹ ¹Ruhr-University Bochum ²University of Luxembourg

NIVERSITÄT RUB


Patrick Neumann¹

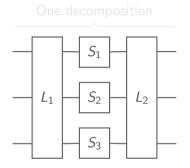


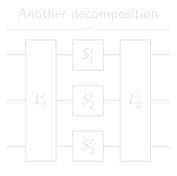

 ▶ Linear layers: L₁, L₂, L'₁, L'₂

 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₂, S'₃

- Security arguments based on decomposition
- Example: Bound probability of differential characteristic by counting active S-boxes
- Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

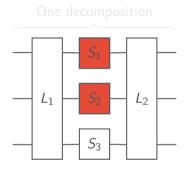
 ▶ Linear layers: L₁, L₂, L'₁, L'₂


 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₂, S'₃


Security arguments based on decomposition

Example: Bound probability of differential characteristic by counting active S-boxes

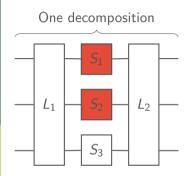
- Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

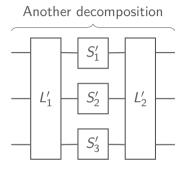


 ▶ Linear layers: L₁, L₂, L'₁, L'₂

 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₅, S'₂

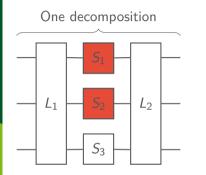
- Security arguments based on decomposition
- ▶ Example: Bound probability of differential characteristic by counting active S-boxes
- Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

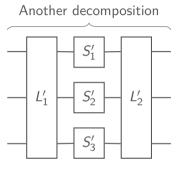



 ▶ Linear layers: *L*₁, *L*₂, *L'*₁, *L'*₂

 ▶ S-boxes: *S*₁, *S*₂, *S*₃, *S'*₁, *S'*₂, *S'*₃

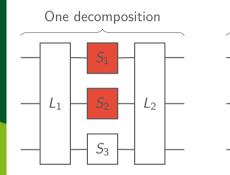
- Security arguments based on decomposition
- ▶ Example: Bound probability of differential characteristic by counting active S-boxes
- Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

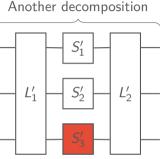



 ▶ Linear layers: L₁, L₂, L'₁, L'₂

 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₂, S'₃

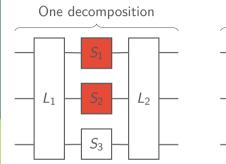
- Security arguments based on decomposition
- ► Example: Bound probability of differential characteristic by counting active S-boxes
- Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

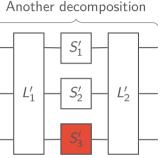



 ▶ Linear layers: L₁, L₂, L'₁, L'₂

 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₂, S'₃

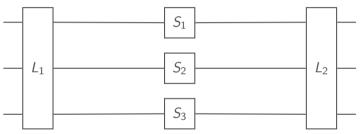
- Security arguments based on decomposition
- ► Example: Bound probability of differential characteristic by counting active S-boxes
- ▶ Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?




 ▶ Linear layers: L₁, L₂, L'₁, L'₂

 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₂, S'₃

- Security arguments based on decomposition
- ► Example: Bound probability of differential characteristic by counting active S-boxes
- ▶ Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

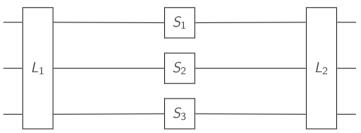


 ▶ Linear layers: L₁, L₂, L'₁, L'₂

 ▶ S-boxes: S₁, S₂, S₃, S'₁, S'₂, S'₃

- Security arguments based on decomposition
- ► Example: Bound probability of differential characteristic by counting active S-boxes
- ▶ Potential problem: Result may depend on the decomposition
- Question: When do multiple decompositions exist?

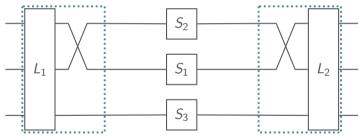
- ▶ Well knows limitations to uniqueness
 - Reordering the S-boxes
 - Linear equivalence of the S-boxes
 - Combining S-boxes



Main Question

When is a decomposition unique (up to those limitations)?

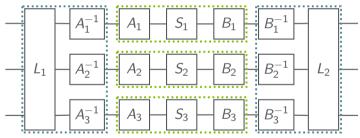
- Well knows limitations to uniqueness
 - Reordering the S-boxes
 - Linear equivalence of the S-boxes
 - Combining S-boxes



Main Question

When is a decomposition unique (up to those limitations)?

- Well knows limitations to uniqueness
 - Reordering the S-boxes
 - Linear equivalence of the S-boxes
 - Combining S-boxes

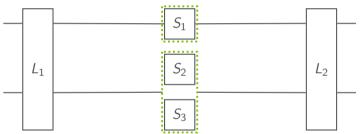

Main Question

When is a decomposition unique (up to those limitations)?

Uniqueness of Decompositions • Well knows limitations to uniqueness

- Reordering the S-boxes
- Linear equivalence of the S-boxes
- Combining S-boxes

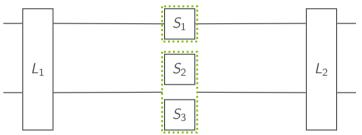
Main Question


When is a decomposition unique (up to those limitations)?

Pitfalls and Shortcomings for Decompositions and Alignment | Lyon | April 25

OF LARGE-SCALE ADVERSARIES

- Well knows limitations to uniqueness
 - Reordering the S-boxes
 - Linear equivalence of the S-boxes
 - Combining S-boxes



Main Question

When is a decomposition unique (up to those limitations)?

- Well knows limitations to uniqueness
 - Reordering the S-boxes
 - Linear equivalence of the S-boxes
 - Combining S-boxes

Main Question

When is a decomposition unique (up to those limitations)?

Definition

A function F has maximal differential uniformity if $F(x) + F(x + \alpha) = \beta$ for some non-zero α , some β and all x.

Definition

A function F has maximal linearity if $\alpha^T \cdot F$ is affine for some non-zero α .

Main Theorem

A decomposition is <u>not</u> unique if and only if one S-box has maximal differential uniformity and another one has maximal linearity.

Good, since decomposition is unique for all cryptographically strong S-boxes
 Easy/efficient to check (for all common S-box sizes)

Definition

A function F has maximal differential uniformity if $F(x) + F(x + \alpha) = \beta$ for some non-zero α , some β and all x.

Definition

A function F has maximal linearity if $\alpha^T \cdot F$ is affine for some non-zero α .

Main Theorem

A decomposition is <u>not</u> unique if and only if one S-box has maximal differential uniformity and another one has maximal linearity.

Good, since decomposition is unique for all cryptographically strong S-boxes
 Easy/efficient to check (for all common S-box sizes)

Definition

A function F has maximal differential uniformity if $F(x) + F(x + \alpha) = \beta$ for some non-zero α , some β and all x.

Definition

A function F has maximal linearity if $\alpha^T \cdot F$ is affine for some non-zero α .

Main Theorem

A decomposition is <u>not</u> unique if and only if one S-box has maximal differential uniformity and another one has maximal linearity.

Good, since decomposition is unique for all cryptographically strong S-boxes

Easy/efficient to check (for all common S-box sizes)

Definition

A function F has maximal differential uniformity if $F(x) + F(x + \alpha) = \beta$ for some non-zero α , some β and all x.

Definition

A function F has maximal linearity if $\alpha^T \cdot F$ is affine for some non-zero α .

Main Theorem

A decomposition is <u>not</u> unique if and only if one S-box has maximal differential uniformity and another one has maximal linearity.

Good, since decomposition is unique for all cryptographically strong S-boxes
 Easy/efficient to check (for all common S-box sizes)

Definition

A function F has maximal differential uniformity if $F(x) + F(x + \alpha) = \beta$ for some non-zero α , some β and all x.

Definition

A function F has maximal linearity if $\alpha^T \cdot F$ is affine for some non-zero α .

Main Theorem

A decomposition is <u>not</u> unique if and only if one S-box has maximal differential uniformity and another one has maximal linearity.

- ▶ Good, since decomposition is unique for all cryptographically strong S-boxes
- Easy/efficient to check (for all common S-box sizes)

 <u>Backward direction</u>: If one S-box has maximal differential uniformity and another one has maximal linearity then there exist multiple decompositions

Lemma

Functions with maximal differential uniformity are exactly those that are linear equivalent to functions of the form

 $G\begin{pmatrix}x\\y\end{pmatrix} = G\begin{pmatrix}x\\0\end{pmatrix} + \begin{pmatrix}0\\y\end{pmatrix}.$

Idea of Proof:

F has maximal differential uniformity ⇒ F(x') + F(x' + α) = β for some α ≠ 0, β
 Linearly transform F to G such that α and β correspond to last bit y

Backward direction: If one S-box has maximal differential uniformity and another one has maximal linearity then there exist multiple decompositions

Lemma

Functions with maximal differential uniformity are exactly those that are linear equivalent to functions of the form

$$G\begin{pmatrix}x\\y\end{pmatrix} = G\begin{pmatrix}x\\0\end{pmatrix} + \begin{pmatrix}0\\y\end{pmatrix}.$$

Idea of Proof:

F has maximal differential uniformity ⇒ F(x') + F(x' + α) = β for some α ≠ 0, β
 Linearly transform F to G such that α and β correspond to last bit y

Backward direction: If one S-box has maximal differential uniformity and another one has maximal linearity then there exist multiple decompositions

Lemma

Functions with maximal differential uniformity are exactly those that are linear equivalent to functions of the form

$$G\begin{pmatrix}x\\y\end{pmatrix} = G\begin{pmatrix}x\\0\end{pmatrix} + \begin{pmatrix}0\\y\end{pmatrix}.$$

Idea of Proof:

F has maximal differential uniformity $\implies F(x') + F(x' + \alpha) = \beta$ for some $\alpha \neq 0, \beta$

• Linearly transform F to G such that α and β correspond to last bit y

Backward direction: If one S-box has maximal differential uniformity and another one has maximal linearity then there exist multiple decompositions

Lemma

Functions with maximal differential uniformity are exactly those that are linear equivalent to functions of the form

$$G\begin{pmatrix}x\\y\end{pmatrix} = G\begin{pmatrix}x\\0\end{pmatrix} + \begin{pmatrix}0\\y\end{pmatrix}.$$

Idea of Proof:

- F has maximal differential uniformity $\implies F(x') + F(x' + \alpha) = \beta$ for some $\alpha \neq 0, \beta$
- Linearly transform F to G such that α and β correspond to last bit y

Functions with maximal linearity are exactly those that are affine equivalent to functions of the form

 $H\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\h\begin{pmatrix}x\\y\end{pmatrix}\end{pmatrix}.$

Idea of Proof:

F has maximal linearity $\implies \alpha^T \cdot F(x') = \beta^T \cdot x' + c$ for some $\alpha \neq 0$, β and cAdd F(0) to F, as $\alpha^T \cdot (F + F(0))$ is linear

Linearly transform F + F(0) to H such that α and β both correspond to $(1, 0, \dots, 0)^T$

Functions with maximal linearity are exactly those that are affine equivalent to functions of the form

$$H\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\h\begin{pmatrix}x\\y\end{pmatrix}\end{pmatrix}.$$

Idea of Proof:

- F has maximal linearity $\implies \alpha^T \cdot F(x') = \beta^T \cdot x' + c$ for some $\alpha \neq 0$, β and c
- Add F(0) to F, as $\alpha^T \cdot (F + F(0))$ is linear
- Linearly transform F + F(0) to H such that α and β both correspond to $(1, 0, \dots, 0)^T$

Functions with maximal linearity are exactly those that are affine equivalent to functions of the form

$$H\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\h\begin{pmatrix}x\\y\end{pmatrix}\end{pmatrix}.$$

Idea of Proof:

- F has maximal linearity $\implies \alpha^T \cdot F(x') = \beta^T \cdot x' + c$ for some $\alpha \neq 0$, β and c
- Add F(0) to F, as $\alpha^T \cdot (F + F(0))$ is linear

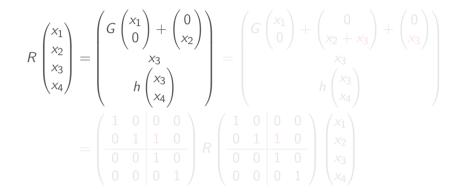
• Linearly transform F + F(0) to H such that α and β both correspond to $(1, 0, \dots, 0)^T$

Functions with maximal linearity are exactly those that are affine equivalent to functions of the form

$$H\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\h\begin{pmatrix}x\\y\end{pmatrix}\end{pmatrix}.$$

Idea of Proof:

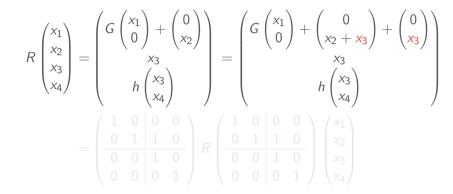
- F has maximal linearity $\implies \alpha^T \cdot F(x') = \beta^T \cdot x' + c$ for some $\alpha \neq 0$, β and c
- Add F(0) to F, as $\alpha^T \cdot (F + F(0))$ is linear
- Linearly transform F + F(0) to H such that α and β both correspond to $(1, 0, \dots, 0)^T$



Corollary

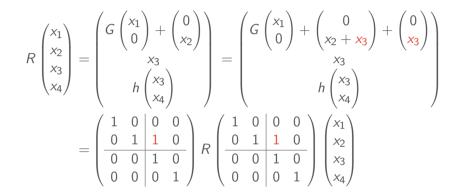
Functions <u>without</u> unique decomposition are exactly those affine equivalent to ones of the form

$$R\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix} = \begin{pmatrix}G\begin{pmatrix}x_{1}\\0\end{pmatrix} + \begin{pmatrix}0\\x_{2}\end{pmatrix}\\x_{3}\\h\begin{pmatrix}x_{3}\\x_{4}\end{pmatrix}\end{pmatrix} \\ S-box(es) \\ S-box(es)$$

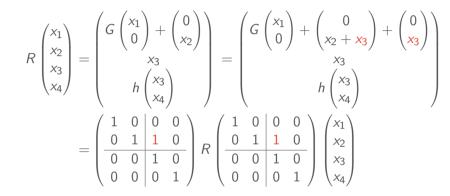


Decomposition not unique, as linear layers are different

Other direction: See paper



Decomposition not unique, as linear layers are different


Other direction: See paper

Decomposition not unique, as linear layers are different
 Other direction: See paper

Decomposition not unique, as linear layers are different
 Other direction: See paper

$$R\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix} = \begin{pmatrix}G\begin{pmatrix}x_{1}\\0\end{pmatrix} + \begin{pmatrix}0\\x_{2}\end{pmatrix}\\x_{3}\end{pmatrix} \\ h\begin{pmatrix}x_{3}\\x_{4}\end{pmatrix} \end{pmatrix} = \begin{pmatrix}G\begin{pmatrix}x_{1}\\0\end{pmatrix} + \begin{pmatrix}0\\x_{2}+x_{3}\end{pmatrix} + \begin{pmatrix}0\\x_{3}\end{pmatrix} \\ x_{3}\end{pmatrix} \\ = \begin{pmatrix}I & 0 & 0 & 0\\0 & 1 & 1 & 0\\0 & 0 & 1 & 1 & 0\\0 & 0 & 1 & 1 & 0\\0 & 0 & 0 & 1\end{pmatrix} R\begin{pmatrix}I & 0 & 0 & 0\\0 & 1 & 1 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix}$$

- Decomposition not unique, as linear layers are different
- ► Other direction: See paper

► Example without unique decomposition: DEFAULT¹

Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!

One such case: Alignment

- Misterious property:
 - Positive & negative connotations
 - For a long time: Not formally defined and the second se
- First formal definition at CRYPTO'21²
- Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
- Investigate: Definition & impact of alignment

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21

- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- One such case: Alignment
 - Misterious property:
 - Positive & negative connotations
 - For a long time: Not formally defined
 - First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
 - Investigate: Definition & impact of alignment

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21

- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- One such case: Alignment
 - Misterious property:
 - ▶ First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes
 - Investigate: Definition & impact of alignment

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 Pitfalls and Shortcomings for Decompositions and Alignment Lyon April 25

- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- ► One such case: Alignment
 - Misterious property:
 - Positive & negative connotations
 - For a long time: Not formally defined
 - ▶ First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
 - Investigate: Definition & impact of alignment

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 ²By Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche Pitfalls and Shortcomings for Decompositions and Alignment |Lyon | April 25 9/13

- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- ► One such case: Alignment
 - Misterious property:
 - ▶ Positive & negative connotations
 - For a long time: Not formally defined
 - First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
 - Investigate: Definition & impact of alignment

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 ²By Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche Pitfalls and Shortcomings for Decompositions and Alignment | Lyon | April 25 9/13

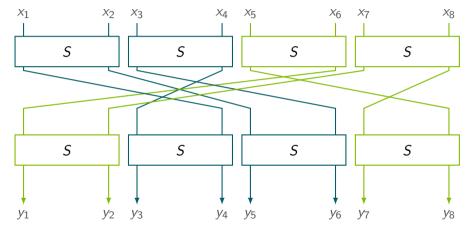
- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- ► One such case: Alignment
 - Misterious property:
 - Positive & negative connotations
 - ► For a long time: Not formally defined
 - First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
 - Investigate: Definition & impact of alignment

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 ²By Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche Pitfalls and Shortcomings for Decompositions and Alignment |Lyon | April 25 9/13

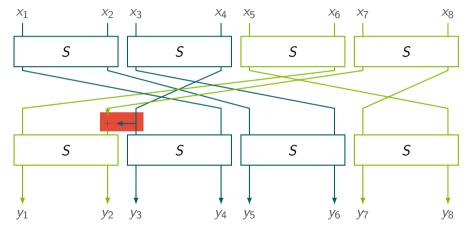
- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- One such case: Alignment
 - Misterious property:
 - Positive & negative connotations
 - ► For a long time: Not formally defined
 - ► First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes
 - Investigate: Definition & impact of alignment

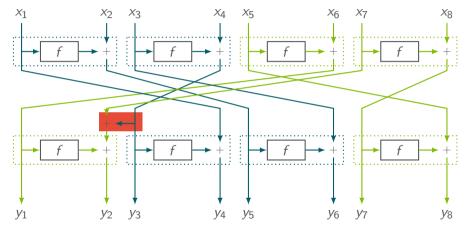
¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 ²By Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche Pitfalls and Shortcomings for Decompositions and Alignment Lyon April 25

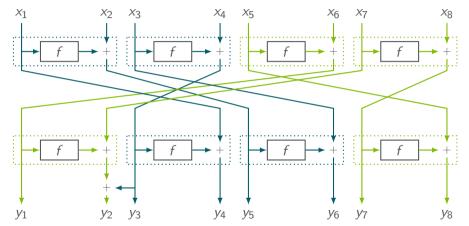
- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- ► One such case: Alignment
 - Misterious property:
 - Positive & negative connotations
 - For a long time: Not formally defined
 - ► First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
 - Investigate: Definition & impact of alignment

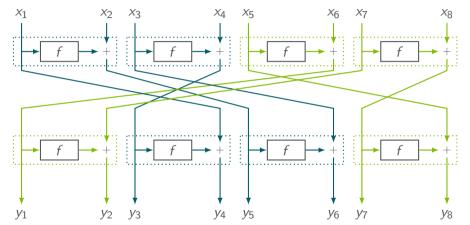

¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 ²By Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche Pitfalls and Shortcomings for Decompositions and Alignment | Lyon | April 25 9/13

- ► Example without unique decomposition: DEFAULT¹
- Have to be careful if S-boxes with maximal differential uniformity and linearity are/can be used!
- ► One such case: Alignment
 - Misterious property:
 - Positive & negative connotations
 - For a long time: Not formally defined
 - ► First formal definition at CRYPTO'21²
 - Informally, alignment means that two rounds decompose with at least two S-boxes (referred to as super-boxes)
 - Investigate: Definition & impact of alignment


¹A. Baksi, S. Bhasin, J. Breier, M. Khairallah, T. Peyrin, S. Sarkar, and S. M. Sim at ASIACRYPT'21 ²By Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche Pitfalls and Shortcomings for Decompositions and Alignment | Lyon | April 25 9/13

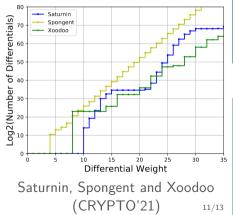

Function aligned


► Function unaligned


► Function unaligned

► Function unaligned

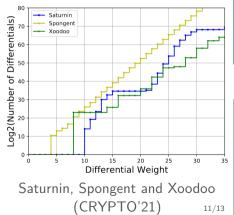
► Function unaligned, but also aligned?


- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- <u>Question</u>: Results due to alignment or due to other disparities?
- Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails

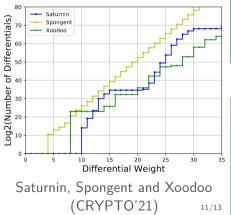
- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round.
 - Preserve all 1-to-1 linear trails

- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails

Cumulative histogram of the number of differentials of a given weight over 2 rounds

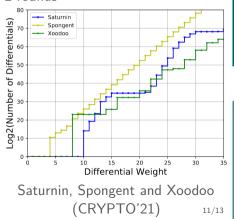


- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails

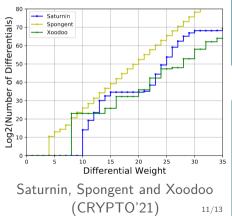

Cumulative histogram of the number of differentials of a given weight over 2 rounds

OF LARGE-SCALE ADVERSARIES

- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- ▶ Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails

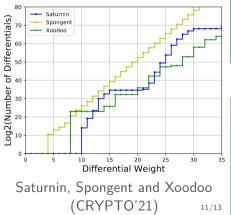

Cumulative histogram of the number of differentials of a given weight over 2 rounds

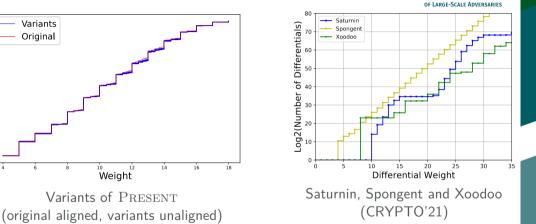
- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- ▶ Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails


Cumulative histogram of the number of differentials of a given weight over 2 rounds

- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- ▶ Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails

Pitfalls and Shortcomings for Decompositions and Alignment | Lyon | April 25


Cumulative histogram of the number of differentials of a given weight over 2 rounds


- (CRYPTO'21) compared aligned and unaligned ciphers
- Infer that alignment might lead to bigger clustering effects
- Question: Results due to alignment or due to other disparities?
- ▶ Idea: Change bit-permutation of PRESENT
 - Produce variants that are aligned and ones that are unaligned
 - Preserve full diffusion after 3 round
 - Preserve all 1-to-1 linear trails

Cumulative histogram of the number of differentials of a given weight over 2 rounds

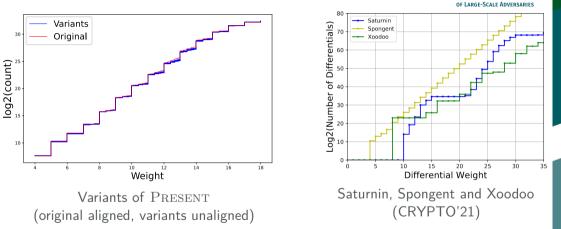
Cumulative histogram of the number of differentials of a given weight over 2 rounds

• Overall result: PRESENT variants behave very similar in all aspects

Pitfalls and Shortcomings for Decompositions and Alignment Lyon April 25

Variants

Original


30

log2(count) 12 12

10

ΓΛςΑ

Cumulative histogram of the number of differentials of a given weight over 2 rounds

Overall result: PRESENT variants behave very similar in all aspects

Pitfalls and Shortcomings for Decompositions and Alignment | Lyon | April 25

CASA

Conclusion

Under some mild conditions decomposition is unique

- Good, as it allows to base security arguments on the unique decomposition
- Still, have to be careful if conditions are not met
- Impact of alignment on clustering may be overestimated
- Benefits of alignment may outweigh this impact

- Under some mild conditions decomposition is unique
- Good, as it allows to base security arguments on the unique decomposition
- Still, have to be careful if conditions are not met
- Impact of alignment on clustering may be overestimated
- Benefits of alignment may outweigh this impact

- Under some mild conditions decomposition is unique
- ▶ Good, as it allows to base security arguments on the unique decomposition
- Still, have to be careful if conditions are not met
- Impact of alignment on clustering may be overestimated
 Benefits of alignment may outweigh this impact

- Under some mild conditions decomposition is unique
- Good, as it allows to base security arguments on the unique decomposition
- Still, have to be careful if conditions are not met
- Impact of alignment on clustering may be overestimated
- Benefits of alignment may outweigh this impact

- Under some mild conditions decomposition is unique
- Good, as it allows to base security arguments on the unique decomposition
- Still, have to be careful if conditions are not met
- Impact of alignment on clustering may be overestimated
- Benefits of alignment may outweigh this impact

- Under some mild conditions decomposition is unique
- Good, as it allows to base security arguments on the unique decomposition
- Still, have to be careful if conditions are not met
- Impact of alignment on clustering may be overestimated
- Benefits of alignment may outweigh this impact