

Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Application to SUBTERRANEAN

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi and Joan Daemen

March 22, 2023

Introduction

• Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r)$

• Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine

• Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine
- $Q_r : \Delta_0 \to b_1 \to b_2 \to \dots \to b_{r-1} \to \Delta_r$ is a differential trail

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine
- $Q_r : \Delta_0 \to b_1 \to b_2 \to \cdots \to b_{r-1} \to \Delta_r$ is a differential trail
 - $\mathsf{DP}(Q_r) \approx \mathsf{DP}(\Delta_0 \to b_1) \times \mathsf{DP}(b_1 \to b_2) \times \ldots \times \mathsf{DP}(b_{r-1} \to \Delta_r)$

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine
- $Q_r : \Delta_0 \to b_1 \to b_2 \to \dots \to b_{r-1} \to \Delta_r$ is a differential trail
 - $\mathsf{DP}(Q_r) \approx \mathsf{DP}(\Delta_0 \to b_1) \times \mathsf{DP}(b_1 \to b_2) \times \ldots \times \mathsf{DP}(b_{r-1} \to \Delta_r)$
 - $\mathsf{DP}(\Delta_0 \to \Delta_r) \approx \mathsf{DP}(Q_r)$

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine
- $Q_r : \Delta_0 \to b_1 \to b_2 \to \dots \to b_{r-1} \to \Delta_r$ is a differential trail
 - $\mathsf{DP}(Q_r) \approx \mathsf{DP}(\Delta_0 \to b_1) \times \mathsf{DP}(b_1 \to b_2) \times \ldots \times \mathsf{DP}(b_{r-1} \to \Delta_r)$
 - $\mathsf{DP}(\Delta_0 \to \Delta_r) \approx \mathsf{DP}(Q_r)$

•
$$w(b_i \rightarrow b_{i+1}) = -\log_2 \mathsf{DP}(b_i \rightarrow b_{i+1})$$

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine
- $Q_r : \Delta_0 \to b_1 \to b_2 \to \dots \to b_{r-1} \to \Delta_r$ is a differential trail
 - $\mathsf{DP}(Q_r) \approx \mathsf{DP}(\Delta_0 \to b_1) \times \mathsf{DP}(b_1 \to b_2) \times \ldots \times \mathsf{DP}(b_{r-1} \to \Delta_r)$
 - $\mathsf{DP}(\Delta_0 \to \Delta_r) \approx \mathsf{DP}(Q_r)$
 - $w(b_i \to b_{i+1}) = -\log_2 \mathsf{DP}(b_i \to b_{i+1}) \to (e. \ g. \ \mathsf{DP} = 2^{-n} \to w = n)$

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \to \mathsf{It}$ is hard to determine
- $Q_r : \Delta_0 \to b_1 \to b_2 \to \dots \to b_{r-1} \to \Delta_r$ is a differential trail
 - $\mathsf{DP}(Q_r) \approx \mathsf{DP}(\Delta_0 \to b_1) \times \mathsf{DP}(b_1 \to b_2) \times \ldots \times \mathsf{DP}(b_{r-1} \to \Delta_r)$
 - $\mathsf{DP}(\Delta_0 \to \Delta_r) \approx \mathsf{DP}(Q_r)$
 - $w(b_i \to b_{i+1}) = -\log_2 \mathsf{DP}(b_i \to b_{i+1}) \to (e. \ g. \ \mathsf{DP} = 2^{-n} \to w = n)$
 - $w(Q_r) = w(\Delta_0 \rightarrow b_1) + w(b_1 \rightarrow b_2) + \ldots + w(b_{r-1} \rightarrow \Delta_r)$

Generating r-round Differential trails

• $\mathsf{DP}(a_i \xrightarrow{\lambda} b_i) = 1 = 2^0$

•
$$\mathsf{DP}(a_i \xrightarrow{\lambda} b_i) = 1 = 2^0 \Rightarrow w(a_i \xrightarrow{\lambda} b_i) = 0$$

- $\mathsf{DP}(a_i \xrightarrow{\lambda} b_i) = 1 = 2^0 \Rightarrow w(a_i \xrightarrow{\lambda} b_i) = 0$
- $w(Q_r) = \sum_{i=0}^{r-1} w(b_i \xrightarrow{\chi} a_{i+1})$

• $\mathsf{DP}(a_i \xrightarrow{\lambda} b_i) = 1 = 2^0 \Rightarrow w(a_i \xrightarrow{\lambda} b_i) = 0$

•
$$w(Q_r) = \sum_{i=0}^{r-1} w(b_i \xrightarrow{\chi} a_{i+1})$$

· Goal: r-round trails with the minimum weight (maximum DP)

- $\mathsf{DP}(a_i \xrightarrow{\lambda} b_i) = 1 = 2^0 \Rightarrow w(a_i \xrightarrow{\lambda} b_i) = 0$
- $w(Q_r) = \sum_{i=0}^{r-1} w(b_i \xrightarrow{\chi} a_{i+1})$
- Goal: r-round trails with the minimum weight (maximum DP)
- Not efficient to start with r-round trail

- $\mathsf{DP}(a_i \xrightarrow{\lambda} b_i) = 1 = 2^0 \Rightarrow w(a_i \xrightarrow{\lambda} b_i) = 0$
- $w(Q_r) = \sum_{i=0}^{r-1} w(b_i \xrightarrow{\chi} a_{i+1})$
- Goal: r-round trails with the minimum weight (maximum DP)
- Not efficient to start with r-round trail \rightarrow 2-round trails up to weight T₂

• 2-round trail:
$$b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$$

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

•
$$w(Q_2) = w(b_i \xrightarrow{\chi} a_{i+1}) + w(b_{i+1} \xrightarrow{\chi} a_{i+2})$$

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

•
$$w(Q_2) = w(b_i \xrightarrow{\chi} a_{i+1}) + w(b_{i+1} \xrightarrow{\chi} a_{i+2}) = w(b_i) + w(b_{i+1})$$

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

•
$$w(Q_2) = w(b_i \xrightarrow{\chi} a_{i+1}) + w(b_{i+1} \xrightarrow{\chi} a_{i+2}) = w(b_i) + w(b_{i+1})$$

•
$$b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$$

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

•
$$w(Q_2) = w(b_i \xrightarrow{\chi} a_{i+1}) + w(b_{i+1} \xrightarrow{\chi} a_{i+2}) = w(b_i) + w(b_{i+1})$$

•
$$b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$$

- Minimum reverse weight w_{rev}(a_{i+1}): minimum over the weight of all compatible b_i's
- We introduced a new method to compute the $w_{rev}(a_{i+1})$

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

•
$$w(Q_2) = w(b_i \xrightarrow{\chi} a_{i+1}) + w(b_{i+1} \xrightarrow{\chi} a_{i+2}) = w(b_i) + w(b_{i+1})$$

•
$$b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$$

- Minimum reverse weight w_{rev}(a_{i+1}): minimum over the weight of all compatible b_i's
- We introduced a new method to compute the $w_{rev}(a_{i+1}) \rightarrow \text{ignore } b_i$

- 2-round trail: $b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi} a_{i+2} \xrightarrow{\lambda} b_{i+2}$
- Since χ has degree 2, the weight is determined by just its input

•
$$w(Q_2) = w(b_i \xrightarrow{\chi} a_{i+1}) + w(b_{i+1} \xrightarrow{\chi} a_{i+2}) = w(b_i) + w(b_{i+1})$$

•
$$b_i \xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$$

- Minimum reverse weight w_{rev}(a_{i+1}): minimum over the weight of all compatible b_i's
- We introduced a new method to compute the $w_{rev}(a_{i+1}) \rightarrow \text{ignore } b_i$
- 2-round trail core: $\xrightarrow{\chi} a_{i+1} \xrightarrow{\lambda} b_{i+1} \xrightarrow{\chi}$

Generate 2-round trail cores up to weight T_2

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

• Generate all differences at a_1 with $w(Q_2)$ up to T_2

Generate 2-round trail cores up to weight T_2

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Generate all differences at a_1 with $w(Q_2)$ up to T_2
- Compute **b**₁
$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Generate all differences at a_1 with $w(Q_2)$ up to T_2
- Compute $b_1 = \lambda(a_1)$

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Generate all differences at a_1 with $w(Q_2)$ up to T_2
- Compute $b_1 = \lambda(a_1)$
- If $w_{rev}(a_1) + w(b_1) \le T_2$ then (a_1, b_1) is a valid pair

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Generate all differences at a_1 with $w(Q_2)$ up to T_2
- Compute $b_1 = \lambda(a_1)$
- If $w_{rev}(a_1) + w(b_1) \le T_2$ then (a_1, b_1) is a valid pair
- How to scan the space of all 2-round trail cores up to T₂?

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Generate all differences at a_1 with $w(Q_2)$ up to T_2
- Compute $b_1 = \lambda(a_1)$
- If $w_{rev}(a_1) + w(b_1) \le T_2$ then (a_1, b_1) is a valid pair
- How to scan the space of all 2-round trail cores up to T₂?
- Tree search approach [Mella, Daemen, Van Assche, ToSC 2016]

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

• Each node represents an ordered list of active bits at a1 and corresponding b1

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1

$$\xrightarrow{\chi} a_1 \xrightarrow{\lambda} b_1 \xrightarrow{\chi}$$

- Each node represents an ordered list of active bits at a1 and corresponding b1
- · Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1
- Score: a lower bound on the weight of a node and all its descendants

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)

- Each node represents an ordered list of active bits at a1 and corresponding b1
- · Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)
- Score can be defined separately for a1 and b1

- Each node represents an ordered list of active bits at a1 and corresponding b1
- Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)
- Score can be defined separately for a1 and b1
- We introduced a new generic method to compute the score at a1

- Each node represents an ordered list of active bits at a₁ and corresponding b₁
- · Three functions to visit all nodes of a tree
 - toChild(): adds a new active bit to a1
 - toSibling(): Changes the last added active bit of a1
 - toParent(): deletes the last added active bit of a1
- Score: a lower bound on the weight of a node and all its descendants
- Score allows to prune the tree \rightarrow faster scan (larger space)
- Score can be defined separately for a1 and b1
- We introduced a new generic method to compute the score at a₁
- ... and a new method to compute the score at b_1 for SUBTERRANEAN

• Forward extension

- Forward extension
 - Generating all possible a2's

- Forward extension
 - Generating all possible a2's
 - Computing the corresponding b₂ for each a₂

- Forward extension
 - Generating all possible a2's
 - Computing the corresponding b₂ for each a₂
- Backward extension

- Forward extension
 - Generating all possible a2's
 - Computing the corresponding b₂ for each a₂
- Backward extension
 - We introduced a new method to efficiently generate all possible b₀'s

- Forward extension
 - Generating all possible a2's
 - Computing the corresponding b₂ for each a₂
- Backward extension
 - We introduced a new method to efficiently generate all possible b₀'s
 - Computing the corresponding *a*₀ for each *b*₀

Application

FPGA benchmarking: NIST lightweight round 2 candidates

Figure 35: Energy-per-bit for Authenticated Encryption and Decryption of 1536-Byte messages at $75\mathrm{MHz}$

[Mohajerani et al. 2021]

FPGA benchmarking: NIST lightweight round 2 candidates

Figure 36: Throughput-over-Area for Authenticated Encryption and Decryption of 1536-Byte messages at $75\mathrm{MHz}$

[Mohajerani et al. 2021]

The SUBTERRANEAN 2.0 round function

The SUBTERRANEAN 2.0 round function

 $\chi: s_i \leftarrow s_i + (s_{i+1}+1)s_{i+2}$.

The SUBTERRANEAN 2.0 round function

Differential Trail Search in Cryptographic Primitives with Big-Circle Chi

Lower bound on the weight of trails in SUBTERRANEAN

Goal: scanning 8-round trail cores in SUBTERRANEAN

• 2-round trail cores up to 28

Lower bound on the weight of trails in SUBTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40

Lower bound on the weight of trails in SUBTERRANEAN

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to ${\bf 57} \rightarrow$ no trail core

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to ${\bf 57} \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to ${\bf 57} \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58
- In the worst case, two 4-rounds with weight 58 can be compatible and form an 8-round trail core

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to ${\bf 57} \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58
- In the worst case, two 4-rounds with weight 58 can be compatible and form an 8-round trail core
- $w(Q_8) = w(Q_4) + w(Q'_4) \ge 58 + 58 = 116$

- 2-round trail cores up to 28
- 3-round trail cores up to 40
- 4-round trail cores up to ${\bf 57} \rightarrow$ no trail core
- The best 4-round trail core we found has weight 58
- In the worst case, two 4-rounds with weight 58 can be compatible and form an 8-round trail core
- $w(Q_8) = w(Q_4) + w(Q'_4) \ge 58 + 58 = 116$

# rounds:	1	2	3	4	5	6	7	8
lower bound (this work):	2	8	25	58	≥ 62	≥ 78	≥ 80	≥ 116
lower bound [DMMR20]:	2	8	25	[49, 58]	\geq 54	\geq 65	\geq 70	\geq 98

Lower bound on the weight of differential trail cores

Conclusion
• We introduced:

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
 - a method to efficiently compute the minimum weight of a trail core

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
 - a method to efficiently compute the minimum weight of a trail core
 - a method to efficiently perform backward extension

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
 - a method to efficiently compute the minimum weight of a trail core
 - a method to efficiently perform backward extension
 - a software tool for differential trail search tailored for SUBTERRANEAN

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
 - a method to efficiently compute the minimum weight of a trail core
 - a method to efficiently perform backward extension
 - a software tool for differential trail search tailored for SUBTERRANEAN
 → new and more precise lower bounds

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
 - a method to efficiently compute the minimum weight of a trail core
 - a method to efficiently perform backward extension
 - a software tool for differential trail search tailored for SUBTERRANEAN
 → new and more precise lower bounds
- Tree search is a very strong and useful tool

- We introduced:
 - a **score function** that lower bounds the weight of a 2-round trail core and all its descendants during the tree search
 - a method to efficiently compute the minimum weight of a trail core
 - a method to efficiently perform backward extension
 - a software tool for differential trail search tailored for SUBTERRANEAN
 → new and more precise lower bounds
- Tree search is a very strong and useful tool

Thanks for your attention!