Improved Differential and Linear Trail Bounds for Ascon

Solane El Hirch, Silvia Mella, Alireza Mehrdad, Joan Daemen
Radboud University (The Netherlands)
Fast Software Encryption
March 20-24, 2023

Overview

Differential trails

Ascon-p

Scanning the space of trails in Ascon-p

Improved bounds for AsCON

Conclusion

Goal of this work

Techniques that exploit the structure of the linear and non-linear layers in Ascon to improve the bounds of differential and linear trails

In this presentation we focus on differential cryptanalysis

Differential trails

- r-round trail: $Q=\left(a^{0}, a^{1}, \ldots, a^{r}\right)$
- $\operatorname{DP}(Q)$: fraction of all input pairs with difference a^{0} that exhibit a^{i} for $i \leq r$

$$
\operatorname{DP}(Q) \approx \operatorname{DP}_{p}\left(a^{0}, a^{1}\right) \cdot \operatorname{DP}_{p}\left(a^{1}, a^{2}\right) \cdots \cdot \operatorname{DP}_{p}\left(a^{r-1}, a^{r}\right)
$$

- a^{i} and a^{i+1} are compatible over p if $\operatorname{DP}_{p}\left(a^{i}, a^{i+1}\right)>0$
- The weight of a trail Q is defined as

$$
w(Q)=\sum_{i=1}^{r} w\left(a^{i-1}, a^{i}\right), \text { where } w\left(a^{i-1}, a^{i}\right)=-\log _{2}\left(\operatorname{DP}_{p}\left(a^{i-1}, a^{i}\right)\right)
$$

Ascon-p

Ascon- p round transformation

- State of five 64 -bit rows x_{0}, \cdots, x_{4}
- Round transformation $p=p_{L} \circ p_{S} \circ p_{C}$

(a) Round constant addition p_{C}

(b) Substitution layer p_{S} with 5-bit S-box $\mathcal{S}(x)$

(c) Linear layer with 64-bit diffusion functions $\Sigma_{i}\left(x_{i}\right)$
(a) 5-bit S-box \mathcal{S} in $p_{S}: \chi_{5}$ of Keccak- f [BDPV11] and two mixing steps

(b) Mixing layer p_{L} :

$$
\begin{aligned}
& x_{0} \leftarrow x_{0} \oplus\left(x_{0} \ggg 19\right) \oplus\left(x_{0} \ggg 28\right) \\
& x_{1} \leftarrow x_{1} \oplus\left(x_{1} \gg 61\right) \oplus\left(x_{1} \ggg 39\right) \\
& x_{2} \leftarrow x_{2} \oplus\left(x_{2} \ggg 1\right) \oplus\left(x_{2} \gg 6\right) \\
& x_{3} \leftarrow x_{3} \oplus\left(x_{3} \gg 10\right) \oplus\left(x_{3} \gg 17\right) \\
& x_{4} \leftarrow x_{4} \oplus\left(x_{4} \ggg 7\right) \oplus\left(x_{4} \ggg 41\right)
\end{aligned}
$$

Differential trails in Ascon- p

Rephased round function p : linear layer p_{L} followed by a non-linear layer p_{S}

- Trails notation including differences between p_{L} and p_{S} :

$$
Q=\left(a^{0}, b^{0}, a^{1}, \cdots, a^{r-1}, b^{r-1}, a^{r}\right)
$$

- $b^{i}=p_{L}\left(a^{i}\right)$
- p_{L} linear $\Rightarrow D P_{p_{L}}\left(a^{i}, b^{i}\right)=1$ and $w_{p_{L}}\left(a^{i}, b^{i}\right)=0$
- Weight of Q

$$
w(Q)=\sum_{i=1}^{r} w_{p_{S}}\left(b^{i-1}, a^{i}\right)
$$

Propagation properties of \mathcal{S}

S-box \mathcal{S} based on χ_{5} mapping:

- p_{S} has algebraic degree 2
- The weight of $\left(b^{i-1}, a^{i}\right)$ only depends on $b^{i-1} \rightarrow w_{p_{S}}\left(b^{i-1}, a^{i}\right)=w_{p_{S}}\left(b^{i-1}\right)$
- For an input difference b, the set of compatible differences

$$
\mathcal{A}(b)=\left\{a \in \mathbb{F}_{2}^{5}: \exists x \in \mathbb{F}_{2}^{5} \text { s.t. } \mathcal{S}(x) \oplus \mathcal{S}(x \oplus b)=a\right\}
$$

is an affine space

- The dimension of the affine space $\mathcal{A}(b)$ is $w_{p_{\mathcal{S}}}(b)$

Extension of a trail by one round

- Forward: build all trails by appending $\left(b^{r-1}, a^{r}\right)$
- All trails that share the same differences except a^{r} have the same weight
\rightarrow no need to build them to know their weight

Extension of a trail by one round

- Backward: build all trails by prepending $\left(a^{0}, b^{0}\right)$
- All trails that share the same differences except $\left(a^{0}, b^{0}\right)$ don't have the same weight but we can easily lower bound their weight
\rightarrow no need to build them to bound their weight

Trail cores and minimum reverse weight [DV12]

- Minimum reverse weight:

$$
w^{\text {rev }}\left(a^{1}\right):=\min _{b^{0}} w\left(b_{0}\right)
$$

- Trail core: set of trails with same intermediate differences and whose weight is lower bounded by

$$
w^{\mathrm{rev}}\left(a^{1}\right)+w\left(b^{1}\right)+\ldots+w\left(b^{r-1}\right)
$$

Scanning the space of trails in Ascon- p

- We can restrict the search to trail cores \rightarrow instead of trails
- Build all r-round trail cores below a target weight T_{r}
- If one or more trail cores are found, then the minimum weight among them defines a tight bound on the weight of all r-round trails
- Otherwise, T_{r} is a bound on the weight of all r-round trails
- Start from shorter trail cores and extend

Generating 4 and 8 -round trail cores

- Any 4-round trail core of weight $w^{\text {rev }}\left(a_{1}\right)+w\left(b^{1}\right)+w\left(b^{2}\right)+w\left(b^{3}\right) \leq 80$ has
- $w^{\text {rev }}\left(a_{1}\right)+w\left(b^{1}\right) \leq \frac{80}{2}$ or
- $w\left(b^{2}\right)+w\left(b^{3}\right) \leq \frac{80}{2}$

Generating 4 and 8-round trail cores

- Any 4-round trail core of weight $w^{\text {rev }}\left(a_{1}\right)+w\left(b^{1}\right)+w\left(b^{2}\right)+w\left(b^{3}\right) \leq 80$ has
- $w^{\text {rev }}\left(a_{1}\right)+w\left(b^{1}\right) \leq \frac{80}{2}$ or
- $w\left(b^{2}\right)+w\left(b^{3}\right) \leq \frac{80}{2}$
- Therefore, any 4-round trail core of weight ≤ 80 can be generated by
- building all 2-round trail cores with $w^{\text {rev }}(a)+w(b) \leq 40$ and
- extending them by 2 rounds in the forward and backward direction
- Any 4-round trail core of weight $w^{\text {rev }}\left(a_{1}\right)+w\left(b^{1}\right)+w\left(b^{2}\right)+w\left(b^{3}\right) \leq 80$ has
- $w^{\text {rev }}\left(a_{1}\right)+w\left(b^{1}\right) \leq \frac{80}{2}$ or
- $w\left(b^{2}\right)+w\left(b^{3}\right) \leq \frac{80}{2}$
- Therefore, any 4 -round trail core of weight ≤ 80 can be generated by
- building all 2-round trail cores with $w^{\text {rev }}(a)+w(b) \leq 40$ and
- extending them by 2 rounds in the forward and backward direction
- Any 8 -round trail core of weight ≤ 160 can be generated by
- building all 4 -round trail cores with weight $\leq \frac{160}{2}$ and
- extending them by 4 rounds in the forward and backward direction

Generating 2-round trail cores as tree traversal

(a^{1}, b^{1}) built using the tree-based approach of [MDV17]

- Two-level tree
- Translation invariance along the horizontal axis
- Canonicity

Generating 2-round trail cores as tree traversal

(a^{1}, b^{1}) built using the tree-based approach of [MDV17]

- Two-level tree
- Translation invariance along the horizontal axis
- Canonicity

Generating 2-round trail cores as tree traversal

(a^{1}, b^{1}) built using the tree-based approach of [MDV17]

- Two-level tree
- Translation invariance along the horizontal axis
- Canonicity
- Score function
- Alternative representation of the linear layer

Traversing the 2-round trail cores tree

a

Traversing the 2-round trail cores tree

a

a

Traversing the 2-round trail cores tree

a

Traversing the 2-round trail cores tree

a

Traversing the 2-round trail cores tree

a

Traversing the 2-round trail cores tree

Ha m a

Traversing the 2-round trail cores tree

a

Traversing the 2-round trail cores tree

Pruning the tree: score function

a

	兂	,	+	\square	+	\square	T	\square	\square	\square			+	,	+	T		\square	,	\square	T		T	,	\square	,	+				\cdots

Lower bound on the weight of a node and all its descendants
Based on the number of active columns \rightarrow each contribute at least 2
Refining the score of b : bits in all active rows but the last one remain active

- Consider their contribution to the weight
- Minimum weight of all possible columns that can be obtained by adding bits in the last active row

Pruning the tree: score function (continued)

Score in the last active row: adding bits affect specific bit positions \rightarrow for row 2 adding bit at position j affects bits in [$j-6 \bmod 64, j$] [MMGD22]

- Subterranean operates on a 257-bit states
- $\theta: x_{i} \leftarrow x_{i} \oplus\left(x_{i} \lll 3\right) \oplus\left(x_{i} \lll 8\right)$
- Stable bits: active bits present in all descendants of a node

Pruning the tree: the alternative row representation

- $p_{L}: b_{j} \leftarrow a_{j} \oplus a_{j+s} \oplus a_{j+t}$
- $p_{L}: b_{j} \leftarrow a_{j} \oplus a_{j+19} \oplus a_{j+28} \rightarrow[0,28]$
- $p_{L}: b_{j} \leftarrow a_{j} \oplus a_{j+1} \oplus a_{j+6} \rightarrow[0,6]$

Pruning the tree: the alternative row representation

a

b

- $p_{L}: b_{j} \leftarrow a_{j} \oplus a_{j+s} \oplus a_{j+t}$
- Row 0: [0,28]

- Alternative coordinate k : $k=j \cdot q \bmod 64$ with q odd
- $p_{L}^{\prime}: b_{k}^{\prime} \leftarrow a_{k}^{\prime} \oplus a_{k+s q}^{\prime} \oplus a_{k+t q}^{\prime}$
- $p_{L}=\pi_{q^{-1}} \circ p_{L}^{\prime} \circ \pi_{q}$ where
$\pi_{q}(j)=q \cdot j \bmod 64$
Bit positions at $0,1,5$ for row 0 :
$\rightarrow[0,5]$

Extension as a tree search [MDV17, DHVK18]

Build a^{r} (forward extension) or b^{0} (backward extension) through a tree search

- p_{L} applies a linear function to each row independently: we can determine the bits that remain active at a^{0} and b^{r} after p_{L}^{-1} and p_{L} respectively
- Score: lower bounds the weight of the $(r+1)$-round trail cores obtained

Lower bound on $w\left(b^{r}\right)$ while building a^{r}

- Approach used in Xoodoo [DHVK18]
- Stable bits at b^{r} are represented by a stability mask \mathcal{M} and $b^{r} \wedge \mathcal{M}$ gives:
- The stable bits of b^{r}
- The column of b^{r} active in all its descendants
- Active column contribute at least 2 to the weight

Score: twice the number of active columns of $b^{r} \wedge \mathcal{M}$

- Two methods: compatible patterns (used for KECCAK-p) and envelope space
- Contribution of a^{0} : use stability mask \mathcal{M} to determine the stable bits of a^{0}
- Lower bound on $w^{\text {rev }}\left(a^{0}\right)+w\left(b^{0}\right)$ while building b^{0}
- Functions score $_{a}$ and score $_{b}$ bound $w^{\text {rev }}\left(a^{0}\right)$ and $w\left(b^{0}\right)$ respectively

$$
\text { Score: } \text { score }_{a}+\text { score }_{b}
$$

1. Extension using compatible patterns
a. score $_{b}$ is computed as for KECCAK-p [DV12, MDV17]: the sum of the minimum weight of each column in b^{0}
b. score ${ }_{a}$ based on the stable bits of a^{0}
c. Effective method for small number of active columns in a^{1}
2. Extension using compatible patterns
3. Extension using the envelope space
a. score $_{b}$ is twice the number of active columns in a^{1}
b. Build an envelope space for each active column position in a^{1} : envelope space $0+\left\langle e_{0}, e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$
c. Envelope space \mathcal{E} : union of all these envelope space
d. Scan \mathcal{E} in a tree-based fashion: score ${ }_{a}$ based on the stable bits of a^{0}
e. Effective method when many active columns in a^{1}

Improved bounds for Ascon

Improved bounds for Ascon

\# Rounds	probability p of differential trails				squared correlation c^{2} of linear trails			
	Bound	Best known	New bound	Time	Bound	Best known	New bound	Time
1	2^{-2}	2^{-2}			2^{-2}	2^{-2}		
2	2^{-8}	2^{-8}			2^{-8}	2^{-8}		
3	2^{-40}	2^{-40}			2^{-26}	2^{-28}	2^{-28}	<4 sec
4	2^{-72}	2^{-107}	2^{-86}	13 days	2^{-72}	2^{-98}	2^{-88}	110 days
6	2^{-108}	2^{-305}	2^{-129}	+6 days	2^{-108}		2^{-132}	+21 days
8	2^{-144}		2^{-172}	+0	2^{-144}		2^{-176}	+0
12	2^{-216}		2^{-258}	+0	2^{-216}		2^{-264}	+0

Comparison with other works:

- This work: prove bound of 2^{-86} in 13 CPU days and 2^{-88} in 110 CPU days
- In [EME22] and [MR22]: cost estimation is 6688 CPU days and 3898 CPU days to prove the bound of 2^{-80}

Conclusion

- Dedicated tools for trail search for Ascon
- Proved the tight bound for 3-rounds for linear trails
- Improved bounds for differential and linear trails over 4, 6, 8, 12 rounds

Thank you for your attention!

Guido Bertoni，Joan Daemen，Michael Peeters，and Gilles Van Assche． The keccak reference，January 2011.

嗇 Joan Daemen，Seth Hoffert，Gilles Van Assche，and Ronny Van Keer．
The design of xoodoo and xoofff．
IACR Trans．Symmetric Cryptol．，2018（4）：1－38， 2018.
㡽 Joan Daemen and Gilles Van Assche．
Differential propagation analysis of keccak．
In Anne Canteaut，editor，Fast Software Encryption－19th International Workshop， FSE 2012，Washington，DC，USA，March 19－21，2012．Revised Selected Papers， volume 7549 of Lecture Notes in Computer Science，pages 422－441．Springer， 2012.

围 Johannes Erlacher，Florian Mendel，and Maria Eichlseder． Bounds for the security of ascon against differential and linear cryptanalysis．

Silvia Mella, Joan Daemen, and Gilles Van Assche.
New techniques for trail bounds and application to differential trails in keccak.

IACR Trans. Symmetric Cryptol., 2017(1):329-357, 2017.
國 Alireza Mehrdad, Silvia Mella, Lorenzo Grassi, and Joan Daemen.
Differential trail search in cryptographic primitives with big-circle chi application to subterranean.
to appear in IACR Trans. Symmetric Cryptol., 2022.
Rusydi H. Makarim and Raghvendra Rohit.
Towards tight differential bounds of ascon: A hybrid usage of smt and milp.

IACR Transactions on Symmetric Cryptology, 2022(3):303-340, 2022.

