Fast Software Encryption (FSE) 2023

Jules Baudrin, Anne Canteaut \& Léo Perrin Inria, Paris, France
 ánzía

Thursday, March 232023

Contact: jules.baudrin@inria.fr

Ascon rationale, its internal components and our attack setting

Cube attack, main problems, first part of the answer

Conditional cubes, second part of the answer

Overview of the internal-state recovery

Authenticated encryption

\rightarrow one of the winners of CAESAR (2014-2019).

Lightweight

"meets the needs of most use cases where
lightweight cryptography is required" [NIST webpage]
\rightarrow winner of NIST LWC standardization process (2018-2023).

Permutation-based
Duplex Sponge mode [BDPA11] instantiated with permutation $p: \mathbb{F}_{2}^{320} \rightarrow \mathbb{F}_{2}^{320}$.

The permutation

A confusion/diffusion structure...

The state

$$
p=p_{L} \circ p_{S} \circ p_{C}
$$

The constant addition p_{C}

The substitution layer p_{S}

The linear layer p

$$
\begin{aligned}
& y_{0}=x_{4} x_{1}+x_{3}+x_{2} x_{1}+x_{2}+x_{1} x_{0}+x_{1}+x_{0} \\
& y_{1}=x_{4}+x_{3} x_{2}+x_{3} x_{1}+x_{3}+x_{2} x_{1}+x_{2}+x_{1}+x_{0} \\
& y_{2}=x_{4} x_{3}+x_{4}+x_{2}+x_{1}+1 \\
& y_{3}=x_{4} x_{0}+x_{4}+x_{3} x_{0}+x_{3}+x_{2}+x_{1}+x_{0} \\
& y_{4}=x_{4} x_{1}+x_{4}+x_{3}+x_{1} x_{0}+x_{1}
\end{aligned}
$$

Algebraic Normal Form (ANF) of the
S-box

$$
\begin{aligned}
& x_{0}=x_{0} \oplus\left(x_{0} \gg 19\right) \oplus\left(x_{0} \ggg 28\right) \\
& x_{1}=x_{1} \oplus\left(x_{1} \gg 61\right) \oplus\left(x_{1} \ggg 39\right) \\
& x_{2}=x_{2} \oplus\left(x_{2} \gg 1\right) \oplus\left(x_{2} \gg 6\right) \\
& x_{3}=x_{3} \oplus\left(x_{3} \gg 10\right) \oplus\left(x_{3} \ggg 17\right) \\
& x_{4}=x_{4} \oplus\left(x_{4} \ggg 7\right) \oplus\left(x_{4} \ggg 41\right)
\end{aligned}
$$

$$
\text { ANF of the linear layer } p_{L}
$$

Simplified setting of Ascon -128

- Many reuse of the same (k, N) pair.
- State recovery = compromised confidentiality without interaction.
- No trivial key-recovery nor forgery in that case.
- Different from the generic attack [VV18].

Cube attack principle

$f_{j}: j$-th output coordinate, $f_{j} \in \mathbb{F}_{2}\left[a_{0}, \cdots, d_{63}\right]\left[v_{0}, \cdots, v_{63}\right]$.

$$
f_{j}=\sum_{\left(u_{0}, \cdots, u_{63}\right) \in \mathbb{E}_{2}^{\mathbb{R}_{2}^{4}}} \alpha_{u, j}\left(\prod_{i=0}^{63} v_{i}^{u_{i}}\right), \text { where } \alpha_{u, j} \in \mathbb{F}_{2}\left[\alpha_{0}, \cdots, \alpha_{63}\right] .
$$

Cube attack principle

$f_{j}: j$-th output coordinate, $f_{j} \in \mathbb{F}_{2}\left[a_{0}, \cdots, d_{63}\right]\left[v_{0}, \cdots, v_{63}\right]$.

$$
\begin{gathered}
f_{j}=\sum_{\left(u_{0}, \cdots, u_{63}\right) \in \mathbb{F}_{2}^{4}} \alpha_{u, j}\left(\prod_{i=0}^{63} v_{i}^{u_{i}}\right), \text { where } \alpha_{u, j} \in \mathbb{F}_{2}\left[\alpha_{0}, \cdots, \alpha_{63}\right] . \\
\text { Polynomial expression of } \alpha_{u, j}+\text { value of } \alpha_{u, j} \\
= \\
\text { equation in unknown variables } \\
\simeq \\
\text { recovery of some information }
\end{gathered}
$$

- Offline recovery of the expression.
- Online recovery of the value: $\quad \alpha_{u, j}=\sum_{v \preccurlyeq u} f_{j}(v) \quad 2^{w(u)}$ chosen queries.

Problem 0: impossible access to the full ANF.

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to $\alpha_{u, j}$ expression for fixed u and j. Too many combinatorial possibilities.

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to $\alpha_{u, j}$ expression for fixed u and j. Too many combinatorial possibilities.
$v_{0} v_{1}=v_{0} \times v_{1}=\left(v_{0} v_{1}\right) \times 1=\left(v_{0} v_{1}\right) \times v_{0}=\left(v_{0} v_{1}\right) \times v_{1}=\left(v_{0} v_{1}\right) \times\left(v_{0} v_{1}\right)$

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to $\alpha_{u, j}$ expression for fixed u and j. Too many combinatorial possibilities.
$v_{0} v_{1}=v_{0} \times v_{1}=\left(v_{0} v_{1}\right) \times 1=\left(v_{0} v_{1}\right) \times v_{0}=\left(v_{0} v_{1}\right) \times v_{1}=\left(v_{0} v_{1}\right) \times\left(v_{0} v_{1}\right)$

Problem 2: finding $\alpha_{u, j}$ with simple enough expressions.

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to $\alpha_{u, j}$ expression for fixed u and j. Too many combinatorial possibilities.
$v_{0} v_{1}=v_{0} \times v_{1}=\left(v_{0} v_{1}\right) \times 1=\left(v_{0} v_{1}\right) \times v_{0}=\left(v_{0} v_{1}\right) \times v_{1}=\left(v_{0} v_{1}\right) \times\left(v_{0} v_{1}\right)$

Problem 2: finding $\alpha_{u, j}$ with simple enough expressions.

- Highest-degree terms (degree 2^{t-1} at round t) are easier to study!

Strong constraint: products of two highest-degree terms one round before.
$v_{0} v_{1}=v_{0} \times v_{1}=\left(v_{0} k\right) \times T=\left(v_{0} k\right) \times v_{0}=\left(v_{0} k\right) \times v_{1}=\left(v_{0} v_{1}\right) \times\left(v_{0} v_{1}\right)$

Strong constraint: products of two former highest-degree terms.

Strong constraint: products of two former highest-degree terms.

Strong constraint: products of two former highest-degree terms.

Strong constraint: products of two former highest-degree terms.

For $r=6$, still too many trails and α_{u} usually looks horrible!

- Cheaper / easier recovery: conditional cubes [HWX+ 17, LDW17, CHK22]

Conditional cube

- We look for α_{u} with a simple divisor: β_{0}.
- α_{u} mostly unknown, but we still get: $\alpha_{u}=1 \Longrightarrow \beta_{0}=1$.
- If β_{0} is linear, we get a linear system.

Conditional cube

- We look for α_{u} with a simple divisor: β_{0}.
- α_{u} mostly unknown, but we still get: $\alpha_{u}=1 \Longrightarrow \beta_{0}=1$.
- If β_{0} is linear, we get a linear system.

Trail t_{0}
Trail \dagger_{1}

$\begin{array}{lll}R_{1} & R_{2} & R_{3}\end{array}$
R_{4}
R_{3}
$R_{2} \quad R_{1}$

Conditional cube

- We look for α_{u} with a simple divisor: β_{0}.
- α_{u} mostly unknown, but we still get: $\alpha_{u}=1 \Longrightarrow \beta_{0}=1$.
- If β_{0} is linear, we get a linear system.

Trail t_{0}
Trail t_{1}

Choosing conditional cubes by forcing linear divisors

$7^{\text {st }}$ round

$$
\left.\begin{array}{|c}
\frac{v_{0}}{a_{0}} \\
b_{0} \\
c_{0} \\
d_{0}
\end{array}\right) \xrightarrow[s_{1}]{\frac{\left(a_{0}+1\right) v_{0}+\cdots}{\frac{v_{0}+\cdots}{\frac{\left(c_{0}+d_{0}+1\right) v_{0}+\cdots}{a_{0} v_{0}+\cdots}} \longleftarrow \beta_{0}:=a_{0}+1} \longleftarrow \gamma_{0}:=c_{0}+d_{0}+1}
$$

$7^{\text {st }}$ round

$$
\left.\begin{array}{|}
\frac{v_{0}}{a_{0}} \\
b_{0} \\
c_{0} \\
c_{0}
\end{array}\right) \stackrel{\left(a_{0}+1\right) V_{0}+\cdots}{\frac{\frac{v_{0}+\cdots}{\left(c_{0}+\alpha_{0}+1\right) V_{0}+\cdots}}{\alpha_{0} V_{0}+\cdots}} \leftarrow \beta_{0}:=a_{0}+1
$$

$2^{\text {nd }}$ round

- For any $v_{0} v_{i}, i \neq 0: \beta_{0} P+1 Q+\gamma_{0} R+\left(\beta_{0}+1\right) S$.
- But for some $i: \beta_{0} P$ or $\gamma_{0} R$.

Choosing conditional cubes by forcing linear divisors

$7^{\text {st }}$ round

$$
\begin{array}{|}
\frac{v_{0}}{a_{0}} \\
b_{0} \\
c_{0} \\
a_{0}
\end{array} \underset{s_{1}}{\frac{\left(a_{0}+1\right) v_{0}+\cdots}{\frac{v_{0}+\cdots}{\left(c_{0}+\alpha_{0}+\cdots\right) V_{0}+\cdots}} \alpha_{0} v_{0}+\cdots} \longleftarrow \beta_{0}:=a_{0}+1
$$

$2^{\text {nd }}$ round

- For any $v_{0} v_{i}, i \neq 0: \beta_{0} P+1 Q+\gamma_{0} R+\left(\beta_{0}+1\right) S$.
- But for some $i: \beta_{0} P$ or $\gamma_{0} R$.
$6^{\text {th }}$ round
- With chosen $u, \alpha_{u, j}=\beta_{0}(\ldots)+\gamma_{0}(\ldots)$, for all output coordinates.
$1{ }^{\text {st }}$ round
$2^{\text {nd }}$ round
- For any $v_{0} v_{i}, i \neq 0: \beta_{0} P+1 Q+\gamma_{0} R+\left(\beta_{0}+1\right) S$.
- But for some $i: \beta_{0} P$ or $\gamma_{0} R$.
$6^{\text {th }}$ round
- With chosen $u, \alpha_{u}, j=\beta_{0}(\ldots)+\gamma_{0}(\ldots)$, for all output coordinates.
- $\left(\alpha_{u, 0}, \cdots, \alpha_{u, 63}\right) \neq(0, \cdots, 0) \Longrightarrow \beta_{0}=1$ or $\gamma_{0}=1$

Choosing conditional cubes by forcing linear divisors

${ }^{\text {st }}$ round

$$
\begin{array}{|}
\frac{v_{0}}{a_{0}} \\
b_{0} \\
c_{0} \\
a_{0}
\end{array} \underset{s_{1}}{\frac{\left(a_{0}+1\right) v_{0}+\cdots}{\frac{v_{0}+\cdots}{\left(c_{0}+\alpha_{0}+\cdots\right) v_{0}+\cdots}} \alpha_{0} v_{0}+\cdots} \longleftarrow \beta_{0}:=\alpha_{0}+1
$$

$2^{\text {nd }}$ round

- For any $v_{0} v_{i}, i \neq 0$: $\beta_{0} P+1 Q+\gamma_{0} R+\left(\beta_{0}+1\right) S$.
- But for some $i: \beta_{0} P$ or $\gamma_{0} R$.
$6^{\text {th }}$ round
- With chosen $u, \alpha_{u, j}=\beta_{0}(\ldots)+\gamma_{0}(\ldots)$, for all output coordinates.
- $\left(\alpha_{u, 0}, \cdots, \alpha_{u, 63}\right) \neq(0, \cdots, 0) \Longrightarrow \beta_{0}=1$ or $\gamma_{0}=1$
- In practice, reciprocal also true! $\left[\alpha_{u}, j=0, \forall j\right] \Longrightarrow \beta_{0}=0$ and $\gamma_{0}=0$

Step 1, non-adaptative: 32-degree conditional cubes
Recovery of all $\gamma_{i}=c_{i}+d_{i}+1$, and half of the $\beta_{i}=a_{i}+1$.

Step 1, non-adaptative: 32-degree conditional cubes
Recovery of all $\gamma_{i}=c_{i}+d_{i}+1$, and half of the $\beta_{i}=a_{i}+1$.

Step 2, adaptative: 32-degree cubes

- The coefficients depend only on γ_{i} and β_{i}.
- Thanks to Step 1, the coefficients drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
- Recovery of the remaining β_{1}.

Step 1, non-adaptative: 32-degree conditional cubes
Recovery of all $\gamma_{i}=c_{i}+d_{i}+1$, and half of the $\beta_{i}=a_{i}+1$.

Step 2, adaptative: 32-degree cubes

- The coefficients depend only on γ_{i} and β_{i}.
- Thanks to Step 1, the coefficients drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
- Recovery of the remaining β_{1}.

Step 3, adaptative: 31-degree cubes

- Other cubes needed to recover b_{i} and c_{l}.
- Same principle as Step 2.
- Recovery of all b_{i} and c_{i}.

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 2^{40} online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations. However effective.
- Does not threaten Ascon directly ... if used properly!

Main questions/openings

- Be careful with implementation : nonce \neq constant!
- Can it lead to key-recovery or forgery attacks?
- Free counter-measure : changing the external state row.

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 2^{40} online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations. However effective.
- Does not threaten Ascon directly ... if used properly!

Main questions/openings

- Be careful with implementation : nonce \neq constant!
- Can it lead to key-recovery or forgery attacks?
- Free counter-measure : changing the external state row.

The whole Ascon AEAD mode

$$
\alpha_{u, j}=\left(\alpha_{0}+1\right) p_{j, 1}+\left(c_{0}+d_{0}+1\right) p_{j, 2} \forall j \in \llbracket 0, \cdots, 63 \rrbracket .
$$

When $\left(a_{0}+1, c_{0}+d_{0}+1\right) \neq(0,0), \alpha_{u}, j$ are not expected to be all canceled at the same time.

Whenever we observe that $\alpha_{u, j}=0 \forall j$, we guess that $\left(a_{0}, c_{0}+d_{0}\right)=(1,1)$.

Individual cancellations of each $\alpha_{u, j}$ (1000 random internal states)

Hamming weight of the cube-sum vectors (1000 random internal states)

Counter-Measure: Changing the Input Row

State after initialization	Linear terms after S_{1}	Size of the sets	Analysis
a_{0}	$\left(a_{0}+b_{0}+d_{0}+1\right) v_{0}$	5	$5+3+5+12<31$ No conditional cube as we describe.
v_{0}	$\left(b_{0}+c_{0}+1\right) v_{0}$	3	
b_{0}	v_{0}		
c_{0}	v_{0}		
d_{0}	$\left(a_{0}+d_{0}+1\right) v_{0}$	5	
Nb of varia by	bles not multiplied v_{0} after S_{2}	12	
a_{0}	$\left(b_{0}+1\right) v_{0}$	4	$4+6+23>31 .$ Cubes can be built as described but less effective. (32 of the 256-bit state in avg.)
b_{0}	$\left(b_{0}+c_{0}+1\right) v_{0}$	6	
v_{0}	v_{0}		
c_{0}	v_{0}		
d_{0}	*		
Nb of varia by	bles not multiplied v_{0} after S_{2}	23	

Table: Example : the first row states that, for 5 indices i, the coefficients of all $v_{0} v_{i}$ share $\left(a_{0}+b_{0}+d_{0}+1\right)$ as a factor.

Counter-Measure: Changing the Input Row

State after initialization	Linear terms after S_{1}	Size of the sets	Analysis
a_{0}	v_{0}		
b_{0}	$\left(b_{0}+c_{0}+1\right) v_{0}$	3	
c_{0}	$\mathrm{d}_{0} \mathrm{v}_{0}$	4	$3+4+5+12<31$
v_{0}	$\left(a_{0}+1\right) v_{0}$	5	No conditional cube
d_{0}	Vo		as we describe.
Nb of variables not multiplied by v_{0} after S_{2}		12	
a_{0}	$\mathrm{b}_{0} \mathrm{~V}_{0}$	5	$5+4+5+5+12=31$ but b_{0} and $b_{0}+1$ canno \dagger be used at the same time.
b_{0}	v_{0}		
c_{0}	$\left(d_{0}+1\right) v_{0}$	4	
d_{0}	$\left(a_{0}+1\right) v_{0}$	5	
v_{0}	$\left(b_{0}+7\right) v_{0}$	5	
Nb of variables not multiplied by v_{0} after S_{2}		12	No conditional cube as we describe.

Table: Example : the second row states that, for 3 indices i, the coefficients of all $v_{0} v_{i}$ share $\left(b_{0}+c_{0}+1\right)$ as a factor.

Bibliography

Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche.
Cryptographic sponge functions, 2011.
https://keccak.team/sponge_duplex.html.
Donghoon Chang, Deukjo Hong, and Jinkeon Kang.
Conditional Cube Attacks on Ascon-128 and Ascon-80pq in a Nonce-misuse Setting.
Cryptology ePrint Archive, Report 2022/544, 2022.
https://ia.cr/2022/544.
Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon TikZ figures.
https://ascon.iaik.tugraz.at/resources.html.
Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2.
Technical report, National Institute of Standards and Technology, 2019.
https://csrc.nist.gov/Projects/
lightweight-cryptography/finalists.
Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round Keccak sponge function.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 259-288, Parls, France, Aprll 30 - May 4, 2017. Springer, Heidelberg, Germany.

Jérémy Jean.

TikZ for Cryptographers.

https://wюज.iacr.org/authors/tikz/. 2016.
Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced ASCON. IACR Trans. Symm. Cryptol., 2017(1):175-202, 2017.

Mate Soos, Karsten Nohl, and Claude Castelluccia.
Extending SAT solvers to cryptographic problems.
In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, volume 5584 of Lecture Notes in Computer Science, pages 244-257. Springer, 2009.

Serge Vaudenay and Damian Vizár.
Can caesar beat galois? - Robustness of CAESAR candidates against nonce reusing and high data complexity attacks.
In Bart Preneel and Frederik Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 476-494, Leuven, Belgium, July 2-4, 2018. Springer, Heidelberg, Germany.

