

GLUE: Generalizing Unbounded Attribute-Based Encryption for Flexible Efficiency Trade-Offs

Marloes Venema^{1,2} Greg Alpár^{3,2}

¹University of Wuppertal, Wuppertal, Germany

²Radboud University, Nijmegen, the Netherlands

³Open Universiteit, Heerlen, the Netherlands

PKC 2023

Motivation

- Attribute-based encryption (ABE) is a versatile primitive that has been considered extensively to securely manage access to data
- Various properties can be supported, e.g., unlimited use of attributes, negations (NOTs)

Motivation

- Attribute-based encryption (ABE) is a versatile primitive that has been considered extensively to securely manage access to data
- Various properties can be supported, e.g., unlimited use of attributes, negations (NOTs)
- Whether properties are needed depends on the application
- Efficiency requirements may depend on the application's computational devices
- Schemes typically provide a fixed efficiency trade-off
- In particular, schemes with many (desirable) properties typically have an inefficient decryption

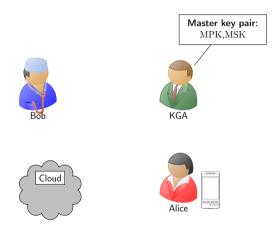
Motivation

- Attribute-based encryption (ABE) is a versatile primitive that has been considered extensively to securely manage access to data
- Various properties can be supported, e.g., unlimited use of attributes, negations (NOTs)
- Whether properties are needed depends on the application
- Efficiency requirements may depend on the application's computational devices
- Schemes typically provide a fixed efficiency trade-off
- In particular, schemes with many (desirable) properties typically have an inefficient decryption
- Our goal: creating a scheme that can support many such properties with a flexible efficiency trade-off
- Can be fine-tuned e.g., to have a very efficient decryption

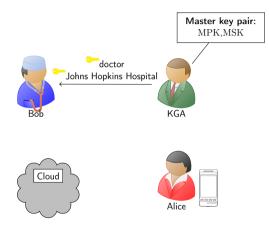
High-level overview

Introduction to ABE

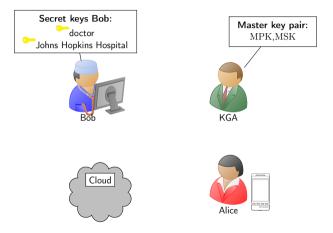
2 GLUE

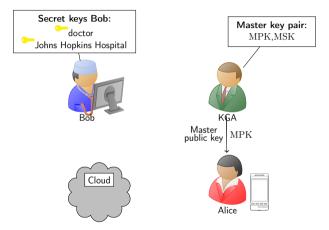

High-level overview

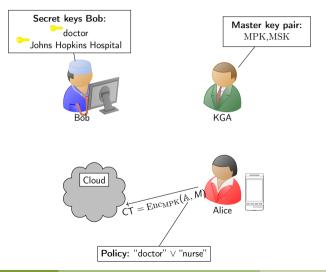
Introduction to ABE

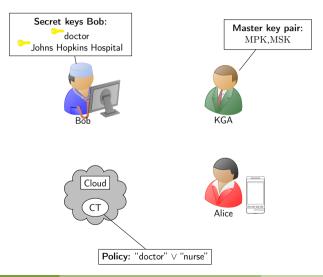

2 GLUE

3 Conclusion

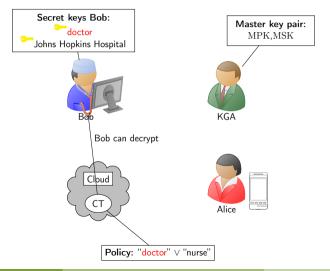

Setup:


Key generation:


Key generation:



Encryption:



Encryption:

Decryption:

- By its functionality, ABE implements access control
- Popular in settings in which data has to be stored on untrusted platforms

- By its functionality, ABE implements access control
- Popular in settings in which data has to be stored on untrusted platforms
- The European Telecommunications Standards Institute (ETSI) considers several use cases for ABE, e.g., Cloud, IoT "
- More recently, Cloudflare has presented an updated version of their Geo Key Manager: Portunus

Requirements for ABE

These use cases share many common requirements for ABE:

- Expressive policies: policies should support Boolean formulas consisting of AND and OR operators
- Large universes: attribute could be any arbitrary string, e.g., names, roles, MAC addresses
- Unbounded: no bounds on any parameters, such as the length of the policies or attribute sets

Requirements for ABE

These use cases share many common requirements for ABE:

- Expressive policies: policies should support Boolean formulas consisting of AND and OR operators
- Large universes: attribute could be any arbitrary string, e.g., names, roles, MAC addresses
- Unbounded: no bounds on any parameters, such as the length of the policies or attribute sets

Some use cases also require **non-monotonicity**, i.e., the support of negations/NOT operators in the policies. Cloudflare @ RWC 2023: "Negation is important, please include it!"

Requirements for ABE

These use cases share many common requirements for ABE:

- Expressive policies: policies should support Boolean formulas consisting of AND and OR operators
- Large universes: attribute could be any arbitrary string, e.g., names, roles, MAC addresses
- Unbounded: no bounds on any parameters, such as the length of the policies or attribute sets

Some use cases also require **non-monotonicity**, i.e., the support of negations/NOT operators in the policies. Cloudflare @ RWC 2023: "Negation is important, please include it!"

Storage and computational efficiency requirements may vary per use case.

Requirements for storage and computational efficiency

Examples:

- Portunus and cloud settings: fast decryption
- Internet of Things: small ciphertexts, fast encryption

Requirements for storage and computational efficiency

Examples:

- Portunus and cloud settings: fast decryption
- Internet of Things: small ciphertexts, fast encryption

- If we do not require negations (NOTs): [AC17, RW22] have an efficient decryption
- If we do require negations, then it is more complicated

- If we do not require negations (NOTs): [AC17, RW22] have an efficient decryption
- If we do require negations, then it is more complicated
- Most schemes supporting negations have an expensive decryption, i.e., require many pairing operations
- Some schemes support negations more efficiently, but are more restricted (i.e., bounded)

- If we do not require negations (NOTs): [AC17, RW22] have an efficient decryption
- If we do require negations, then it is more complicated
- Most schemes supporting negations have an expensive decryption, i.e., require many pairing operations
- Some schemes support negations more efficiently, but are more restricted (i.e., bounded)
- To understand why non-monotone schemes are less efficient than monotone schemes, we observe them

- If we do not require negations (NOTs): [AC17, RW22] have an efficient decryption
- If we do require negations, then it is more complicated
- Most schemes supporting negations have an expensive decryption, i.e., require many pairing operations
- Some schemes support negations more efficiently, but are more restricted (i.e., bounded)
- To understand why non-monotone schemes are less efficient than monotone schemes, we observe them
- At the core, all these schemes have the same underlying structure using polynomials
- Polynomials are used to support large universes

Relationship between efficiency and the polynomial's degree

- Strong relationship between the decryption efficiency and the polynomial's degree
- Roughly, higher degrees lead to faster decryption

Relationship between efficiency and the polynomial's degree

- Strong relationship between the decryption efficiency and the polynomial's degree
- Roughly, higher degrees lead to faster decryption
- For example:
 - ▶ RW13 [RW13]: 1-degree polynomial \rightarrow two pairings per attribute
 - ▶ W11b [Wat08]: *n*-degree polynomial \rightarrow two pairings per *n* attributes

Relationship between efficiency and the polynomial's degree

- Strong relationship between the decryption efficiency and the polynomial's degree
- Roughly, higher degrees lead to faster decryption
- For example:
 - ▶ RW13 [RW13]: 1-degree polynomial \rightarrow two pairings per attribute
 - ▶ W11b [Wat08]: *n*-degree polynomial \rightarrow two pairings per *n* attributes
- All unbounded schemes have a 1-degree polynomial and thus require two pairings per attribute during decryption
- High-level idea: generalize the hash!

High-level overview

Introduction to ABE

Generalizing the polynomial-based hash

- GLUE generalizes the polynomial-based hash of RW13
- 1-degree polynomial \rightarrow *n*-degree polynomial

Generalizing the polynomial-based hash

- GLUE generalizes the polynomial-based hash of RW13
- 1-degree polynomial \rightarrow *n*-degree polynomial
- We also convey another parameter as a polynomial to achieve security

Generalizing the polynomial-based hash

- GLUE generalizes the polynomial-based hash of RW13
- 1-degree polynomial \rightarrow *n*-degree polynomial
- We also convey another parameter as a polynomial to achieve security
- Note that RW13 is a monotone scheme

GLUE generalizes the 1-degree polynomial of RW13 to an *n*-degree polynomial, where $n = n_k + n_c - 1$.

GLUE generalizes the 1-degree polynomial of RW13 to an *n*-degree polynomial, where $n = n_k + n_c - 1$.

 \rightarrow partition the sets and policies in smaller subsets of maximum size n_k and n_c , respectively.

GLUE generalizes the 1-degree polynomial of RW13 to an *n*-degree polynomial, where $n = n_k + n_c - 1$.

 \rightarrow partition the sets and policies in smaller subsets of maximum size n_k and n_c , respectively.

 \rightarrow number of pairings needed during decryption can be reduced by a factor in n_k and n_c , e.g., a factor of n_k if $n_k = n_c$.

GLUE generalizes the 1-degree polynomial of RW13 to an *n*-degree polynomial, where $n = n_k + n_c - 1$.

 \rightarrow partition the sets and policies in smaller subsets of maximum size n_k and n_c , respectively.

 \rightarrow number of pairings needed during decryption can be reduced by a factor in n_k and n_c , e.g., a factor of n_k if $n_k = n_c$.

The higher n_k and n_c , the more efficient decryption is.

- Security proof combines and generalizes proof techniques of [Wat08, RW13, AC16] using a new trick
- By proving security in the symbolic pair encodings framework [AC17], we achieve properties like non-monotonicity for free [AT20, Amb21]

Performance estimates

Rough estimates¹ of the storage costs of the secret keys and the ciphertexts in kilobytes (KB), where 1 KB = 1024 bytes, and the computational costs incurred by the key generation, encryption and decryption algorithms of $GLUE_{(n_k,n_c)}$ and RW13, expressed in milliseconds (ms), for 10 and 100 attributes.

	Storage costs					Computational costs					
		SK		CT		KeyGen		Encrypt		Decrypt	
Scheme	MPK	10	100	10	100	10	100	10	100	10	100
RW13	1.42	4.86	44.58	4.05	33.58	26.0	238.7	32.9	305.9	46.2	375.2
GLUE _(3,3)	2.08	3.53	30.02	3.39	26.36	18.9	160.7	59.8	571.4	24.3	133.9
GLUE(5,5)	2.74	3.09	26.93	3.17	24.83	16.5	144.2	82.3	800.4	17.0	82.8
GLUE _(10,5)	3.28	2.87	24.72	3.17	24.83	15.4	132.3	102.1	998.4	15.1	64.5

¹On a 1.6 GHz Intel i5-8250U processor for the BLS12-446 curve

High-level overview

Introduction to ABE

2 GLUE

Conclusion

- ABE implements access control on a cryptographic level
- Various use cases require various different properties
- Previously, non-monotonicity was difficult to achieve without impacting the decryption efficiency
- GLUE addresses the need for support of negations while allowing for more efficient decryption

Thank you for your attention!

https://ia.cr/2022/613

References I

[AC16] S. Agrawal and M. Chase. A study of pair encodings: Predicate encryption in prime order groups. In E. Kushilevitz and T. Malkin, editors, TCC, volume 9563 of LNCS, pages 259-288, Springer, 2016. [AC17] S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate encryption schemes. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT, volume 10210 of LNCS, pages 627-656, Springer, 2017. [AHM⁺16] N. Attrapadung, G. Hanaoka, T. Matsumoto, T. Teruva, and S. Yamada. Attribute based encryption with direct efficiency tradeoff. In M. Manulis, A.-R. Sadeghi, and S. A. Schneider, editors, ACNS, volume 9696 of LNCS, pages 249-266, Springer, 2016. [ALdP11] N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy attribute-based encryption with constant-size ciphertexts. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, PKC, volume 6571 of LNCS, pages 90-108. Springer, 2011. [Amb21] M. Ambrona. Generic negation of pair encodings. In J. A. Garay, editor, PKC, volume 12711 of LNCS, pages 120-146. Springer, 2021. [AT20] N. Attrapadung and J. Tomida. Unbounded dynamic predicate compositions in ABE from standard assumptions. In ASIACRYPT, pages 405-436, Springer, 2020, [Att19] N. Attrapadung. Unbounded dynamic predicate compositions in attribute-based encryption. In Y. Ishai and V. Riimen, editors, EUROCRYPT, volume 11476 of LNCS, pages 34-67, Springer, 2019,

References II

[GPSW06]	V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, <i>CCS</i> . ACM, 2006.
[LW11]	A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G. Paterson, editor, <i>EUROCRYPT</i> , volume 6632 of <i>LNCS</i> , pages 547–567. Springer, 2011.
[RW13]	Y. Rouselakis and B. Waters. Practical constructions and new proof methods for large universe attribute-based encryption. In AR. Sadeghi, V. D. Gligor, and M. Yung, editors, <i>CCS</i> , pages 463–474. ACM, 2013.
[RW22]	D. Riepel and H. Wee. FABEO: fast attribute-based encryption with optimal security. In H. Yin, A. Stavrou, C. Cremers, and E. Shi, editors, <i>CCS</i> , pages 2491–2504. ACM, 2022.
[VA22]	M. Venema and G. Alpár. TinyABE: Unrestricted ciphertext-policy attribute-based encryption for embedded devices and low-quality networks. In L. Batina and J. Daemen, editors, <i>AFRICACRYPT</i> , volume 13503 of <i>LNCS</i> , pages 103–129. Springer, 2022.
[Wat08]	B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. Cryptology ePrint Archive, Report 2008/290, 2008.