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The Sponge Construction [Bertoni et al., 2007]
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• Extendable output function

• m1‖ · · · ‖ml is the message padded into r -bit blocks

• Absorb rate and squeeze rate different [Guo et al., 2011, Naito and Ohta, 2014]

• Graph notation: 0b
m1−−→ A

m2−−→ B −−→ · · · ml−→ C −−→ D
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Indifferentiability [Maurer et al., 2004, Coron et al., 2005]

real world ideal world

H P/P−1 Sfwd/SinvRO

D

• (HP ,P) for a random primitive P should behave like a random oracle RO paired

with a simulator S that maintains construction-primitive consistency

• H is indifferentiable from RO for some simulator S whenever any D can

distinguish the two worlds only with a negligible probability

• This probability is usually expressed as a function of the number of queries made
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H P/P−1 Sfwd/SinvRO

D
• Indifferentiability advantage:

Adviff
Sponge (q) = max

D with q queries

∣∣∣Pr
(
DReal = 1

)
− Pr

(
DIdeal = 1

)∣∣∣

• Consider the following restriction:

AdvR-iff
Sponge (q, `) = max

D with q queries,

pad(M) ≤ ra × `
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Public Indifferentiability [Yoneyama et al., 2009, Dodis et al., 2009]

real world ideal world

H P/P−1 Sfwd/SinvRO

D

pub

• All construction queries are public =⇒ helps the simulator to keep

RO-consistency

• Weaker model than (plain) indifferentiability: e.g., (plain) Merkle-Damg̊ard is not

indifferentiable but publicly indifferentiable [Dodis et al., 2009]

• Useful in practice, e.g., digital signature schemes
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Sponge Indifferentiability

• Sponge indifferentiable with bound O
(
q2

2c

)
[Bertoni et al., 2008]

• Generalized sponge indifferentiable with bound O
(

q
2ca/2

)
as long as

cs ≥ ca/2 + log2(ca) [Naito and Ohta, 2014]

=⇒ At least 2ca/2 queries to differentiate with high probability

• Tight bound: inner collisions while absorbing allow to differentiate
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Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]
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• Query P(m1‖0ca) for 2ca/2 different m1’s and store them in a list L

• With high probability there exist Y 6= Y ′ ∈ L s.t., innerca(Y ) = innerca(Y ′)

=⇒ Take m2 = outerra(Y ) and m′2 = outerra(Y ′)

=⇒ It gives 0b
m′1‖m′2−−−−→
m1‖m2

Z

• Requires ra ≥ ca/2 and two absorb calls
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Collision Attack with q ≈ 2ca/2 queries [Bertoni et al., 2011]
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General case:

• Let k = d ca
2ra
e

• One absorb round gives 2ra different states: not enough for an inner collision

• To have 2ca/2 states (thus an inner collision w.h.p.,) need k absorb calls

• Need also the compensation absorb call to have a full-state collision

=⇒ Requires k + 1 absorb calls
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Restricted Sponge

• Consider a sponge where at most ` absorb calls are allowed (but an arbitrary

number of blocks can be squeezed)

• Restrictive setting

• Useful in e.g., password hashing, Fiat-Shamir transform

• When ` < k + 1, the collision (thus differentiability) attack on the sponge does

not apply anymore

• One full-state collision attack in 2b−`×ra queries:

1 Make all `− 1 first absorb call queries to obtain
(

0b
Mi−→ Yi

)
i

2 Compute with primitive queries 0b
M1−−→ Y1 −→ N1 · · · −→ N2b−`×ra

3 2(`−1)×ra Yi states and 2b−`×ra Ni states =⇒ inner collision between some

Yi and Nj happens with high probability

4 Use the last absorb call on Yi to obtain a full state collision
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Tightness of Indifferentiability With a Restricted Sponge

• Attack has a cost of 2b−`×ra while indifferentiability of the sponge guarantees

security up to ≈ 2ca/2 queries

=⇒ There is a gap when ` < k + 1

• Contribution of this work:

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
AdvR-pubiff

Sponge (q, `) = O
(
q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
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Related Work
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• When ` = 1 the bound is already captured by an indifferentiability result from

Naito and Ohta: set r = 0, r ′ = rs , r
′′ = ra

• New results whenever 1 < ` < d ca
2ra
e+ 1
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Notation

• Define AbsorbPath as

AbsorbPath =
{

0b
}
∪
{
Y | ∃0b

m1‖···‖ml−−−−−−→ Y with l < `
}

=⇒ AbsorbPath contains the rooted nodes where absorption of a message block is

still possible

• Remark: |AbsorbPath| ≤ min
{
q + 1, 2× 2(`−1)×ra

}

• 0b
m1−−→ A1

m2−−→ · · · ml−→ Al −−→ S1 −−→ · · · −−→ Sn is a valid path whenever l ≤ `
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The Simulator Used

S = (Sfwd, Sinv), similar to the one used in indifferentiability of sponge

proof [Bertoni et al., 2008]:

• S keeps track of the graph construction

• Sinv returns random elements

• On query with input X , Sfwd keeps RO-consistency whenever X appears in a

valid path

• S behaves like a two-sided RF

• For public indifferentiability: build S ′ which additionally relays to S all primitive

queries associated to the construction queries
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World Decomposition

Ideal World

Sfwd/SinvRO

Intermediate World

Sfwd/SinvH

RO

Real World

P/P−1H

D

• One Intermediate World is introduced to facilitate the analysis

• Intermediate versus Real: construction queries can be transformed into primitive

queries =⇒ PRP/PRF switching lemma

• Ideal versus Intermediate: consistency of the simulator with respect to RO and

extra queries to S in Intermediate World =⇒ identical until BAD
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Ideal versus Intermediate: Bad Events

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• GUESS: (only in Intermediate World) adversary guesses an intermediate state

generated from construction queries without having made the primitive queries

To do that, it can guess:

1 Either the full state of any rooted node

2 Either the inner part of a node in AbsorbPath

GUESS does not apply in public indifferentiability
0b
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• : inner collisions with AbsorbPath

• : Xi = Xj or Yi = Yj for some j < i

• CONNECT: Yi = Xj or Xi = Yj for some j < i
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Tightness of the bound

• Remember that

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• Inner collision attack has a cost of ≈ max

{
2ca/2; 2b−`×ra

}
queries

• What about the others terms?

• 2cs queries: adversary can try all inner parts

• 2b/2 queries: adversary can set CONNECT

14 / 16



Tightness of the bound

• Remember that

AdvR-iff
Sponge (q, `) = O

(
q

2cs
+

q2

2b
+ min

{
q2

2ca
,

q

2b−`×ra

})
• Inner collision attack has a cost of ≈ max

{
2ca/2; 2b−`×ra

}
queries

• What about the others terms?

• 2cs queries: adversary can try all inner parts

• 2b/2 queries: adversary can set CONNECT

14 / 16



Application

• Ascon-hash

• b = 320, c = 256, r = 64

• Unrestricted sponge: 128 bits of security

• Sponge with input messages of at most 127 bits: 160 bits of security

• Photon Beetle-Hash or T-Quark

• b = 256, c = 224, r = 32

• Unrestricted sponge: 112 bits of security

• Sponge with input messages of at most 127 bits: 128 bits of security

• To maximize security and absorbing rate, the best parameter choice is

` = 1, ca = ra = b/2
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Conclusion

• Proved a tight indifferentiability bound for the sponge construction when the

number of message blocks is restricted

• It gives a better security bound when less than d ca
2ra
e+ 1 blocks are absorbed

Thank you for your attention!
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