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Polynomial Commitment Schemes

𝑓 𝑋 ∈ 𝔽𝑝[𝑋] s.t. deg f ≤ 𝑑

Commitment C to 𝑓

Small proof 𝜋 that 𝑓 𝑧 = 𝑦

Open 𝑓 𝑎𝑡 𝑧

Prover Verifier

Transparent setup – no private randomness



PCS – Properties

Completeness:

Extractability:
∃ efficient extractor that outputs a decommitment 𝑓 to 𝐶 that satisfies 
𝑓 𝑧 = 𝑦. 
+ binding of the commitment scheme

Succinctness:
Commitment, proof size must be “small”
Verifier efficiency should be sublinear

(Hiding, ZK)



Main result

We construct a polynomial commitment scheme with
• Transparent setup

• Succinct commitments and opening proofs - 𝑝𝑜𝑙𝑦 𝜅

• Logarithmic verifier - 𝑝𝑜𝑙𝑦 𝜅 ⋅ log deg 𝑓

feat. Groups of Unknown Order (Class groups)
Generic Group Model 

Proof of Knowledge of Exponent (PoKE) – BBF’19

Extraction Will focus on soundness



Other results

• Hiding and ZK variants of PCS

• Transparent Constant sized zkSNARKs 

• DARK fix [BFS20] with increased prover time
Also patched by [BHRRS21] as well as [eprint:BFS20]

(Details in paper)



Proof size Verification time

Roadmap



Inner Product Commitments

(No constraints on verification time)

𝒇 ∈ 𝔽𝑝
𝑙

Commitment C to 𝒇

Small proof 𝜋 that ⟨𝒇, 𝒒⟩ = 𝑦

Send 𝒒 ∈ 𝔽𝑝
𝑙

Prover Verifier

Transparent setup

Constant proof size?

⇒ 𝑷𝑪𝑺



Encoding vectors/polynomials

Let 𝑓 𝑋 ≡ 𝑓0 + 𝑓1 𝑋 + 𝑓2𝑋
2 +⋯+ 𝑓ℓ 𝑋

ℓ ∈ 𝔽𝑝 𝑋

𝒇 ≡ ( 𝑓0, 𝑓1 , ⋯ , 𝑓ℓ) ∈ 0, 𝑝 − 1 ℓ+1

int𝜶(𝒇) ≡ 𝑓0 + 𝑓1 𝛼 + 𝑓2 𝛼
2 +⋯+ 𝑓ℓ 𝛼

ℓ ∈ ℤ

𝛼 ≫ 𝑝 &  𝛼 is public

𝐶𝑜𝑚 𝑓 ≔ 𝑔𝑖𝑛𝑡𝛼 𝑓

Encoding in base – 𝛼

(!) Groups of Unknown Order (GUOs) give us binding over integers;
cannot open to both 𝑥 and 𝑥 + 𝑛 𝐺 as |𝐺| is unknown



Intuition – Inner products 𝒇 , 𝒒 =

𝑖=0

ℓ

𝑓𝑖 𝑞𝑖

𝑖𝑛𝑡𝛼 𝒇 𝑖𝑛𝑡𝛼 𝒓𝒆𝒗(𝒒)

𝛼1 𝛼ℓ−1

𝑓0 𝑓1 𝑓ℓ−1

𝛼1 𝛼ℓ−1

𝑞ℓ−1 𝑞ℓ−2 𝑞0
.

𝛼1 𝛼2ℓ−2

𝑓0𝑞ℓ−1
𝑓0𝑞ℓ−2 +
𝑓1𝑞ℓ−1

𝛼ℓ−1

∑𝑓𝑖𝑞𝑖 𝑓𝑙−1𝑞0



Intuition – Inner products

𝑖𝑛𝑡𝛼 𝑓 ⋅ 𝑖𝑛𝑡𝛼 𝑟𝑒𝑣 𝑞 = 𝐿 + ⟨𝑓, 𝑞 ⟩ ⋅ 𝛼ℓ + 𝐻

𝜎 𝑓 , 𝑞 + 𝑛𝑝

𝑣
Verifier can compute 

← Claimed inner product 

Putting both sides in the exponent of 𝑔,  and since 

𝐶𝜎 𝑔𝐿 ⋅ 𝑔𝑣 ⋅ 𝑔𝑛𝑝 𝛼ℓ ⋅ 𝑔𝐻=
?

𝐶 = 𝑔𝑖𝑛𝑡𝛼 𝑓

Verifier checks 

Prover sends Prover’s Commitment

Λ 𝑁 Γ



Range proof
using 
PoKE [BBF19]



Constant proof size

Verification time

Overflows



Overflow

A cheating prover can choose coefficients of 𝒇 outside ℤ𝑝.

This will cause “overflows” in the basic equation for inner product
(by violating the “sufficiently large” condition on 𝛼)

Basic 
Equation𝑖𝑛𝑡𝛼 𝑓 ⋅ 𝑖𝑛𝑡𝛼 𝑟𝑒𝑣 𝑞

= (𝑓0 + 𝑓1𝛼 +⋯+ 𝑓ℓ𝛼
ℓ) ⋅ (𝑞ℓ + 𝑞ℓ−1𝛼 +⋯+ 𝑞0𝛼

ℓ)

= 𝑓0𝑞ℓ + 𝑓0𝑞ℓ−1 + 𝑓1𝑞ℓ 𝛼 +⋯ +

+ 𝑓0𝑞1 + 𝑓1𝑞2 +⋯+ 𝑓ℓ−1𝑞ℓ 𝛼ℓ−1+ 𝑓0𝑞0 + 𝑓1𝑞1 +⋯+ 𝑓ℓ𝑞ℓ 𝛼ℓ +

+⋯+ 𝑓ℓ𝑞0 𝛼
2ℓ



Controlling the overflow

• Intersperse 0’s in 𝒇 : 𝑓0 0 𝑓1 0 𝑓2 0 ⋯ ⋯ ⋯ 𝑓ℓ 0

Query vector 𝒒 : 𝑞0 0 𝑞1 0 𝑞2 0 ⋯ ⋯ ⋯ 𝑞ℓ 0

Commitment 𝐶 = 𝑔𝑖𝑛𝑡𝛼2 𝑓 , where 𝑖𝑛𝑡𝛼2 𝑓 = ∑𝑓𝑖 𝛼
2𝑖

Honest prover 

Cheating Prover

0 ≤ 𝑑𝑖 ≤ 𝛼 − 1
• Test that the prover indeed used 0’s in odd positions

𝑓0 𝑑0 𝑓1 𝑑1 𝑓2 𝑑2 ⋯ ⋯ ⋯ 𝑓ℓ 𝑑ℓ𝒇 :

0 𝑧0 0 𝑧1 0 𝑧2 ⋯ ⋯ ⋯ 0 𝑧ℓRandom query 𝒛 :

Inner product ⟨ 𝑓, 𝑧 ⟩ “must”  be 0

𝑖𝑛𝑡𝛼2 𝑓 =(𝑓𝑖+𝛼𝑑𝑖) ⋅ 𝛼
2𝑖

Encoding in base – 𝛼



𝒛 𝛼



Structure on 𝑑𝑖

• Cannot show that 𝑑𝑖 = 0

• But,

𝑑𝑖 =
𝑚𝑖𝛼 − 𝑛𝑖

𝑘𝑖
where 𝑚𝑖 , 𝑛𝑖 , 𝑘𝑖 ≪ 𝛼

⇒
𝑑𝑖

𝛼
is very close to 

rationals with small denominators

0 ≤ 𝑑𝑖 ≤ 𝛼 − 1

𝜶

𝟐

𝟎 𝜶𝟑𝜶

𝟒

𝜶

𝟒

etc.

𝟎 𝜶

vs.

This suffices!



Structure on 𝑑𝑖

Honest term Overflow

Essentially, 


𝑖

𝑑𝑖𝑧𝑖 = 𝑛 𝑚𝑜𝑑 𝛼 for 𝑛 , 𝑧 ≪ 𝛼

Since all 𝑧𝑖 are random and independently chosen from ℤ𝑝, 

If prover succeeds, can pick two satisfying assignments differing in one coordinate.
(𝑟0, 𝑟1, … , 𝑟𝑙) and 𝑟0

′, 𝑟1, … , 𝑟𝑙

⇒ 𝑑𝑖 𝑟0 − 𝑟0
′ = 𝑛 − 𝑛′ 𝑚𝑜𝑑 𝛼

𝑑𝑖 =
𝑚𝑖𝛼 − 𝑛𝑖

𝑘𝑖
where 𝑚𝑖 , 𝑛𝑖 , 𝑘𝑖 ≪ 𝛼



Verification time

00000
00000

Constant proof size



Verification time

All the 𝑧𝑖 are independent and random

⇒ Takes linear time

Choose 𝒛 = 𝒙⊗ 𝒚 for  𝒙, 𝒚 ∈𝑅 ℤ𝑝
ℓ ,  i.e.,   𝑧𝑖 ℓ+𝑗 := 𝑥𝑖 ⋅ 𝑦𝑗 ,  for 0 ≤ 𝑖, 𝑗 ≤ ℓ . 

Can be computed in 𝑂 ℓ

time. 

Soundness argument no longer works 



A question

Find the maximum number of points in an 𝑛 × 𝑛 grid that do not contain corners of a rectangle. 



Cancellation from rectangles

Answer: ~𝑛 𝑛 points
In general, ~𝑛𝑑−2

−𝑑+1 [Ros16]

Each coordinate = 𝑖 𝑙 + 𝑗 for some 𝑖, 𝑗 ≤ 𝑙

Pick four accepting random choices of 𝑥𝑖 , 𝑦𝑗 such that they differ only in the 𝑖𝑡ℎ and
𝑗𝑡ℎ coordinates –

𝑥𝑖 , 𝑦𝑗 , 𝑥𝑖 , +ℎ, 𝑦𝑗 , 𝑥𝑖 , 𝑦𝑗 + 𝑡 , 𝑥𝑖 , +ℎ, 𝑦𝑗 + 𝑡

𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒

Can isolate 𝑑𝑖,𝑗 with four equations

𝑖,𝑗

𝑑𝑖,𝑗𝑥𝑖𝑦𝑗 = 𝑛 𝑚𝑜𝑑 𝛼
Soundness error ~

𝟏

𝒏

For higher dim. ~
1

𝑛2
−𝑑+1



Rectangles vs Parallelograms

Are these easier to find?



Better bounds

For dimension 𝑑, to find at least one

Box                                     ~𝐶𝑛𝑑−2
−𝑑+1

out of 𝑛𝑑 points

𝑑-cancellation structure ~𝑑𝑛𝑑−1 out of 𝑛𝑑 points

No rectangles No parallelograms



Logarithmic verification

Pick random 𝒙1, 𝒙2, ⋯ , 𝒙log 𝑙 from ℤ𝑝
2 where 𝒙𝑗 = (𝑥𝑗,0, 𝑥𝑗,1)

Random query vector of the form

Soundness error ~
𝒍𝒐𝒈 𝒍

𝒏
= negl.



Logarithmic 
verification

00000
00000

Constant proof size



Logarithmic 
verification

00000
00000

Constant proof size

Open problems

Prover time



Thanks!
https://ia.cr/2022/419

https://ia.cr/2022/419
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