Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Application to Subterranean

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen

March 22, 2023

ESCADA

Introduction

Differential cryptanalysis

- Security: $\max \operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right)$

Differential cryptanalysis

- Security: $\max \mathrm{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow \mathrm{It}$ is hard to determine

Differential cryptanalysis

- Security: $\max \operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow$ It is hard to determine

Differential cryptanalysis

- Security: $\max \operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow I t$ is hard to determine
- $Q_{r}: \Delta_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_{r}$ is a differential trail

Differential cryptanalysis

- Security: $\max \mathrm{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow \mathrm{It}$ is hard to determine
- $Q_{r}: \Delta_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_{r}$ is a differential trail
- $\operatorname{DP}\left(Q_{r}\right) \approx \operatorname{DP}\left(\Delta_{0} \rightarrow b_{1}\right) \times \operatorname{DP}\left(b_{1} \rightarrow b_{2}\right) \times \ldots \times \operatorname{DP}\left(b_{r-1} \rightarrow \Delta_{r}\right)$

Differential cryptanalysis

- Security: $\max \mathrm{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow \mathrm{It}$ is hard to determine
- $Q_{r}: \Delta_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_{r}$ is a differential trail
- $\operatorname{DP}\left(Q_{r}\right) \approx \operatorname{DP}\left(\Delta_{0} \rightarrow b_{1}\right) \times \operatorname{DP}\left(b_{1} \rightarrow b_{2}\right) \times \ldots \times \operatorname{DP}\left(b_{r-1} \rightarrow \Delta_{r}\right)$
- $\operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \approx \operatorname{DP}\left(Q_{r}\right)$

Differential cryptanalysis

- Security: $\max \mathrm{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow \mathrm{It}$ is hard to determine
- $Q_{r}: \Delta_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_{r}$ is a differential trail
- $\operatorname{DP}\left(Q_{r}\right) \approx \operatorname{DP}\left(\Delta_{0} \rightarrow b_{1}\right) \times \operatorname{DP}\left(b_{1} \rightarrow b_{2}\right) \times \ldots \times \operatorname{DP}\left(b_{r-1} \rightarrow \Delta_{r}\right)$
- $\operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \approx \operatorname{DP}\left(Q_{r}\right)$
- $w\left(b_{i} \rightarrow b_{i+1}\right)=-\log _{2} \mathrm{DP}\left(b_{i} \rightarrow b_{i+1}\right)$

Differential cryptanalysis

- Security: $\max \mathrm{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow \mathrm{It}$ is hard to determine
- $Q_{r}: \Delta_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_{r}$ is a differential trail
- $\operatorname{DP}\left(Q_{r}\right) \approx \operatorname{DP}\left(\Delta_{0} \rightarrow b_{1}\right) \times \operatorname{DP}\left(b_{1} \rightarrow b_{2}\right) \times \ldots \times \operatorname{DP}\left(b_{r-1} \rightarrow \Delta_{r}\right)$
- $\operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \approx \operatorname{DP}\left(Q_{r}\right)$
- $w\left(b_{i} \rightarrow b_{i+1}\right)=-\log _{2} \mathrm{DP}\left(b_{i} \rightarrow b_{i+1}\right) \rightarrow\left(\mathrm{e} . \mathrm{g} . \mathrm{DP}=2^{-n} \rightarrow w=n\right)$

Differential cryptanalysis

- Security: $\max \mathrm{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \rightarrow$ It is hard to determine
- $Q_{r}: \Delta_{0} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_{r}$ is a differential trail
- $\operatorname{DP}\left(Q_{r}\right) \approx \operatorname{DP}\left(\Delta_{0} \rightarrow b_{1}\right) \times \operatorname{DP}\left(b_{1} \rightarrow b_{2}\right) \times \ldots \times \operatorname{DP}\left(b_{r-1} \rightarrow \Delta_{r}\right)$
- $\operatorname{DP}\left(\Delta_{0} \rightarrow \Delta_{r}\right) \approx \operatorname{DP}\left(Q_{r}\right)$
- $w\left(b_{i} \rightarrow b_{i+1}\right)=-\log _{2} \mathrm{DP}\left(b_{i} \rightarrow b_{i+1}\right) \rightarrow$ (e. g. DP $\left.=2^{-n} \rightarrow w=n\right)$
- $w\left(Q_{r}\right)=w\left(\Delta_{0} \rightarrow b_{1}\right)+w\left(b_{1} \rightarrow b_{2}\right)+\ldots+w\left(b_{r-1} \rightarrow \Delta_{r}\right)$

Generating r-round Differential

 trails
r-round differential trail

r-round differential trail

- $\operatorname{DP}\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=1=2^{0}$

- $\operatorname{DP}\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=1=2^{0} \Rightarrow w\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=0$

- $\operatorname{DP}\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=1=2^{0} \Rightarrow w\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=0$
- $w\left(Q_{r}\right)=\sum_{i=0}^{r-1} w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)$

- $\operatorname{DP}\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=1=2^{0} \Rightarrow w\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=0$
- $w\left(Q_{r}\right)=\sum_{i=0}^{r-1} w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)$
- Goal: r-round trails with the minimum weight (maximum DP)

- $\operatorname{DP}\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=1=2^{0} \Rightarrow w\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=0$
- $w\left(Q_{r}\right)=\sum_{i=0}^{r-1} w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)$
- Goal: r-round trails with the minimum weight (maximum DP)
- Not efficient to start with r-round trail

- $\operatorname{DP}\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=1=2^{0} \Rightarrow w\left(a_{i} \xrightarrow{\lambda} b_{i}\right)=0$
- $w\left(Q_{r}\right)=\sum_{i=0}^{r-1} w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)$
- Goal: r-round trails with the minimum weight (maximum DP)
- Not efficient to start with r-round trail $\rightarrow 2$-round trails up to weight T_{2}

2-round trails and trail cores

- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$

2-round trails and trail cores

- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

2-round trails and trail cores

- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input
- $w\left(Q_{2}\right)=w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)+w\left(b_{i+1} \xrightarrow{\chi} a_{i+2}\right)$

2-round trails and trail cores

- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input
- $w\left(Q_{2}\right)=w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)+w\left(b_{i+1} \xrightarrow{\chi} a_{i+2}\right)=w\left(b_{i}\right)+w\left(b_{i+1}\right)$
- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input
- $w\left(Q_{2}\right)=w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)+w\left(b_{i+1} \xrightarrow{\chi} a_{i+2}\right)=w\left(b_{i}\right)+w\left(b_{i+1}\right)$
- We can ignore a_{i+2} and b_{i+2} and only build the following
- $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$

2-round trails and trail cores

- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input
- $w\left(Q_{2}\right)=w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)+w\left(b_{i+1} \xrightarrow{\chi} a_{i+2}\right)=w\left(b_{i}\right)+w\left(b_{i+1}\right)$
- We can ignore a_{i+2} and b_{i+2} and only build the following
- $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$
- Minimum reverse weight $w_{r e v}\left(a_{i+1}\right)$: minimum over the weight of all compatible b_{i} 's
- We introduced a new method to compute the $w_{r e v}\left(a_{i+1}\right)$

2-round trails and trail cores

- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input
- $w\left(Q_{2}\right)=w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)+w\left(b_{i+1} \xrightarrow{\chi} a_{i+2}\right)=w\left(b_{i}\right)+w\left(b_{i+1}\right)$
- We can ignore a_{i+2} and b_{i+2} and only build the following
- $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$
- Minimum reverse weight $w_{r e v}\left(a_{i+1}\right)$: minimum over the weight of all compatible b_{i} 's
- We introduced a new method to compute the $w_{r e v}\left(a_{i+1}\right) \rightarrow$ ignore b_{i}
- 2-round trail: $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input
- $w\left(Q_{2}\right)=w\left(b_{i} \xrightarrow{\chi} a_{i+1}\right)+w\left(b_{i+1} \xrightarrow{\chi} a_{i+2}\right)=w\left(b_{i}\right)+w\left(b_{i+1}\right)$
- We can ignore a_{i+2} and b_{i+2} and only build the following
- $b_{i} \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$
- Minimum reverse weight $w_{r e v}\left(a_{i+1}\right)$: minimum over the weight of all compatible b_{i} 's
- We introduced a new method to compute the $w_{r e v}\left(a_{i+1}\right) \rightarrow$ ignore b_{i}
- 2 -round trail core: $\xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$

Generate 2-round trail cores up to weight T_{2}

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Generate all differences at a_{1} with $w\left(Q_{2}\right)$ up to T_{2}

Generate 2-round trail cores up to weight T_{2}

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Generate all differences at a_{1} with $w\left(Q_{2}\right)$ up to T_{2}
- Compute b_{1}

Generate 2-round trail cores up to weight T_{2}

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Generate all differences at a_{1} with $w\left(Q_{2}\right)$ up to T_{2}
- Compute $b_{1}=\lambda\left(a_{1}\right)$

Generate 2-round trail cores up to weight T_{2}

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Generate all differences at a_{1} with $w\left(Q_{2}\right)$ up to T_{2}
- Compute $b_{1}=\lambda\left(a_{1}\right)$
- If $w_{\text {rev }}\left(a_{1}\right)+w\left(b_{1}\right) \leq T_{2}$ then $\left(a_{1}, b_{1}\right)$ is a valid pair

Generate 2-round trail cores up to weight T_{2}

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Generate all differences at a_{1} with $w\left(Q_{2}\right)$ up to T_{2}
- Compute $b_{1}=\lambda\left(a_{1}\right)$
- If $w_{r e v}\left(a_{1}\right)+w\left(b_{1}\right) \leq T_{2}$ then $\left(a_{1}, b_{1}\right)$ is a valid pair
- How to scan the space of all 2-round trail cores up to T_{2} ?

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Generate all differences at a_{1} with $w\left(Q_{2}\right)$ up to T_{2}
- Compute $b_{1}=\lambda\left(a_{1}\right)$
- If $w_{\text {rev }}\left(a_{1}\right)+w\left(b_{1}\right) \leq T_{2}$ then $\left(a_{1}, b_{1}\right)$ is a valid pair
- How to scan the space of all 2-round trail cores up to T_{2} ?
- Tree search approach [Mella, Daemen, Van Assche, ToSC 2016]

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}
- Score: a lower bound on the weight of a node and all its descendants

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree

Tree search

$$
\xrightarrow{\frac{\chi}{\rightarrow}} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\frac{\chi}{\rightarrow}}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)
- Score can be defined separately for a_{1} and b_{1}

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)
- Score can be defined separately for a_{1} and b_{1}
- We introduced a new generic method to compute the score at a_{1}

Tree search

$$
\xrightarrow{\chi} a_{1} \xrightarrow{\lambda} b_{1} \xrightarrow{\chi}
$$

- Each node represents an ordered list of active bits at a_{1} and corresponding b_{1}
- Three functions to visit all nodes of a tree
- toChild(): adds a new active bit to a_{1}
- toSibling(): Changes the last added active bit of a_{1}
- toParent(): deletes the last added active bit of a_{1}
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)
- Score can be defined separately for a_{1} and b_{1}
- We introduced a new generic method to compute the score at a_{1}
- ... and a new method to compute the score at b_{1} for SubTERRANEAN

- Forward extension

- Forward extension
- Generating all possible a_{2} 's

- Forward extension
- Generating all possible a_{2} 's
- Computing the corresponding b_{2} for each a_{2}

- Forward extension
- Generating all possible a_{2} 's
- Computing the corresponding b_{2} for each a_{2}
- Backward extension

- Forward extension
- Generating all possible a_{2} 's
- Computing the corresponding b_{2} for each a_{2}
- Backward extension
- We introduced a new method to efficiently generate all possible b_{0} 's

- Forward extension
- Generating all possible a_{2} 's
- Computing the corresponding b_{2} for each a_{2}
- Backward extension
- We introduced a new method to efficiently generate all possible b_{0} 's
- Computing the corresponding a_{0} for each b_{0}

Application

FPGA benchmarking: NIST lightweight round 2 candidates

Figure 35: Energy-per-bit for Authenticated Encryption and Decryption of 1536-Byte messages at 75 MHz
[Mohajerani et al. 2021]

FPGA benchmarking: NIST lightweight round 2 candidates

Figure 36: Throughput-over-Area for Authenticated Encryption and Decryption of 1536Byte messages at 75 MHz
[Mohajerani et al. 2021]

The SubTERRANEAN 2.0 round function

The SubTERRANEAN 2.0 round function

$$
\chi: s_{i} \leftarrow s_{i}+\left(s_{i+1}+1\right) s_{i+2} .
$$

The SubTERRANEAN 2.0 round function

$$
\begin{array}{ll}
\chi: s_{i} \leftarrow s_{i}+\left(s_{i+1}+1\right) s_{i+2} . & \iota: s_{i} \leftarrow s_{i}+\delta_{i}, \\
& \theta: s_{i} \leftarrow s_{i}+s_{i+3}+s_{i+8}, \\
& \pi: s_{i} \leftarrow s_{12 i} .
\end{array}
$$

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in SubTERRANEAN

- 2-round trail cores up to 28

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in Subterranean

- 2 -round trail cores up to 28
- 3 -round trail cores up to 40

Lower bound on the weight of trails in SubTERRANEAN

Goal: scanning 8-round trail cores in SubTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to $57 \rightarrow$ no trail core

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in SubTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to $57 \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in SubTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to $57 \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58
- In the worst case, two 4-rounds with weight 58 can be compatible and form an 8-round trail core

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in SubTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to $57 \rightarrow$ no trail core
- The best 4 -round trail core we found has weight 58
- In the worst case, two 4-rounds with weight 58 can be compatible and form an 8-round trail core
- $w\left(Q_{8}\right)=w\left(Q_{4}\right)+w\left(Q_{4}^{\prime}\right) \geq 58+58=116$

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in SubTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to $57 \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58
- In the worst case, two 4-rounds with weight 58 can be compatible and form an 8-round trail core
- $w\left(Q_{8}\right)=w\left(Q_{4}\right)+w\left(Q_{4}^{\prime}\right) \geq 58+58=116$

\# rounds:	1	2	3	4	5	6	7	8
lower bound (this work):	2	8	25	58	≥ 62	≥ 78	≥ 80	≥ 116
lower bound [DMMR20]:	2	8	25	$[49,58]$	≥ 54	≥ 65	≥ 70	≥ 98

Lower bound on the weight of differential trail cores

Conclusion

Conclusion

- We introduced:
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- a method to efficiently compute the minimum weight of a trail core
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- a method to efficiently compute the minimum weight of a trail core
- a method to efficiently perform backward extension
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- a method to efficiently compute the minimum weight of a trail core
- a method to efficiently perform backward extension
- a software tool for differential trail search tailored for SUBTERRANEAN
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- a method to efficiently compute the minimum weight of a trail core
- a method to efficiently perform backward extension
- a software tool for differential trail search tailored for SUBTERRANEAN \rightarrow new and more precise lower bounds
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- a method to efficiently compute the minimum weight of a trail core
- a method to efficiently perform backward extension
- a software tool for differential trail search tailored for SUBTERRANEAN \rightarrow new and more precise lower bounds
- Tree search is a very strong and useful tool
- We introduced:
- a score function that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
- a method to efficiently compute the minimum weight of a trail core
- a method to efficiently perform backward extension
- a software tool for differential trail search tailored for SUBTERRANEAN \rightarrow new and more precise lower bounds
- Tree search is a very strong and useful tool

Thanks for your attention!

