

Improved Differential and Linear Trail Bounds for Ascon

Solane El Hirch, Silvia Mella, Alireza Mehrdad, Joan Daemen

Radboud University (The Netherlands)

Fast Software Encryption

March 20-24, 2023

Differential trails

ASCON-*p*

Scanning the space of trails in Ascon-p

Improved bounds for $\ensuremath{\operatorname{Ascon}}$

Conclusion

Techniques that exploit the structure of the linear and non-linear layers in $\ensuremath{\operatorname{ASCON}}$ to improve the bounds of differential and linear trails

In this presentation we focus on differential cryptanalysis

Differential trails

Differential trails in iterated mapping

- r-round trail: $Q = (a^0, a^1, \dots, a^r)$
- DP(Q): fraction of all input pairs with difference a^0 that exhibit a^i for $i \leq r$

$$\mathsf{DP}(Q) \approx \mathsf{DP}_p(a^0, a^1) \cdot \mathsf{DP}_p(a^1, a^2) \cdots \cdot \mathsf{DP}_p(a^{r-1}, a^r)$$

- a^i and a^{i+1} are compatible over p if $DP_p(a^i, a^{i+1}) > 0$
- The weight of a trail Q is defined as

$$w(Q) = \sum_{i=1}^{r} w(a^{i-1}, a^{i}), \text{ where } w(a^{i-1}, a^{i}) = -\log_2(\mathsf{DP}_p(a^{i-1}, a^{i}))$$

Ascon-*p*

Ascon-*p* round transformation

- State of five 64-bit rows x_0, \cdots, x_4
- Round transformation $p = p_L \circ p_S \circ p_C$

(c) Linear layer with 64-bit diffusion functions $\Sigma_i(x_i)$

Ascon-*p* steps

(a) 5-bit S-box S in p_S : χ_5 of KECCAK-f [BDPV11] and two mixing steps

(b) Mixing layer p_L :

 $\begin{array}{l} x_0 \leftarrow x_0 \oplus (x_0 \ggg 19) \oplus (x_0 \ggg 28) \\ x_1 \leftarrow x_1 \oplus (x_1 \ggg 61) \oplus (x_1 \ggg 39) \\ x_2 \leftarrow x_2 \oplus (x_2 \ggg 1) \oplus (x_2 \ggg 6) \\ x_3 \leftarrow x_3 \oplus (x_3 \ggg 10) \oplus (x_3 \ggg 17) \\ x_4 \leftarrow x_4 \oplus (x_4 \ggg 7) \oplus (x_4 \ggg 41) \end{array}$

$$\xrightarrow{a^{0}} \begin{array}{c} p_{L} & & p_{S} \\ \hline b^{0} & & p_{S} \\ \hline a^{1} & & p_{L} \\ \hline b^{1} & & p_{S} \\ \hline b^{1} & & p_{S} \\ \hline b^{1} & & p_{S} \\ \hline b^{r-1} & & p_{S}$$

Rephased round function p: linear layer p_L followed by a non-linear layer p_S

• Trails notation including differences between p_L and p_S : $Q = (a^0, b^0, a^1, \cdots, a^{r-1}, b^{r-1}, a^r)$

•
$$b^i = p_L(a^i)$$

- p_L linear $\Rightarrow DP_{p_L}(a^i, b^i) = 1$ and $w_{p_L}(a^i, b^i) = 0$
- Weight of Q

$$w(Q) = \sum_{i=1}^{r} w_{p_{S}}(b^{i-1}, a^{i})$$

Propagation properties of ${\cal S}$

S-box S based on χ_5 mapping:

- *p_S* has algebraic degree 2
- The weight of (b^{i-1},a^i) only depends on $b^{i-1} o w_{p_S}(b^{i-1},a^i) = w_{p_S}(b^{i-1})$
- For an input difference b, the set of compatible differences

$$\mathcal{A}(b) = \{a \in \mathbb{F}_2^5 \colon \exists x \in \mathbb{F}_2^5 ext{ s.t. } \mathcal{S}(x) \oplus \mathcal{S}(x \oplus b) = a\}$$

is an affine space

• The dimension of the affine space $\mathcal{A}(b)$ is $w_{p_{\mathcal{S}}}(b)$

Extension of a trail by one round

- Forward: build all trails by appending (b^{r-1}, a^r)
- All trails that share the same differences except a^r have the same weight

 \rightarrow no need to build them to know their weight

Extension of a trail by one round

- **Backward**: build all trails by prepending (a^0, b^0)
- All trails that share the same differences except (a⁰, b⁰) don't have the same weight but we can easily lower bound their weight

 \rightarrow no need to build them to bound their weight

Trail cores and minimum reverse weight [DV12]

• Minimum reverse weight:

$$w^{\mathsf{rev}}(a^1):=\min_{b^0}w(b_0)$$

• Trail core: set of trails with same intermediate differences and whose weight is lower bounded by

$$w^{\mathsf{rev}}(a^1) + w(b^1) + \ldots + w(b^{r-1})$$

Scanning the space of trails in Ascon-p

- $\bullet\,$ We can restrict the search to trail cores \rightarrow instead of trails
- Build all r-round trail cores below a target weight T_r
 - If one or more trail cores are found, then the minimum weight among them defines a **tight bound** on the weight of all *r*-round trails
 - Otherwise, T_r is a **bound** on the weight of all *r*-round trails
- Start from shorter trail cores and extend

Generating 4 and 8-round trail cores

• Any 4-round trail core of weight $w^{\text{rev}}(a_1) + w(b^1) + w(b^2) + w(b^3) \le 80$ has

•
$$w^{\mathsf{rev}}(a_1) + w(b^1) \leq rac{80}{2}$$
 or

• $w(b^2) + w(b^3) \le \frac{80}{2}$

Generating 4 and 8-round trail cores

• Any 4-round trail core of weight $w^{\mathsf{rev}}(a_1) + w(b^1) + w(b^2) + w(b^3) \le 80$ has

•
$$w^{\text{rev}}(a_1) + w(b^1) \leq \frac{80}{2}$$
 o

- $w(b^2) + w(b^3) \le \frac{80}{2}$
- Therefore, any 4-round trail core of weight \leq 80 can be generated by
 - building all 2-round trail cores with $w^{\text{rev}}(a) + w(b) \le 40$ and
 - extending them by 2 rounds in the forward and backward direction

Generating 4 and 8-round trail cores

• Any 4-round trail core of weight $w^{\mathsf{rev}}(a_1) + w(b^1) + w(b^2) + w(b^3) \le 80$ has

•
$$w^{\mathsf{rev}}(a_1) + w(b^1) \leq \frac{80}{2}$$
 or

- $w(b^2) + w(b^3) \le \frac{80}{2}$
- Therefore, any 4-round trail core of weight \leq 80 can be generated by
 - building all 2-round trail cores with $w^{\text{rev}}(a) + w(b) \leq 40$ and
 - extending them by 2 rounds in the forward and backward direction
- Any 8-round trail core of weight ≤ 160 can be generated by
 - building all 4-round trail cores with weight $\leq \frac{160}{2}$ and
 - extending them by 4 rounds in the forward and backward direction

Generating 2-round trail cores as tree traversal

 (a^1, b^1) built using the tree-based approach of [MDV17]

- Two-level tree
- Translation invariance along the horizontal axis
- Canonicity

Generating 2-round trail cores as tree traversal

 (a^1, b^1) built using the tree-based approach of [MDV17]

- Two-level tree
- Translation invariance along the horizontal axis
- Canonicity

Generating 2-round trail cores as tree traversal

 (a^1, b^1) built using the tree-based approach of [MDV17]

- Two-level tree
- Translation invariance along the horizontal axis
- Canonicity
- Score function
- Alternative representation of the linear layer

а

Pruning the tree: score function

Lower bound on the weight of a node and all its descendants

- ${\tt ISS}\,$ Based on the number of active columns \rightarrow each contribute at least 2
- Refining the score of b: bits in all active rows but the last one remain active
 - Consider their contribution to the weight
 - Minimum weight of all possible columns that can be obtained by adding bits in the last active row

- Score in the last active row: adding bits affect specific bit positions \rightarrow for row 2 adding bit at position *j* affects bits in [*j* 6 mod 64, *j*] [MMGD22]
 - Subterranean operates on a 257-bit states
 - $\theta: x_i \leftarrow x_i \oplus (x_i \lll 3) \oplus (x_i \lll 8)$
 - Stable bits: active bits present in all descendants of a node

Pruning the tree: the alternative row representation

- $p_L: b_j \leftarrow a_j \oplus a_{j+s} \oplus a_{j+t}$
- Row 0: [0,28]

- - Alternative coordinate k:
 k = i · q mod 64 with q odd

а

- $p'_L: b'_k \leftarrow a'_k \oplus a'_{k+sq} \oplus a'_{k+tq}$
- $p_L = \pi_{q^{-1}} \circ p'_L \circ \pi_q$ where $\pi_q(j) = q \cdot j \mod 64$
- $^{\mbox{\tiny INS}}$ Bit positions at 0,1,5 for row 0: \rightarrow [0,5]

Extension as a tree search [MDV17, DHVK18]

Build a^r (forward extension) or b^0 (backward extension) through a tree search

- p_L applies a linear function to each row independently: we can determine the bits that remain active at a^0 and b^r after p_l^{-1} and p_L respectively
- Score: lower bounds the weight of the (r + 1)-round trail cores obtained

Lower bound on $w(b^r)$ while building a^r

- Approach used in XOODOO [DHVK18]
- Stable bits at b^r are represented by a stability mask \mathcal{M} and $b^r \wedge \mathcal{M}$ gives:
 - The stable bits of *b*^{*r*}
 - The column of b^r active in all its descendants
 - Active column contribute at least 2 to the weight

Score: twice the number of active columns of $b^r \wedge \mathcal{M}$

- Two methods: compatible patterns (used for KECCAK-p) and envelope space
- Contribution of a^0 : use stability mask \mathcal{M} to determine the stable bits of a^0
- Lower bound on $w^{rev}(a^0) + w(b^0)$ while building b^0
- Functions score_a and score_b bound $w^{rev}(a^0)$ and $w(b^0)$ respectively

Score: $score_a + score_b$

- 1. Extension using compatible patterns
 - a. score_b is computed as for KECCAK-p [DV12, MDV17]: the sum of the minimum weight of each column in b^0
 - b. score_a based on the stable bits of a^0
 - c. Effective method for small number of active columns in a^1

- 1. Extension using compatible patterns
- 2. Extension using the envelope space
 - a. score_b is twice the number of active columns in a^1
 - b. Build an envelope space for each active column position in a^1 : envelope space $0 + \langle e_0, e_1, e_2, e_3, e_4 \rangle$
 - c. Envelope space $\mathcal{E}\colon$ union of all these envelope space
 - d. Scan ${\mathcal E}$ in a tree-based fashion: score_a based on the stable bits of a^0
 - e. Effective method when many active columns in a^1

Improved bounds for Ascon

Improved bounds for Ascon

# Rounds	probability p of differential trails				squared correlation c^2 of linear trails			
	Bound	Best known	New bound	Time	Bound	Best known	New bound	Time
1	2 ⁻²	2^{-2}			2 ⁻²	2^{-2}		
2	2 ⁻⁸	2 ⁻⁸			2 ⁻⁸	2^{-8}		
3	2 ⁻⁴⁰	2^{-40}			2^{-26}	2^{-28}	2^{-28}	< 4sec
4	2 ⁻⁷²	2^{-107}	2^{-86}	13 days	2^{-72}	2^{-98}	2^{-88}	110 days
6	2^{-108}	2^{-305}	2^{-129}	+6 days	2^{-108}		2^{-132}	+21 days
8	2^{-144}		2^{-172}	+0	2^{-144}		2^{-176}	+0
12	2 ⁻²¹⁶		2^{-258}	+0	2^{-216}		2^{-264}	+0

Comparison with other works:

- This work: prove bound of 2^{-86} in 13 CPU days and 2^{-88} in 110 CPU days
- In [EME22] and [MR22]: cost estimation is 6688 CPU days and 3898 CPU days to prove the bound of 2^{-80}

Conclusion

- \bullet Dedicated tools for trail search for $\ensuremath{\operatorname{Ascon}}$
- Proved the tight bound for 3-rounds for linear trails
- Improved bounds for differential and linear trails over 4, 6, 8, 12 rounds

Thank you for your attention!

- Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. **The keccak reference, January 2011.**
- Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer.
 The design of xoodoo and xoofff.
 IACR Trans. Symmetric Cryptol., 2018(4):1–38, 2018.
- Joan Daemen and Gilles Van Assche.

Differential propagation analysis of keccak.

In Anne Canteaut, editor, *Fast Software Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers,* volume 7549 of *Lecture Notes in Computer Science,* pages 422–441. Springer, 2012.

Johannes Erlacher, Florian Mendel, and Maria Eichlseder. Bounds for the security of ascon against differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol., 2022(1):64–87, 2022.

Silvia Mella, Joan Daemen, and Gilles Van Assche.
 New techniques for trail bounds and application to differential trails in keccak.

IACR Trans. Symmetric Cryptol., 2017(1):329–357, 2017.

Alireza Mehrdad, Silvia Mella, Lorenzo Grassi, and Joan Daemen.
 Differential trail search in cryptographic primitives with big-circle chi - application to subterranean.

to appear in IACR Trans. Symmetric Cryptol., 2022.

Rusydi H. Makarim and Raghvendra Rohit.
 Towards tight differential bounds of ascon: A hybrid usage of smt and milp.

IACR Transactions on Symmetric Cryptology, 2022(3):303–340, 2022.