
1/12

Practical cube-attack against nonce-misused Ascon
Fast Software Encryption (FSE) 2023

Jules Baudrin, Anne Canteaut & Léo Perrin
Inria, Paris, France

Thursday, March 23 2023

Contact: jules.baudrin@inria.fr

mailto:jules.baudrin@inria.fr

2/12

In this talk

Ascon rationale, its internal components and our attack setting

Cube attack, main problems, first part of the answer

Conditional cubes, second part of the answer

Overview of the internal-state recovery

3/12

Ascon [DEMS19] design rationale

Authenticated encryption
→ one of the winners of CAESAR (2014 – 2019).

Lightweight
“meets the needs of most use cases where
lightweight cryptography is required” [NIST webpage]

→ winner of NIST LWC standardization process (2018 – 2023).

Permutation-based
Duplex Sponge mode [BDPA11] instantiated with permutation
p : F320

2 → F320
2 .

4/12

The permutation

A confusion/diffusion structure. studied algebraically

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0
y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0
y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0
y4 = x4x1 + x4 + x3 + x1x0 + x1

Algebraic Normal Form (ANF) of the
S-box

X0 = X0 ⊕ (X0 ≫ 19) ⊕ (X0 ≫ 28)

X1 = X1 ⊕ (X1 ≫ 61) ⊕ (X1 ≫ 39)

X2 = X2 ⊕ (X2 ≫ 1) ⊕ (X2 ≫ 6)

X3 = X3 ⊕ (X3 ≫ 10) ⊕ (X3 ≫ 17)

X4 = X4 ⊕ (X4 ≫ 7) ⊕ (X4 ≫ 41)

ANF of the linear layer pL

The state

X4

X3

X2

X1

X0

p = pL ◦ pS ◦ pC

The constant addition pC

X4

X3

X2

X1

X0

The substitution layer pS

X4

X3

X2

X1

X0

The linear layer pL

X4

X3

X2

X1

X0

5/12

The nonce-misuse scenario

Simplified setting of Ascon -128

v0, · · · , v63

a0, · · · ,a63
b0, · · · ,b63
c0, · · · ,c63
d0, · · · ,d63

Unknown internal state

Chosen external state

ΣE State before encryption

k∥N

Initialization

P0 C0

p6

ΣE

Encryption

0∗ C1

- Many reuse of the same (k,N) pair.
- State recovery = compromised confidentiality without interaction.
- No trivial key-recovery nor forgery in that case.
- Different from the generic attack [VV18].

6/12

Cube attack principle

fj : j-th output coordinate, fj ∈ F2[a0, · · · ,d63][v0, · · · , v63].

fj =
∑

(u0,··· ,u63)∈F642

αu, j

(63∏
i=0

vi
ui
)
, where αu, j ∈ F2[a0, · · · ,d63].

Polynomial expression of αu, j + value of αu, j
=

equation in unknown variables
≃

recovery of some information

- Offline recovery of the expression.
- Online recovery of the value: αu, j =

∑
v≼u

fj(v) 2w(u) chosen queries.

6/12

Cube attack principle

fj : j-th output coordinate, fj ∈ F2[a0, · · · ,d63][v0, · · · , v63].

fj =
∑

(u0,··· ,u63)∈F642

αu, j

(63∏
i=0

vi
ui
)
, where αu, j ∈ F2[a0, · · · ,d63].

Polynomial expression of αu, j + value of αu, j
=

equation in unknown variables
≃

recovery of some information

- Offline recovery of the expression.
- Online recovery of the value: αu, j =

∑
v≼u

fj(v) 2w(u) chosen queries.

7/12

Main problems with the polynomials recovery

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to αu, j expression for fixed u and j.
Too many combinatorial possibilities.

Problem 2: finding αu, j with simple enough expressions.

7/12

Main problems with the polynomials recovery

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to αu, j expression for fixed u and j.
Too many combinatorial possibilities.

Problem 2: finding αu, j with simple enough expressions.

7/12

Main problems with the polynomials recovery

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to αu, j expression for fixed u and j.
Too many combinatorial possibilities.
v0v1 = v0 × v1 = (v0v1)× 1 = (v0v1)× v0 = (v0v1)× v1 = (v0v1)× (v0v1)

Problem 2: finding αu, j with simple enough expressions.

7/12

Main problems with the polynomials recovery

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to αu, j expression for fixed u and j.
Too many combinatorial possibilities.
v0v1 = v0 × v1 = (v0v1)× 1 = (v0v1)× v0 = (v0v1)× v1 = (v0v1)× (v0v1)

Problem 2: finding αu, j with simple enough expressions.

7/12

Main problems with the polynomials recovery

Problem 0: impossible access to the full ANF.

Problem 1: impossible access to αu, j expression for fixed u and j.
Too many combinatorial possibilities.
v0v1 = v0 × v1 = (v0v1)× 1 = (v0v1)× v0 = (v0v1)× v1 = (v0v1)× (v0v1)

Problem 2: finding αu, j with simple enough expressions.

▶ Highest-degree terms (degree 2t−1 at round t) are easier to study!
Strong constraint: products of two highest-degree terms one round before.
v0v1 = v0 × v1 =����

(v0v1)× 1 =((((((v0v1)× v0 =((((((v0v1)× v1 =((((((
(v0v1)× (v0v1)

8/12

A partial answer: highest-degree terms

Strong constraint: products of two former highest-degree terms.

8/12

A partial answer: highest-degree terms

Strong constraint: products of two former highest-degree terms.

αuv0v1v2v3v4v5v6v7

R4

Trail t2 Trail t3 Trail t4

Trail t5 Trail ti · · ·

Trail t0

v0v1v2v3

v4v5v6v7

R3

Trail t1

v0v1v6v7

v2v3v4v5

R3

v0v1

v2v3

v4v5

v6v7

R2

v0v7

v1v6

v2v5

v3v4

R2

β0,t0v0
β0,t0v1

β0,t0v2
β0,t0v3

β0,t0v4
β0,t0v5

β0,t0v6

β0,t0v7

R1

v0β0,t0
v7β0,t0

v1β0,t0
v6β0,t0

v3β0,t0
v4β0,t0

v2β0,t0

v5β0,t0

R1

8/12

A partial answer: highest-degree terms

Strong constraint: products of two former highest-degree terms.

αuv0v1v2v3v4v5v6v7

R4

Trail t0

v0v1v2v3

v4v5v6v7

R3

Trail t1

v0v1v6v7

v2v3v4v5

R3

v0v1

v2v3

v4v5

v6v7

R2

v0v7

v1v6

v2v5

v3v4

R2

β0,t0v0
β0,t0v1

β0,t0v2
β0,t0v3

β0,t0v4
β0,t0v5

β0,t0v6

β0,t0v7

R1

v0β0,t0
v7β0,t0

v1β0,t0
v6β0,t0

v3β0,t0
v4β0,t0

v2β0,t0

v5β0,t0

R1

8/12

A partial answer: highest-degree terms

Strong constraint: products of two former highest-degree terms.

αuv0v1v2v3v4v5v6v7

αu =
7∏

i=0
βi,t0 +

7∏
i=0

βi,t1 + · · ·

R4

Trail t0

v0v1v2v3

v4v5v6v7

R3

Trail t1

v0v1v6v7

v2v3v4v5

R3

v0v1

v2v3

v4v5

v6v7

R2

v0v7

v1v6

v2v5

v3v4

R2

β0,t0v0
β1,t0v1

β2,t0v2
β3,t0v3

β4,t0v4
β5,t0v5

β6,t0v6

β7,t0v7

R1

β0,t1v0
β7,t1v7

β1,t1v1
β6,t1v6

β3,t1v3
β4,t1v4

β2,t1v2

β5,t1v5

R1

For r = 6, still too many trails and αu usually looks horrible!
▶ Cheaper / easier recovery: conditional cubes [HWX+17, LDW17, CHK22]

9/12

Conditional cube

- We look for αu with a simple divisor: β0.
- αu mostly unknown, but we still get: αu = 1 =⇒ β0 = 1.
- If β0 is linear, we get a linear system.

9/12

Conditional cube

- We look for αu with a simple divisor: β0.
- αu mostly unknown, but we still get: αu = 1 =⇒ β0 = 1.
- If β0 is linear, we get a linear system.

αuv0v1v2v3v4v5v6v7

αu = β0

(7∏
i=1

? +
7∏

i=1
? + · · ·

)

R4

Trail t0

v0v1v2v3

v4v5v6v7

R3

Trail t1

v0v1v6v7

v2v3v4v5

R3

v0v1

v2v3

v4v5

v6v7

R2

v0v7

v1v6

v2v5

v3v4

R2

β0v0
?v1

?v2
?v3

?v4
?v5

?v6

?v7

R1

β0v0
?v7

?v1
?v6

?v3
?v4

?v2

?v5

R1

9/12

Conditional cube

- We look for αu with a simple divisor: β0.
- αu mostly unknown, but we still get: αu = 1 =⇒ β0 = 1.
- If β0 is linear, we get a linear system.

αuv0v1v2v3v4v5v6v7

αu = β0

(7∏
i=1

? +
7∏

i=1
? + · · ·

)

R4

Trail t0

v0v1v2v3

v4v5v6v7

R3

Trail t1

v0v1v6v7

v2v3v4v5

R3

v0v1

v2v3

v4v5

v6v7

R2

v0v7

v1v6

v2v5

v3v4

R2

β0v0
?v1

?v2
?v3

?v4
?v5

?v6

?v7

R1

β0v0
?v7

?v1
?v6

?v3
?v4

?v2

?v5

R1

10/12

Choosing conditional cubes by forcing linear divisors

1st round
v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

2nd round
- For any v0vi , i ̸= 0: β0P + 1Q + γ0R + (β0 + 1)S.
- But for some i: β0P or γ0R.

6th round
- With chosen u, αu, j = β0(. . .) + γ0(. . .) , for all output coordinates.
- (αu,0, · · · , αu,63) ̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1
- In practice, reciprocal also true! [αu, j = 0, ∀ j] =⇒ β0 = 0 and γ0 = 0

10/12

Choosing conditional cubes by forcing linear divisors

1st round
v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

2nd round
- For any v0vi , i ̸= 0: β0P + 1Q + γ0R + (β0 + 1)S.
- But for some i: β0P or γ0R.

6th round
- With chosen u, αu, j = β0(. . .) + γ0(. . .) , for all output coordinates.
- (αu,0, · · · , αu,63) ̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1
- In practice, reciprocal also true! [αu, j = 0, ∀ j] =⇒ β0 = 0 and γ0 = 0

10/12

Choosing conditional cubes by forcing linear divisors

1st round
v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

2nd round
- For any v0vi , i ̸= 0: β0P + 1Q + γ0R + (β0 + 1)S.
- But for some i: β0P or γ0R.

6th round
- With chosen u, αu, j = β0(. . .) + γ0(. . .) , for all output coordinates.

- (αu,0, · · · , αu,63) ̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1
- In practice, reciprocal also true! [αu, j = 0, ∀ j] =⇒ β0 = 0 and γ0 = 0

10/12

Choosing conditional cubes by forcing linear divisors

1st round
v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

2nd round
- For any v0vi , i ̸= 0: β0P + 1Q + γ0R + (β0 + 1)S.
- But for some i: β0P or γ0R.

6th round
- With chosen u, αu, j = β0(. . .) + γ0(. . .) , for all output coordinates.
- (αu,0, · · · , αu,63) ̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1

- In practice, reciprocal also true! [αu, j = 0, ∀ j] =⇒ β0 = 0 and γ0 = 0

10/12

Choosing conditional cubes by forcing linear divisors

1st round
v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

2nd round
- For any v0vi , i ̸= 0: β0P + 1Q + γ0R + (β0 + 1)S.
- But for some i: β0P or γ0R.

6th round
- With chosen u, αu, j = β0(. . .) + γ0(. . .) , for all output coordinates.
- (αu,0, · · · , αu,63) ̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1
- In practice, reciprocal also true! [αu, j = 0, ∀ j] =⇒ β0 = 0 and γ0 = 0

11/12

Overview of the internal-state recovery

Step 1, non-adaptative: 32-degree conditional cubes
Recovery of all γi = ci + di + 1, and half of the βi = ai + 1.

Step 2, adaptative: 32-degree cubes
- The coefficients depend only on γi and βi .
- Thanks to Step 1, the coefficients drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
▶ Recovery of the remaining βi .

Step 3, adaptative: 31-degree cubes
- Other cubes needed to recover bi and ci .
- Same principle as Step 2.
▶ Recovery of all bi and ci .

11/12

Overview of the internal-state recovery

Step 1, non-adaptative: 32-degree conditional cubes
Recovery of all γi = ci + di + 1, and half of the βi = ai + 1.

Step 2, adaptative: 32-degree cubes
- The coefficients depend only on γi and βi .
- Thanks to Step 1, the coefficients drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
▶ Recovery of the remaining βi .

Step 3, adaptative: 31-degree cubes
- Other cubes needed to recover bi and ci .
- Same principle as Step 2.
▶ Recovery of all bi and ci .

11/12

Overview of the internal-state recovery

Step 1, non-adaptative: 32-degree conditional cubes
Recovery of all γi = ci + di + 1, and half of the βi = ai + 1.

Step 2, adaptative: 32-degree cubes
- The coefficients depend only on γi and βi .
- Thanks to Step 1, the coefficients drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
▶ Recovery of the remaining βi .

Step 3, adaptative: 31-degree cubes
- Other cubes needed to recover bi and ci .
- Same principle as Step 2.
▶ Recovery of all bi and ci .

12/12

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 240 online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations.
However effective.

- Does not threaten Ascon directly . . . if used properly!

Main questions/openings
▶ Be careful with implementation : nonce ̸= constant!
▶ Can it lead to key-recovery or forgery attacks?
▶ Free counter-measure : changing the external state row.

12/12

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 240 online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations.
However effective.

- Does not threaten Ascon directly . . . if used properly!

Main questions/openings
▶ Be careful with implementation : nonce ̸= constant!
▶ Can it lead to key-recovery or forgery attacks?
▶ Free counter-measure : changing the external state row.

Thank you for
your attention!

1/5

The whole Ascon AEAD mode

IV∥K∥N

pa

Initialization

0∗∥K

ΣAD

A1
r

pb

c

As
r

pb

c

Associated Data

0∗∥1

ΣE

P1C1

r

c
pb

Pt−1 Ct−1

r

c
pb

Plaintext

Pt Ct

r

c

ΣF

K∥0∗

pa

Finalization

K

T

128

[DEMS, Jea16]

2/5

Justifying the “in practice” reciprocal

αu, j = (a0 + 1)pj,1 + (c0 + d0 + 1)pj,2 ∀ j ∈ J0, · · · , 63K.

When (a0 + 1,c0 + d0 + 1) ̸= (0, 0), αu, j are not expected to be all canceled at
the same time.

Whenever we observe that αu, j = 0 ∀ j, we guess that (a0,c0 + d0) = (1, 1).

0 20 40 60
0

100
200
300
400
500
600

a0 = 0, e0 = 0

0 20 40 60
0

100
200
300
400
500
600

a0 = 0, e0 = 1

0 20 40 60
0

100
200
300
400
500
600

a0 = 1, e0 = 0

0 20 40 60
0

100
200
300
400
500
600

a0 = 1, e0 = 1

Individual cancellations of each αu,j
(1000 random internal states)

0 20 40 60
0

25

50

75

100

a0 = 0, e0 = 0

0 20 40 60
0

25

50

75

100

a0 = 0, e0 = 1

0 20 40 60
0

250

500

750

1000
a0 = 1, e0 = 0

0 20 40 60
0

25

50

75

100
a0 = 1, e0 = 1

(64, 0.5) probability mass function

Hamming weight of the cube-sum vectors
(1000 random internal states)

3/5

Counter-Measure: Changing the Input Row

State after Linear terms Size of Analysisinitialization after S1 the sets

a0 (a0 + b0 + d0 + 1)v0 5
v0 (b0 + c0 + 1)v0 3
b0 v0 5+ 3+ 5+ 12 < 31
c0 v0 No conditional cube
d0 (a0 + d0 + 1)v0 5 as we describe.

Nb of variables not multiplied 12by v0 after S2
a0 (b0 + 1)v0 4
b0 (b0 + c0 + 1)v0 6 4+ 6+ 23 > 31.
v0 v0 Cubes can be built as
c0 v0 described but less effective.
d0 *

Nb of variables not multiplied 23 (32 of the 256-bit state in avg.)
by v0 after S2

Table: Example : the first row states that, for 5 indices i, the coefficients of all v0vi share
(a0 + b0 + d0 + 1) as a factor.

4/5

Counter-Measure: Changing the Input Row

State after Linear terms Size of Analysisinitialization after S1 the sets

a0 v0
b0 (b0 + c0 + 1)v0 3
c0 d0v0 4 3+ 4+ 5+ 12 < 31
v0 (a0 + 1)v0 5 No conditional cube
d0 v0 as we describe.

Nb of variables not multiplied 12by v0 after S2
a0 b0v0 5
b0 v0 5+ 4+ 5+ 5+ 12 = 31
c0 (d0 + 1)v0 4 but b0 and b0 + 1 cannot
d0 (a0 + 1)v0 5 be used at the same time.
v0 (b0 + 1)v0 5

Nb of variables not multiplied 12 No conditional cube
by v0 after S2 as we describe.

Table: Example : the second row states that, for 3 indices i, the coefficients of all v0vi share
(b0 + c0 + 1) as a factor.

5/5

Bibliography

Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche.
Cryptographic sponge functions, 2011.
https://keccak.team/sponge_duplex.html.

Donghoon Chang, Deukjo Hong, and Jinkeon Kang.
Conditional Cube Attacks on Ascon-128 and
Ascon-80pq in a Nonce-misuse Setting.
Cryptology ePrint Archive, Report 2022/544, 2022.
https://ia.cr/2022/544.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer.
Ascon TikZ figures.
https://ascon.iaik.tugraz.at/resources.html.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel,
and Martin Schläffer.
Ascon v1.2.
Technical report, National Institute of Standards and
Technology, 2019.
https://csrc.nist.gov/Projects/

lightweight-cryptography/finalists.

Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin
Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round Keccak
sponge function.

In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 259–288, Paris, France, April 30 – May 4, 2017.
Springer, Heidelberg, Germany.

Jérémy Jean.
TikZ for Cryptographers.
https://www.iacr.org/authors/tikz/, 2016.

Zheng Li, Xiaoyang Dong, and Xiaoyun Wang.
Conditional cube attack on round-reduced ASCON.
IACR Trans. Symm. Cryptol., 2017(1):175–202, 2017.

Mate Soos, Karsten Nohl, and Claude Castelluccia.
Extending SAT solvers to cryptographic problems.
In Oliver Kullmann, editor, Theory and Applications of
Satisfiability Testing - SAT 2009, volume 5584 of Lecture
Notes in Computer Science, pages 244–257. Springer,
2009.

Serge Vaudenay and Damian Vizár.
Can caesar beat galois? - Robustness of CAESAR
candidates against nonce reusing and high data
complexity attacks.
In Bart Preneel and Frederik Vercauteren, editors, ACNS
18, volume 10892 of LNCS, pages 476–494, Leuven,
Belgium, July 2–4, 2018. Springer, Heidelberg, Germany.

https://keccak.team/sponge_duplex.html
https://ia.cr/2022/544
https://ascon.iaik.tugraz.at/resources.html
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://www.iacr.org/authors/tikz/

	Appendix

