Backward-Leak Uni-Directional Updatable Encryption from (Homomorphic) Public Key Encryption

Yao Jiang Galteland and Jiaxin Pan

NTNU Trondheim, Norway

Norwegian University of Science and Technology

- Backward-leak uni-directional key update setting \Leftrightarrow No-directional one
- Two Generic Constructions of UE
 - From homomorphic PKE (concurrent to Miao, Patranabis, Watson, PKC 2023)
 - From bootstrappable PKE

 Unidirectional Updatable Encryption and Proxy Re-encryption from DDH Miao, Patranabis, Watson; PKC 2023 (ePrint 2022/311)

Recall: Updatable Encryption (UE)

Key Homomorphic PRFs and their Applications
 Boneh, Lewi, Montgomery, Raghunathan; CRYPTO '13 (ePrint 2015/220)

Recall: Updatable Encryption (UE)

- Client only needs to store one key
- Security (informal): (freshly encrypted or updated) ciphertexts or tokens should leak nothing about the plaintext

Key Homomorphic PRFs and their Applications
 Boneh, Lewi, Montgomery, Raghunathan; CRYPTO '13 (ePrint 2015/220)

Epoch-based Model

			_	time	÷				
0	1	2	3	4	5	6	7		n
	$ riangle_1$	\triangle_2	\triangle_3	\triangle_4	\triangle_5	$ riangle_6$	\triangle_7		
k ₀	$\mathbf{k_1}$	\mathbf{k}_2	k3	\mathbf{k}_4	k_5	k ₆	k7	ł	k _n
C_{0}	C_1	C_2	C_{3}	C_4	C_{5}	C_{6}	C_7	(С <i>п</i>

Bi-directional Updates

0	1	2	3	 i-1	i	 n
	$ riangle_1$	$ riangle_2$	$ riangle_3$	 \bigtriangleup	ì	
k ₀	k_1	k ₂	k ₃	 k_{i-1} $\bar{\epsilon}$	\rightarrow_{k_i}	 k _n
C_0	C_1	C_2	C_{3}	 C_{i-1}	C_i	 \mathbf{C}_n

Bi-directional key updates:

- ✓ We can infer k_i from k_{i-1} and $△_i$;
- ✓ We can infer k_{i-1} from k_i and $△_i$;

Bi-directional Updates

0	1	2	3	 i-1	i	 n
	$ riangle_1$	$ riangle_2$	$ riangle_3$	 $ riangle_i$		
k ₀	k_1	k ₂	k3	 k_{i-1}	k _i	 k _n
C_{0}	C_1	C_2	C_{3}	 C_{i-1}	≥ C _i	 \mathbf{C}_n

Bi-directional ciphertext updates:

- ✓ We can infer C_i from C_{i-1} and Δ_i ;
- ✓ We can infer C_{i-1} from C_i and $△_i$;

(Forward-leak) Uni-directional Updates

0	1	2	3	 i-1 i	i	n
	$ riangle_1$	$ riangle_2$	$ riangle_3$	 $ riangle_i$		
k ₀	$\mathbf{k_1}$	k ₂	k3	 $k_{i-1} \rightleftharpoons$	k _i	k _n
C_{0}				C_{i-1}		

Forward-leak Uni-directional key updates:

- ✓ We can only infer k_i from k_{i-1} and $△_i$;
- **X** We can not infer k_{i-1} from k_i and \triangle_i ;

(Forward-leak) Uni-directional Updates

0	1	2	3	 i-1	i	 n
	$ riangle_1$	$ riangle_2$	$ riangle_3$	 \triangle_i		
k ₀	k ₁	k ₂	k3	 k_{i-1}	k _i	 k _n
C_{0}	C_1	C_2	C_{3}	 $C_{i-1} \in$	$\rightarrow C_i$	 \mathbf{C}_n

(Forward-leak) uni-directional ciphertext updates:

- ✓ We can only infer C_i from C_{i-1} and Δ_i ;
- **X** We can not infer C_{i-1} from C_i and \triangle_i ;

(Backward-leak) Uni-directional Updates

0	1	2	3	 i-1	i	 n
	$ riangle_1$	$ riangle_2$	$ riangle_3$	 \triangle_i		
k ₀	k ₁	k ₂	k3	 $k_{i-1} \in$	₩i	 k _n
C_{0}	C_1	C_2	C_{3}	 C_{i-1}	C_i	 \mathbf{C}_n

Backward-leak Uni-directional key updates [Nishimaki, PKC'22]:

✓ We can only infer k_{i-1} from k_i and Δ_i ;

X We cannot infer k_i from k_{i-1} and \triangle_i ; (Forward-leak) uni-directional ciphertext updates:

- ✓ We can only infer C_i from C_{i-1} and $△_i$;
- **X** We cannot infer C_{i-1} from C_i and \triangle_i ;

No-directional Key Updates

						time	\rightarrow			
0		1		2		3		i-1	i	 n
	$ riangle_1$		\triangle_2		$ riangle_3$			\triangle_i		
k ₀		$\mathbf{k_1}$		\mathbf{k}_2		k ₃		k_{i-1}	≱ k _i	 k _n
C_{0}		C_1		C_2		C_{3}		C_{i-1}	C_i	 \mathbf{C}_n

No-directional key updates:

- **X** We cannot infer k_i from k_{i-1} and \triangle_i ;
- **X** We cannot infer k_{i-1} from k_i and \triangle_i ;

- UE schemes with uni-directional updates leak less information than bi-directional updates
 - Are uni-directional updates more secure?

- UE schemes with uni-directional updates leak less information than bi-directional updates
 - Are uni-directional updates more secure?
- UE schemes with no-directional key updates leak the least information

- UE schemes with uni-directional updates leak less information than bi-directional updates
 - Are uni-directional updates more secure?
- UE schemes with no-directional key updates leak the least information
 - Are no-directional key updates most secure?

- [Jiang20] The direction of updatable encryption does not matter much Jiang, Y.; ASIACRYPT 2020. (ePrint 2020/622)
- [Nishimaki22] The direction of updatable encryption does matter. Nishimaki, R.; PKC 2022 (ePrint 2021/221)

- [Jiang20] The direction of updatable encryption does not matter much Jiang, Y.; ASIACRYPT 2020. (ePrint 2020/622)
- [Nishimaki22] The direction of updatable encryption does matter. Nishimaki, R.; PKC 2022 (ePrint 2021/221)

Contradiction?

- [Jiang20] The direction of updatable encryption does not matter much Jiang; ASIACRYPT 2020. (ePrint 2020/622)
- [Nishimaki22] The direction of updatable encryption does matter. Nishimaki; PKC 2022 (ePrint 2021/221)

Confidentiality Notions

 For kk ∈ {f-uni, b-uni, bi, no} and cc ∈ {uni, bi}, consider UE schemes with kk-directional key updates and cc to cc-directional ciphertext updates.

- Challenger checks leaked information to see if the adversary can trivially win
- Trivial wins depend on the update settings!

- To prove:
 - Backward-leak \Leftrightarrow No-directional
- Proof idea:
 - The trivial wins in the backward-uni-directional updates are triggered if and only if the trivial wins in the no-directional updates are triggered.

Generic Constructions of UE

UE schemes	Assumptions	IND-UE
[Nishimaki22]	LWE	backward-leak
[Nishimaki22]	IO	no-directional
RISE [LT18] and SHINE [BDGJ20]	DDH	bi-directional
Encrypt-and-MAC (E&M) [KLR19]	DDH + ROM	bi-directional
NYUAE [KLR19]	SXDH	bi-directional
LWEUE [Jiang20]	LWE	bi-directional

UE schemes	Assumptions	IND-UE
[Nishimaki22]	LWE	backward-leak
[Nishimaki22]	10	no-directional
RISE [LT18] and SHINE [BDGJ20]	DDH	bi-directional
Encrypt-and-MAC (E&M) [KLR19]	DDH + ROM	bi-directional
NYUAE [KLR19]	SXDH	bi-directional
LWEUE [Jiang20]	LWE	bi-directional

Backward-leak or no-directional UE schemes from Other Assumptions?

UE schemes	Assumptions	IND-UE
[Nishimaki22]	LWE	backward-leak
[Nishimaki22]	10	no-directional
RISE [LT18] and SHINE [BDGJ20]	DDH	bi-directional
Encrypt-and-MAC (E&M) [KLR19]	DDH + ROM	bi-directional
NYUAE [KLR19]	SXDH	bi-directional
LWEUE [Jiang20]	LWE	bi-directional

- Backward-leak or no-directional UE schemes from Other Assumptions?
- Generic constructions of UE?

UE schemes	Assumptions	IND-UE
[Nishimaki22]	LWE	backward-leak
[Nishimaki22]	10	no-directional
RISE [LT18] and SHINE [BDGJ20]	DDH	bi-directional
Encrypt-and-MAC (E&M) [KLR19]	DDH + ROM	bi-directional
NYUAE [KLR19]	SXDH	bi-directional
LWEUE [Jiang20]	LWE	bi-directional

- Backward-leak or no-directional UE schemes from Other Assumptions?
- Generic constructions of UE?

Key and Message Homomorphic PKE

- Key Homomorphic PKE:
 - the distribution generated from the homomorphism of keys is statistically close to the original key distribution
 - allow to compute a new public key from a secret key (assume sk₂) and an old public key (assume pk₁ with sk₁ as its secret key), then

$$pk_{new} = KHK(sk_2, pk_1) \stackrel{s}{\approx} [sk_1 \otimes sk_2],$$

• Message Homomorphic PKE: for any message $m_1, m_2 \in M$ and any public key pk:

$$Enc(pk, m_1) \otimes Enc(pk, m_2) = Enc(pk, m_1 \oplus m_2)$$

Examples The ElGamal and Regev encryption schemes

Uni-Directional UE from Key and Message Homomorphic PKE

 $\operatorname{Setup}(\lambda)$: $\overline{(sk_{1,1}, pk_{1,1})} \leftarrow \mathsf{PKE.KG}(\lambda)$ **return** $(sk_{1,1}, pk_{1,1})$ $Next(sk_e)$: parse $\mathbf{sk}_{e} = (sk_{e,1}, \dots, sk_{e,e})$ for $i \in \{1, ..., e\}$ do $(\Delta_i, [\Delta_i]) \leftarrow \mathsf{PKE}.\mathsf{KG}(\lambda)$ $sk_{e+1} \in sk_{e} \otimes \Delta_i$ $pk_{e+1,i} \leftarrow [sk_{e+1,i}]$ $(sk_{e+1,e+1}, pk_{e+1,e+1}) \leftarrow \mathsf{PKE}.\mathsf{KG}(\lambda)$ $\mathbf{sk}_{e+1} \leftarrow (sk_{e+1}, \dots, sk_{e+1}, e_{e+1})$ $\mathbf{pk}_{e+1} \leftarrow (pk_{e+1,1}, \dots, pk_{e+1,e+1})$ $\Delta_{e\pm 1}^{sk} \leftarrow (\Delta_1, \dots, \Delta_e)$ $\Delta_{e+1} \leftarrow (\Delta_{e+1}^{sk}, pk_{e+1,e+1})$ return Δ_{e+1} , (sk_{e+1}, pk_{e+1}) $Enc(\mathbf{pk}_{e}, m)$: $\mathbf{R}_{e} \xleftarrow{\$} \mathcal{M}^{\mathsf{e} \times 1}$ parse $\mathbf{R}_{\mathbf{a}} = (r_{\mathbf{a}}, \dots, r_{\mathbf{a}}, \mathbf{a})$

 $\mathbf{c}_{\mathsf{e},1} \leftarrow \mathsf{PKE}.\mathsf{Enc}(\mathbf{pk}_{\mathsf{e}}, \mathbf{R}_{\mathsf{e}})$ $c_{\mathsf{e},2} \leftarrow r_{\mathsf{e},1} \oplus \cdots \oplus r_{\mathsf{e},\mathsf{e}} \oplus m$

return $\mathbf{c}_{e} = (\mathbf{c}_{e,1}, c_{e,2})$

 $Dec(sk_e, c_e)$: parse $\mathbf{c}_{e} = (\mathbf{c}_{e,1}, c_{e,2})$ $\mathbf{B}_{e} \leftarrow \mathsf{PKE}_{\mathsf{Dec}}(\mathbf{sk}_{e}, \mathbf{c}_{e,1})$ parse $\mathbf{R}_{e} = (r_{e,1}, ..., r_{e,e})$ $m' \leftarrow c_{e,2} \oplus^{-1} (r_{e,1} \oplus \cdots \oplus r_{e,e})$ return m' $\mathsf{Upd}(\Delta_{e+1}, \mathbf{c}_e)$: parse $\Delta_{e+1} = (\Delta_{e+1}^{sk}, pk_{e+1})$ parse $\mathbf{c}_{e} = (\mathbf{c}_{e 1}, c_{e 2})$ $\mathbf{R} \xleftarrow{\$} \mathcal{M}^{(\mathsf{e}+1) \times 1}$ $\mathbf{c}^1 \leftarrow \mathsf{PKE}.\mathsf{KHC}(\mathbf{\Delta}_{e+1}^{sk}, \mathbf{c}_{e,1})$ $\mathbf{c}_{\mathbf{e}+1} \leftarrow (\mathbf{c}^1, 0) + \mathsf{PKE}.\mathsf{Enc}(\mathbf{pk}_{\mathbf{e}+1}, \mathbf{R})$ parse **R** = $(r_1, ..., r_{e+1})$ $c_{e+1,2} \leftarrow c_{e,2} \oplus r_1 \oplus \cdots \oplus r_{e+1}$ $\mathbf{c}_{e+1} \leftarrow (\mathbf{c}_{e+1,1}, c_{e+1,2})$ return c_{e+1}

• $\exists Recrypt \text{ s.t. } \forall (sk_1, pk_1), (sk_2, pk_2) \stackrel{\$}{\leftarrow} KG(\lambda) \text{ and } m$

 $(c, \textit{Recrypt}(\textit{pk}_2, D, \textit{Enc}(\textit{pk}_2, \textit{sk}_1), c)) \stackrel{\mathrm{s}}{pprox} (c, \textit{Enc}(\textit{pk}_2, m))$

where $c = Enc(pk_1, m)$ and D is its own decryption circuit.

• $\exists Recrypt \text{ s.t. } \forall (sk_1, pk_1), (sk_2, pk_2) \stackrel{\$}{\leftarrow} KG(\lambda) \text{ and } m$

 $(c, Recrypt(pk_2, D, Enc(pk_2, sk_1), c)) \stackrel{s}{\approx} (c, Enc(pk_2, m))$

where $c = Enc(pk_1, m)$ and D is its own decryption circuit.

• Recrypt: For updating CT

 $\begin{array}{l} \underline{\mathsf{Setup}}(\lambda):\\ \hline (sk_1,pk_1) \leftarrow \mathsf{BPKE}.\mathsf{KG}(\lambda)\\ \mathbf{return} \ (sk_1,pk_1) \end{array}$

 $\begin{array}{l} & \underbrace{\mathsf{Next}(sk_{\mathsf{e}}):}{(sk_{\mathsf{e}+1}, pk_{\mathsf{e}+1}) \leftarrow \mathsf{BPKE}.\mathsf{KG}(\lambda)} \\ & \varDelta_{\mathsf{e}+1} \leftarrow \mathsf{BPKE}.\mathsf{Enc}(pk_{\mathsf{e}+1}, sk_{\mathsf{e}}) \\ & \mathbf{return} \ \varDelta_{\mathsf{e}+1}, (sk_{\mathsf{e}+1}, pk_{\mathsf{e}+1}) \end{array}$

 $\frac{\mathsf{Enc}(pk_{\mathsf{e}},m):}{c_{\mathsf{e}} \leftarrow \mathsf{BPKE}.\mathsf{Enc}(pk_{\mathsf{e}},m)}$ return c_{e}

 $\frac{\frac{\mathsf{Dec}(sk_{\mathsf{e}}, c_{\mathsf{e}}):}{m' \leftarrow \mathsf{BPKE}.\mathsf{Dec}(sk_{\mathsf{e}}, c_{\mathsf{e}})}}{\mathbf{return} \ m'}$

 $\frac{\mathsf{Upd}(\varDelta_{\mathsf{e}+1}, c_{\mathsf{e}}):}{c_{\mathsf{e}+1} \leftarrow \mathsf{BPKE}.\mathsf{Recrypt}(pk_{\mathsf{e}+1}, D, \varDelta_{\mathsf{e}+1}, c_{\mathsf{e}})}$ return $c_{\mathsf{e}+1}$

Summary

- Equivalence: Under uni-directional ciphertext updates,

Backward-leak uni-directional key update \Leftrightarrow No-directional

- Two Generic Constructions of backward-leak UE:
 - From homomorphic PKE (concurrent to Miao, Patranabis, Watson, PKC 2023)
 - From bootstrappable PKE

 Uni-directional UE from standard assumptions without linear growth in the key and cipehrtextext

- [LT18] Updatable encryption with post-compromise security Lehmann, and Tackmann; Eurocrypt 2018. (ePrint 2018/118)
- [KLR19] (R)CCA Secure Updatable Encryption with Integrity Protection Kloo
 ß, Lehmann, and Rupp; Eurocrypt 2019. (ePrint 2019/222)
- [BDGJ20] Fast and Secure Updatable Encryption
 Boyd, Davies, Gjøsteen, and Jiang; Crypto 2020. (ePrint 2019/1457)
- [Jiang20] The direction of updatable encryption does not matter much Jiang; Asiacrypt 2020. (ePrint 2020/622)
- [Nishimaki22] The direction of updatable encryption does matter. Nishimaki; PKC 2022 (ePrint 2021/221)

Thank you for your attention!

Questions?