

Polynomial Commitment Schemes

$$
f(X) \in \mathbb{F}_{p}[X] \text { s.t. } \operatorname{deg}(\mathrm{f}) \leq d
$$

PCS - Properties

Completeness:

Extractability:

\exists efficient extractor that outputs a decommitment f to C that satisfies $f(z)=y$.

+ binding of the commitment scheme

Succinctness:

Commitment, proof size must be "small" Verifier efficiency should be sublinear

Main result

We construct a polynomial commitment scheme with

- Transparent setup
- Succinct commitments and opening proofs - poly(κ)
- Logarithmic verifier - poly $(\kappa) \cdot \log (\operatorname{deg}(f))$
feat. Groups of Unknown Order (Class groups)
Generic Group Model

Proof of Knowledge of Exponent (PoKE) - BBF'19

Other results

- Hiding and ZK variants of PCS
- Transparent Constant sized zkSNARKs
- DARK fix [BFS20] with increased prover time

Also patched by [BHRRS21] as well as [eprint:BFS20]

Roadmap

Inner Product Commitments \Rightarrow PCS

$f \in \mathbb{F}_{p}^{l}$

Encoding vectors/polynomials

$$
\text { Let } f(X) \equiv f_{0}+f_{1} X+f_{2} X^{2}+\cdots+f_{\ell} X^{\ell} \in \mathbb{F}_{p}[X]
$$

$$
\operatorname{int}_{\boldsymbol{\alpha}}(\boldsymbol{f}) \equiv f_{0}+f_{1} \alpha+f_{2} \alpha^{2}+\cdots+f_{\ell} \alpha^{\ell} \in \mathbb{Z}
$$

$$
\boldsymbol{f} \equiv\left(f_{0}, f_{1}, \cdots, f_{\ell}\right) \in[0, p-1)^{\ell+1}
$$

$$
\alpha \gg p \& \alpha \text { is public }
$$

Encoding in base $-\alpha$

$$
\operatorname{Com}(f):=g^{i n t_{\alpha}(f)}
$$

(!) Groups of Unknown Order (GUOs) give us binding over integers; cannot open to both x and $x+n|G|$ as $|G|$ is unknown

Intuition - Inner products

$$
\langle\boldsymbol{f}, \boldsymbol{q}\rangle=\sum_{i=0}^{\ell} f_{i} q_{i}
$$

$\operatorname{int}_{\alpha}(\boldsymbol{f})$			
1	α		$\alpha^{\ell-1}$
f_{0}	f_{1}		$f_{\ell-1}$

$\operatorname{int}_{\alpha}(\boldsymbol{\operatorname { r e v }}(\boldsymbol{q}))$			
1	α		$\alpha^{\ell-1}$
$q_{\ell-1}$	$q_{\ell-2}$		q_{0}

| 1 | α | $\alpha^{\ell-1}$ | | $\alpha^{2 \ell-2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{0} q_{\ell-1}$$f_{0} q_{\ell-2}+$
 $f_{1} q_{\ell-1}$ | $\sum f_{i} q_{i}$ | $f_{l-1} q_{0}$ | | |

Intuition - Inner products

$$
\operatorname{int}_{\alpha}(f) \cdot \underbrace{\operatorname{int}_{\alpha}(\operatorname{rev}(q))}_{\substack{\sigma \\ \text { Verifier can compute }}}=L+\underbrace{\langle\langle f, q\rangle\rangle} \cdot \alpha^{\ell}+H
$$

Putting both sides in the exponent of g, and since $C=g^{i n t_{\alpha}(f)}$

Verifier checks

IPP : Version 0

Prover Verifier

Compute $C=g^{\operatorname{int}_{\alpha}(f)}$

q
$\xrightarrow{(v, N, \Lambda, \Gamma)}$

Verifier

$\mathbf{q} \in \mathbb{Z}_{p}^{l}$ is the query vector

Range proof using PoKe [BBF19]

Verification time

Overflow

A cheating prover can choose coefficients of \boldsymbol{f} outside \mathbb{Z}_{p}.
This will cause "overflows" in the basic equation for inner product (by violating the "sufficiently large" condition on α)

$$
\begin{aligned}
& \text { int }_{\alpha}(f) \cdot \operatorname{int}_{\alpha}(\operatorname{rev}(q)) \\
& =\left(f_{0}+f_{1} \alpha+\cdots+f_{\ell} \alpha^{\ell}\right) \cdot\left(q_{\ell}+q_{\ell-1} \alpha+\cdots+q_{0} \alpha^{\ell}\right) \\
& =f_{0} q_{\ell}+\left(f_{0} q_{\ell-1}+f_{1} q_{\ell}\right) \alpha+\cdots+ \\
& \quad+\left(f_{0} q_{1}+f_{1} q_{2}+\cdots+f_{\ell-1} q_{\ell}\right) \alpha^{\ell-1}+\left(f_{0} q_{0}+f_{1} q_{1}+\cdots+f_{\ell} q_{\ell}\right) \alpha^{\ell}+ \\
& \quad+\cdots+f_{\ell} q_{0} \alpha^{2 \ell}
\end{aligned}
$$

Controlling the overflow

- Intersperse 0's in \boldsymbol{f} : | f_{0} | 0 | f_{1} | 0 | f_{2} | 0 | \cdots | \cdots | \cdots | f_{ℓ} | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

f_{0}	0	f_{1}	0	f_{2}	0	\cdots	\cdots	\cdots	f_{ℓ}	0

Query vector $\boldsymbol{q}:$	q_{0}	0	q_{1}	0	q_{2}	0	\cdots	\cdots	\cdots	q_{ℓ}	0

Honest prover
Commitment $C=g^{i n t}{ }_{\alpha^{2}}(f)$, where $\operatorname{int} \alpha_{\alpha^{2}}(f)=\sum f_{i} \alpha^{2 i}$

- Test that the prover indeed used 0's in odd positions

Cheating Prover

$$
\left(0 \leq d_{i} \leq \alpha-1\right)
$$

$$
f: \begin{array}{|lllllllllll|}
\hline f_{0} & d_{0} & f_{1} & d_{1} & f_{2} & d_{2} & \cdots & \cdots & \cdots & f_{\ell} & d_{\ell} \\
\hline
\end{array}
$$

Random query \mathbf{z} : \square $\begin{array}{lllllllllll}0 & z_{0} & 0 & z_{1} & 0 & z_{2} & \cdots & \cdots & \cdots & 0 & z_{\ell}\end{array}$

$$
i n t_{\alpha^{2}}(f)=\sum\left(f_{i}+\alpha d_{i}\right) \cdot \alpha^{2 i}
$$

Inner product $\langle f, z\rangle$ "must" be 0

TEST

Prover Verifier
Compute $C=g^{\text {int }_{\alpha^{2}}(f)}$

Z
$\mathbf{z} \leftarrow \$ \mathbb{Z}_{p}^{l}$ uniformly at random
(Λ, Γ)

$$
\begin{aligned}
& \sigma:=\sum_{j=0}^{\ell} \alpha^{2 \ell-2 j+1} z_{j} \rightarrow z \\
& E:=\frac{g^{\alpha^{2 \ell+2}}}{C}, \Delta:=\frac{g^{\alpha^{2 \ell+2}}}{\Gamma}
\end{aligned}
$$

$$
\text { 1: } \operatorname{PoKPE}\{C, E, \Lambda, \Gamma, \Delta\} \text { accepts }
$$

$$
2: \quad C^{\sigma} \stackrel{?}{=} \Lambda \cdot \Gamma
$$

L

Structure on d_{i}

- Cannot show that $d_{i}=0$
- But,

$$
0 \leq d_{i} \leq \alpha-1
$$

$$
\begin{aligned}
& d_{i}=\frac{m_{i} \alpha-n_{i}}{k_{i}} \quad \text { where } m_{i}, n_{i}, k_{i} \ll \alpha \\
& \Rightarrow \frac{d_{i}}{\alpha} \text { is very close to } \\
& \text { rationals with small denominators }
\end{aligned}
$$

Structure on d_{i}

$$
\langle\mathbf{d}, \mathbf{z}\rangle \bmod \alpha+\left\lfloor\frac{\langle\mathbf{f}, \mathbf{z}\rangle}{\alpha}\right\rfloor+u \bmod \alpha=0 \quad \bmod \alpha
$$

$$
\underbrace{}_{\text {Honest term }}
$$

Overflow

Essentially,

$$
\sum_{i} d_{i} z_{i}=n \bmod \alpha \quad \text { for }|n|, z \ll \alpha
$$

Since all z_{i} are random and independently chosen from \mathbb{Z}_{p},
If prover succeeds, can pick two satisfying assignments differing in one coordinate.

$$
\begin{aligned}
& \left(r_{0}, r_{1}, \ldots, r_{l}\right) \text { and }\left(r_{0}^{\prime}, r_{1}, \ldots, r_{l}\right) \\
& \qquad \Rightarrow d_{i}\left(r_{0}-r_{0}^{\prime}\right)=\left(n-n^{\prime}\right) \bmod \alpha \\
& \quad d_{i}=\frac{m_{i} \alpha-n_{i}}{k_{i}} \quad \text { where } m_{i}, n_{i}, k_{i} \ll \alpha
\end{aligned}
$$

Verification time

Verification time

All the z_{i} are independent and random
\Rightarrow Takes linear time

$$
\sigma:=\sum_{j=0}^{\ell} \alpha^{2 \ell-2 j+1} z_{j} \rightarrow \boldsymbol{z}(\alpha)
$$

Choose $\boldsymbol{z}=\boldsymbol{x} \otimes \boldsymbol{y}$ for $\boldsymbol{x}, \boldsymbol{y} \in_{R} \mathbb{Z}_{p}^{\sqrt{\ell}}$, i.e., $z_{i \sqrt{\ell}+j}:=x_{i} \cdot y_{j}$, for $0 \leq i, j \leq \sqrt{\ell}$.

$$
\sigma_{T E S T}=\sum_{k} \alpha^{2 \ell+1-2 k} k^{k}=\alpha^{2 \ell+1} \sum_{i, j}\left(\alpha^{-2}\right)^{i \sqrt{\ell}+j} x_{i} y_{j}=\alpha^{2 \ell+1} \cdot\left(\sum_{i}\left(\alpha^{-2 \sqrt{\ell}}\right)^{i} x_{i}\right) \cdot\left(\sum_{j}\left(\alpha^{-2}\right)^{j} y_{j}\right) \quad \begin{aligned}
& \text { Can be computed in } O(\sqrt{\ell}) \\
& \text { time. }
\end{aligned}
$$

A question

Find the maximum number of points in an $n \times n$ grid that do not contain corners of a rectangle.

Cancellation from rectangles

```
Answer: }~n\sqrt{}{n}\mathrm{ points
In general, ~n n-2 -d+1}[Ros16]
```

Each coordinate $=i \sqrt{l}+j$ for some $i, j \leq \sqrt{l}$

Pick four accepting random choices of x_{i}, y_{j} such that they differ only in the $i^{\text {th }}$ and $j^{\text {th }}$ coordinates -

$$
\begin{array}{ccc}
\left(x_{i}, y_{j}\right),\left(x_{i},+h, y_{j}\right), & \left(x_{i}, y_{j}+t\right),\left(x_{i},+h, y_{j}+t\right) \\
\mathbf{z}_{\mathbf{1}} & \mathbf{z}_{\mathbf{2}} & \mathbf{z}_{\mathbf{3}}
\end{array}
$$

$\sum_{i, j} d_{i, j} x_{i} y_{j}=n \bmod \alpha \quad$ Can isolate $d_{i, j}$ with four equations
Soundness error $\sim \frac{1}{\sqrt{n}}$
For higher dim. $\sim \frac{1}{n^{2^{-d+1}}}$

Rectangles vs Parallelograms

Are these easier to find?

Better bounds

For dimension d, to find at least one

$$
\begin{array}{ll}
\text { Box } \quad \sim C n^{d-2^{-d+1}} & \text { out of } n^{d} \text { points } \\
d \text {-cancellation structure } \sim d n^{d-1} & \text { out of } n^{d} \text { points }
\end{array}
$$

Logarithmic verification

Pick random $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\log l}$ from \mathbb{Z}_{p}^{2} where $\boldsymbol{x}_{j}=\left(x_{j, 0}, x_{j, 1}\right)$
Random query vector of the form

$$
z_{k} \equiv z_{k_{0}, \ldots, k_{\log l-1}}:=\prod_{j=1}^{\log l} x_{j, k_{j-1}}
$$

$$
\text { Soundness error } \sim \frac{\log l}{n}=\text { negl. }
$$

Open problems

Thanks!

https://ia.cr/2022/419

