
Exploring Integrity of AEADs with Faults:
Definitions and Constructions

Sayandeep Saha†⋆ , Mustafa Khairallah†‡ and Thomas Peyrin†

March 21, 2023

†Nanyang Technological University, Singapore
⋆ICTEAM/ELEN,Université catholique de Louvain (UClouvain), Belgium
‡Seagate Research Group, Singapore

OUTLINE

1. Fault Attacks (FA)

2. Attacks on Classical AEAD Schemes without Key Recovery

3. Levelled Implementations

4. Fault Resilient PRF

5. Fault Resilient MAC

6. Fault Resilient AEAD

Fault Attacks (FA)

FAULT ATTACKS (FA)

• Fault Attacks (FA) have been introduced in 1997 [BDL97,BS97].

• Over the years, both analysis and fault injection techniques have
improved significantly [TMA11,FJLT13,SBHS15,SH07,SBR+20,
DEK+18,PCNM15,ZLZ+18,MOG+20,DEK+18,DEG+18,
SBR+20,SBJ+21].

• Most fault attacks and fault countermeasures in symmetric key
cryptography target key/state recovery.

FAULT-RESILIENCY

• Dobraunig, Mennink and Primas. [DMP20] discussed the
security of sponge-like constructions where the amount of
information leaked using faults is limited.

• Some papers discuss building primitives that protect against
certain types of fault attacks [MSGR10,SBD+20,BBB+21].

• Fischlin and Günther [FG20] discussed the concept of
fault-resilient AE and gave one construction.

• Saha, Khairallah and Peyrin (this work) discussed the definitions
of the fault model and how to define different fault-resilient
primitives to be able to use in AE scheme. We also show that the
construction from [FG20] does not achieve frAE.

• In parallel to this work, Berti, Guo, Peters, Shen and
Standaert [BGP+22] showed that it is possible to have frMAC
with resiliency against verification faults. The final construction in
their paper can be seen as an instantiation of our frMAC.

EXAMPLES OF FAULT ATTACKS

Attacks on Classical AEAD
Schemes without Key Recovery

ASCON

IV∥K∥N

pa

Initialization

0∗∥K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗∥1

P1C1

r

c
pb

Pl−1Cl−1
r

c
pb

Plaintext

PlCl

r

c

K∥0∗

pa

Finalization

K

τ

128

COFB

Y [a + i− 2]
G EncK

Mi−1 2a+i−23pL||0n/2

Ci−1

Y [a + l − 1]
G EncK

Ml 2a+i−23jL||0n/2

Cl

pad

Trunc

τ· · · Trunc

APPLIES TO MORE SCHEMES

• SIV.

• Enc-then-MAC.

Levelled Implementations

OCB VS. TEDT: PROTECTING LONG TERM SECRETS AT A

CHEAPER COST

D

Init()D N

1Inc ()D D 2Inc ()D D

...

Inc ()lD D

Checksum

Tag

Inc ()SD D

Auth

(a)

1 2|| || ... || lc c c

TNA

lc2c1c

1Q0Q 1lQ 

2P1P

1y 2y

0k 1k

1m 2m lm

K

TE

U

1

H

E

V W
1n 

padTE

TE

TE0P N TE

TE

K

Z

(b)

1m

1c 2c lc

2m lm *0

KE KE KE KE

D D

D

D D

Fault Resilient PRF

WHAT HAPPENS WHEN WE INJECT FAULT?

FM C

Faulty FM C’

WHAT HAPPENS WHEN WE INJECTS FAULT?

FM C

Faulty FM C’

FM’ C’

RESISTANCE VS. RESILIENCE

• We allow more trivial forgeries/distinguishers than allowed in a
classical security notion.

• We allow a phase of the attack where we do not claim security
for any message in that phase.

ADVERSARIAL SET UP

1. Training phase: the attacker gets description of the
implementation with the ability to inject faults anywhere, but no
direct access to the secret key. In this phase the implementation
is always real.

2. Attack phase: the attacker cannot inject faults any more. In this
phase the oracle can be real or ideal.

ADVERSARIAL SET UP

1. Training phase: the attacker gets description of the
implementation with the ability to inject faults anywhere, but no
direct access to the secret key. In this phase the implementation
is always real.

2. Attack phase: the attacker cannot inject faults any more. In this
phase the oracle can be real or ideal.

FAULT RESILIENT PRF GAME

Challenge: Faulty queries may (in theory) leak information
about more than one evaluation of the function at a time.

frPRF
Real World Ideal World

PRFf
K(M,F)

· · ·
faulty implementation.
· · ·

PRFK(M)

· · ·
Real implementation with fresh inputs.
· · ·

PRFf
K(M,F)

· · ·
faulty implementation, but
terminates if a faulty query
leaks more than one point of
the function.
· · ·

RFK(M)

· · ·
Random function with fresh inputs.
· · ·

FAULTY PRF ORACLE

Faulty FM C’

Fault
Specification

M’

M’ may be equal to ⊥.

HOW TO BUILD AN FRPRF

1. We can construct such primitives using a tweakable block cipher
protected against fault-attacks.

2. If the cipher does not allow key recovery through fault attacks, it
should be possible to use as an frPRF.

3. It may be possible to show that ISAP finalization is an frPRF.

4. In practice, we may not know if the preimage is easy or not, but
what this model says is that a small amount of trivial
forgeries/distinguishers using faults is unavoidable.

Fault Resilient MAC

FRMAC

Hr||M frPRF
h

τ

SECURITY ARGUMENTS

• No collision on the random salt, or the output of the hash (frRO).

• Only trivial preimages are prossible.

• frMAC has security similar to frPRF, only need to worry about tag
verification.

Fault Resilient AEAD

THE FRAE GAME

• Similar to the frPRF game but taking privacy and decryption into
account.

• A variation of the game proposed in [FG20].

SIV$ [FG20]

SIV$

KGen:

1: (K1, K2)
$←− K

2: return (K1, K2)

EncSIV$
K (N, A, M; r):

1: (K1, K2)← K
2: IV ← PRF(K1, N, A, M; r)
3: C← Enc(K2, r||M, IV)

4: return (IV, C)

DecSIV$
K (N, A, C

′
):

1: (K1, K2)← K
2: (IV, C)← C

′

3: r||M← Dec(K2, C, IV)

4: IV
′
← PRF(K1, N, A, M, r)

5: if IV = IV
′

6: return M
7: else:
8: return ⊥

DECOUPLING ATTACK ON ALL SIV-LIKE SCHEMES

1. Fault the MAC to make it give a tag for M
′
.

2. Encrypt M using the IV corresponding to M
′
.

3. (N,A,C, IV) is not a valid ciphertext.

4. C can be changed to C
′

corresponding to M
′
.

IF MAC-THEN-ENC DOES NOT WORK, WHAT DOES?

MAC-then-Enc

then MAC Again

MAC-ENC-MAC (MEM)

H1

r||N ||A||M
K1

F ∗
h1 τ1

K2

F ∗ k0
F

F

F

F

F

F

· · ·

· · ·

r M1

k1

Ml

H2

K3

F ∗h2 τ2

C0 C1 Cl

τ1||C0||C1|| · · · Cl

pa pa pa

pb pb pb

SECURITY ARGUMENTS

• No collision on the random salt, or the output of the first MAC.

• The security then reduces to the frMAC security of the two MACs
and the frPRF security of the key derivation function in the
encryption layer.

H1

r||N ||A||M
K1

F ∗
h1 τ1

K2

F ∗ k0
F

F

F

F

F

F

· · ·

· · ·

r M1

k1

Ml

H2

K3

F ∗h2 τ2

C0 C1 Cl

τ1||C0||C1|| · · · Cl

pa pa pa

pb pb pb

CONCLUSION

• It is possible to protect certain classes of fault attacks using
levelled implementations.

• Randomness is critical to prevent differential fault attacks in
unprotected primitives.

• It is possible to prevent single differential fault attacks with less
cost and more effectively than dummy duplication.

FUTURE WORK

• Indifferentiability of randomized hash functions from frRO.
• Show frAE is secure against combined attacks (combined fault

and leakage resilience).
• Protecting against multiple faults.

• A solution to prevent a d-fault version of the decoupling attack may
be to keep interleaving Enc and MAC (MEMEM...).

• Is there a solution a solution that protects against arbitrary number
of faults?

• Are there efficient solutions for the security of MAC against
differential faults without randomness?

• In parallel work, Berti et al. [BGP+22] showed an example of a
MAC that does not need randomness and protects against a single
differential fault. It requires two MAC invocations.

• A more efficient solution would need less than i + 1 invocations to
protect against i differential faults.

• Relate the security of different fault countermeasures to the
frPRF assumption (e.g. is ISAP’s PRF an frPRF?).

Thank you!
More details in eprint 2022/1055

REFERENCES I

Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa
Khairallah, Thomas Peyrin, Sumanta Sarkar, and Siang Meng
Sim.
Default: Cipher level resistance against differential fault
attack.
In International Conference on the Theory and Application of
Cryptology and Information Security, pages 124–156. Springer,
2021.

Dan Boneh, Richard A DeMillo, and Richard J Lipton.
On the importance of checking cryptographic protocols for
faults.
In Proceedings of 15th International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT),
pages 37–51, Konstanz, Germany, May 1997. Springer.

REFERENCES II

Francesco Berti, Chun Guo, Thomas Peters, Yaobin Shen, and
François-Xavier Standaert.
Secure message authentication in the presence of leakage
and faults.
Cryptology ePrint Archive, Paper 2022/1142, 2022.
https://eprint.iacr.org/2022/1142.

Eli Biham and Adi Shamir.
Differential fault analysis of secret key cryptosystems.
In Proceedings of 17th Annual International Cryptology
Conference (CRYPTO), pages 513–525, Santa Barbara, USA,
Aug 1997. Springer.

https://eprint.iacr.org/2022/1142

REFERENCES III

Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan
Mangard, Florian Mendel, and Robert Primas.
Statistical ineffective fault attacks on masked AES with fault
countermeasures.
In Proceedings of 24th International Conference on the Theory
and Application of Cryptology and Information Security
(ASIACRYPT), pages 315–342, Brisbane, QLD, Australia, Dec
2018. Springer.

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan
Mangard, Florian Mendel, and Robert Primas.
SIFA: exploiting ineffective fault inductions on symmetric
cryptography.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(3):547–572, 2018.

REFERENCES IV

Christoph Dobraunig, Bart Mennink, and Robert Primas.
Leakage and tamper resilient permutation-based
cryptography.
Cryptology ePrint Archive, 2020.

Marc Fischlin and Felix Günther.
Modeling memory faults in signature and authenticated
encryption schemes.
In Topics in Cryptology – CT-RSA 2020: The Cryptographers’
Track at the RSA Conference 2020, page 56–84, San Francisco,
CA, USA, 2020. Springer.

REFERENCES V

Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard.

Fault attacks on AES with faulty ciphertexts only.
In Proceedings of 10th IEEE Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 108–118, Santa
Barbara, USA, Aug 2013. IEEE.

Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens.
Plundervolt: Software-based fault injection attacks against
Intel SGX.
In Proceedings of 41st IEEE Symposium on Security and Privacy
(S&P), pages 1466–1482, San Francisco,, USA, May 2020. IEEE.

REFERENCES VI

Marcel Medwed, François-Xavier Standaert, Johann Großschädl,
and Francesco Regazzoni.
Fresh re-keying: Security against side-channel and fault
attacks for low-cost devices.
In International Conference on Cryptology in Africa, pages
279–296. Springer, 2010.

Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen,
and Debdeep Mukhopadhyay.
A biased fault attack on the time redundancy
countermeasure for AES.
In Proceedings of 6th International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE), pages
189–203, Berlin, Germany, Apr 2015. Springer.

REFERENCES VII

Bertram Poettering and Paul Rösler.
Combiners for aead.
Cryptology ePrint Archive, 2020.

Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso,
Pedro Maat Costa Massolino, Kostas Papagiannopoulos,
Francesco Regazzoni, and Niels Samwel.
Friet: an authenticated encryption scheme with built-in fault
detection.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 581–611.
Springer, 2020.

REFERENCES VIII

Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl.
Precise laser fault injections into 90nm and 45nm
SRAM-cells.
In Proceedings of 14th International Conference on Smart Card
Research and Advanced Applications (CARDIS), pages
193–205, Bochum, Germany, Nov 2015. Springer.

Sayandeep Saha, Arnab Bag, Dirmanto Jap, Debdeep
Mukhopadhyay, and Shivam Bhasin.
Divided we stand, united we fall: Security analysis of some
SCA+SIFA countermeasures against SCA-enhanced fault
template attacks.
In ASIACRYPT 2021, 2021.

REFERENCES IX

Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar
Patranabis, and Debdeep Mukhopadhyay.
Fault template attacks on block ciphers exploiting fault
propagation.
In Proceedings of 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 612–643, Zagreb, Croatia, May 2020.
Springer.

J. M. Schmidt and Michael Hutter.
Optical and EM fault-attacks on CRT-based RSA: Concrete
results.
In Proceedings of 15th Austrian Workhop on Microelectronics
(Austrochip), pages 61–67, Graz, Austria,, Oct 2007. Verlag der
Technischen Universität Graz.

REFERENCES X

Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali.
Differential fault analysis of the advanced encryption
standard using a single fault.
In Proceedings of 5th Information Security Theory and Practice.
Security and Privacy of Mobile Devices in Wireless
Communication (WISTP), pages 224–233, Crete, Greece, June
2011. Springer.

Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He,
Ruyi Ding, Samiya Qureshi, and Kui Ren.
Persistent fault analysis on block ciphers.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(3):150–172, 2018.

Modelling Faults

PHYSICAL TO LOGICAL

• A classification is important.

• Physical faults eventually cause some data or control corruption.

• In general, localized corruptions are observed which can be
one/multiple-bit flip or set/reset. For software implementations,
we also observe instruction modification/skip.

• The precision of faults are dependent on the target device and
injection instruments.

ABSTRACT MODEL OF PHYSICAL EVENTS

Fault Representation Variable Classification
Params Description Params Description

vi

Denote the variables corrupted
by faults.
vi ∈ data ∪ control ∪ constant.

data
Denotes the set of data-flow variables
(input, output and intermediate
states of the computation).

nf
The number of faults injected
throughout the computation (in the same
or different clock cycles).

control
Denotes the set of control-flow
variables (branch statements).

wi

Denote the width (how many bits
within a target variable are corrupted)
of a fault (0 ≤ wi ≤ |vi|).

constant
Denotes the set of constants, tables,
and domain separators of the
AEAD algorithm.

modi

The logical abstraction of physical
nature of faults (fault models).
modi ∈ fix ∪ diff ∪ rand ∪ nof.

ti
Denote if the fault is transient/persistent
and the temporal fault location.

Fault Models

fix
Denote faults where the adversary is allowed to fix wi bits of the target variable to
some desired value.

diff

Denote the differential faults where the adversary is allowed to select a bitwise differential ∆i
for variable vi (with HW(∆i) = wi) and set v

′
i = vi ⊕∆i . Here v

′
i is the faulty version of

vi and HW(·) denote the Hamming weight.

rand Same as diff except the fact that ∆i
$←− {0, 1}|vi| and HW(∆i) = wi .

nof Denotes the case when the adversary chooses not to inject a fault in the execution.

COMPARISON TO AN AEAD COMBINER [PR20]

• A different approach to prevent such failures would have been to
use an AEAD combiner with two AEAD schemes.

• Assuming both schemes are based on SIV$, this solution needs
two MACs and two Encryption schemes.

• In fact, it is impossible to get an AEAD combiner with less than
4A + 4M for the encryption and decryption cost ([PR20]).

• The cheapest blackbox combiner for two SIV$ schemes would
need 2A + 6M for either encryption of decryption1.

• Our solution only needs A + 3M.

• For ciphertext lengths, our scheme is on-par with AEAD
combiners M + 3τ .

1[PR20] reports 2A + 3M, but this is not considering that the AEAD scheme itself
processes the message twice

THE FRAE GAME: TRAINING2

1: if d = 1
2: return ⊥
3: r $←− R
4: (Nflt,ADflt, C)← Fault(MEMEncK(N, A, M; r),F)

5: Ivld ← {(N
′
, A
′
) ∈ Nflt ×ADflt |

MEMDecK(N
′
, A
′
, C) ̸= ⊥ ∧ (N

′
, A
′
, C) /∈ Sflt}

6: if b = 1 ∧ |Ivld| > 1
7: return ⊥
8: Sflt ← Sflt ∪ {(N

′
, A
′
, C) |

(N
′
, A
′
) ∈ Ivld}

9: return C

2A variation of the game proposed in [FG20]

THE FRAE GAME: ATTACK3

EncK(N, A, M)

1: r $←− R
2: C← MEMEncK(N, A, M; r)
3: S ← S ∪ {(N, A, C)}
4: if b = 1

5: C $←− {0, 1}|M|+|τ1|+|τ2|+|r|

6: d← 1
7: return C

DecK(N, A, C)
1: if b = 1 ∨ (N, A, C) ∈ Sflt ∪ S
2: return ⊥
3: else
4: return MEMDecK(N, A, C)

3A variation of the game proposed in [FG20]

Fault Resilient Random Oracle

RANDOM ORACLES

• A random oracle in this work refers to an arbitrary input length
and fixed output length random function.

• Unlike a PRF, a random oracle has no meaning implementation
that can be faulted.

• We could view the random oracle as a large table that can be
faulted, but that is not very useful.

KEY OBSERVATIONS

1. A hash function that is collision-resistant remains
collision-resistant with faults. (Maybe not so obvious)

2. Preimage resistance is less clear: the adversary can force a
faulty hash value that corresponds to a given input message.

3. Random salts prevent this type of attacks.

4. Randomness needs to be synchronized during verification.

5. Can we do something even stronger?

RANDOM ORACLES VS. HASH FUNCTION

• Usually we are using the random oracle model to argue about
the security of a hash-based scheme.

• It is more meaningful to argue about the security of the random
oracle in the relation to the implementation of the actual hash
function.

FRRO: IDEA

• Use the hash function implementation to find out the effect of the
fault.

• Use the random oracle to generate the tag.

• We need random salt to prevent certain prefix attacks.

frRO

The frRO Oracle
INIT

1: for y ∈ {0, 1}∗

2: RO(y) $←−⊥
3: Rflt ← ∅

frROf (x; r,F)

1: if r ∈ Rflt then bad

2: Rflt ← Rflt ∪ {r}
3: if F.mod = nof
4: if RO(r∥x) =⊥
5: RO(r∥x) $←− {0, 1}|h|

6: Z← RO(r∥x)
7: else if F.v = r
8: r← r⊕∆

9: if r ∈ Rflt then bad

10: Rflt ← Rflt ∪ {r}
11: if RO(r∥x) =⊥
12: RO(r∥x) $←− {0, 1}|h|

13: Z← RO(r∥x)
14: else if F.v = x
15: x← x⊕∆

16: if RO(r∥x) =⊥
17: RO(r∥x) $←− {0, 1}|h|

18: Z← RO(r∥x)
19: else
20: if RO(r∥x) =⊥
21: RO(r∥x) $←− {0, 1}|h|

22: (Mf , h)← Fault(H(r∥x),F)

23: ∆← H(r∥x)⊕ h
24: Z← RO(r∥x)⊕∆

25: return (r, Mf , Z)

frRO(x; r)
1: F.mod← nof
2: return frROf (x; r,F)

CLAIMS ON THE FRRO

Theorem
As long as the bad event is never set, then frRO is indistinguishable
from a fault-free random oracle.

Conjecture
If a hash function H is indifferentiable from a random oracle, then its
faulty implementation with differential faults is indifferentiable from an
frRO.

	Fault Attacks (FA)
	Attacks on Classical AEAD Schemes without Key Recovery
	Levelled Implementations
	Fault Resilient PRF
	Fault Resilient MAC
	Fault Resilient AEAD
	Appendix
	Modelling Faults
	Fault Resilient Random Oracle

