

Dew: Transparent Constant-sized Polynomial Commitment Scheme

Arasu Arun Chaya Ganesh Satya Lokam Tushar Mopuri Sriram Sridhar New York University

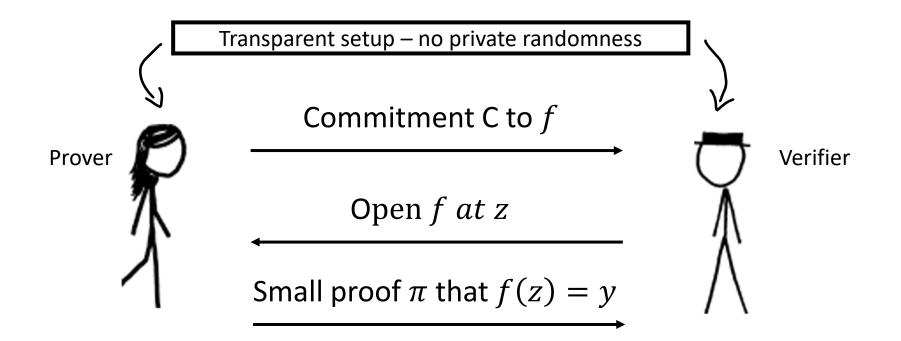
Indian Institute of Science

Microsoft Research India Indian Institute of Science

UC Berkeley

Polynomial Commitment Schemes

 $f(X) \in \mathbb{F}_p[X]$ s.t. $\deg(f) \le d$



PCS – Properties

Completeness:

Extractability:

 \exists efficient extractor that outputs a decommitment f to C that satisfies f(z) = y.

+ binding of the commitment scheme

Succinctness:

Commitment, proof size must be "small" Verifier efficiency should be sublinear

Main result

We construct a polynomial commitment scheme with

- Transparent setup
- Succinct commitments and opening proofs $poly(\kappa)$
- Logarithmic verifier $poly(\kappa) \cdot \log(\deg(f))$

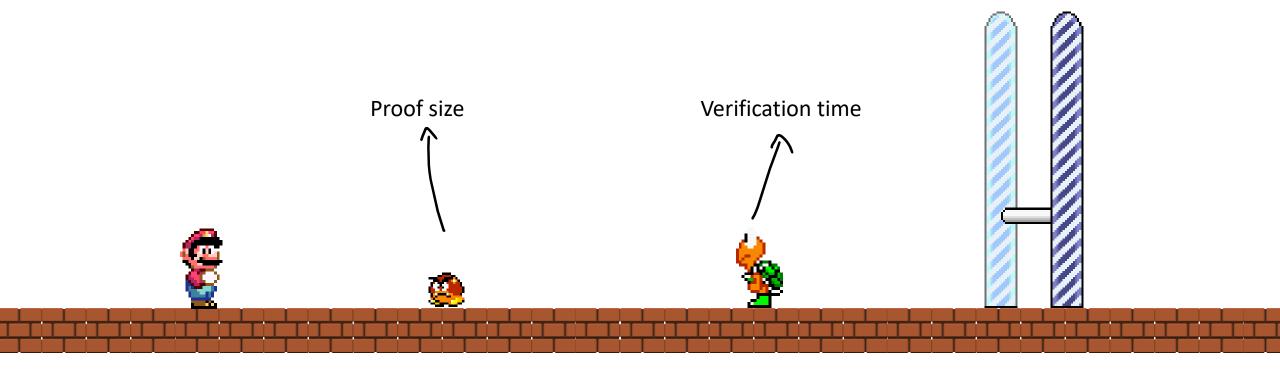
```
feat. Groups of Unknown Order (Class groups)
Generic Group Model
Proof of Knowledge of Exponent (PoKE) – BBF'19
```

Other results

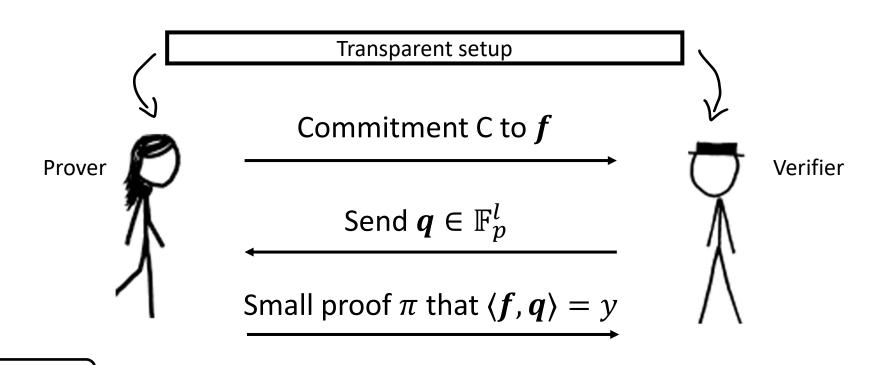
- Hiding and ZK variants of PCS
- Transparent Constant sized zkSNARKs
- DARK fix [BFS20] with increased prover time Also patched by [BHRRS21] as well as [eprint:BFS20]

(Details in paper)

Roadmap



 $f \in \mathbb{F}_p^l$



Constant proof size?

(No constraints on verification time)

Encoding vectors/polynomials

Let
$$f(X) \equiv f_0 + f_1 X + f_2 X^2 + \dots + f_\ell X^\ell \in \mathbb{F}_p[X]$$

$$\operatorname{int}_{\alpha}(\boldsymbol{f}) \equiv f_0 + f_1 \, \boldsymbol{\alpha} + f_2 \, \boldsymbol{\alpha}^2 + \dots + f_\ell \, \boldsymbol{\alpha}^\ell \, \in \, \mathbb{Z}$$

$$\boldsymbol{f} \equiv (f_0, f_1, \cdots, f_\ell) \in [0, p-1)^{\ell+1}$$

 $\alpha \gg p \& \alpha$ is public

Encoding in base – α

$$Com(f) \coloneqq g^{int_{\alpha}(f)}$$

(!) Groups of Unknown Order (GUOs) give us binding over integers; cannot open to both x and x + n|G| as |G| is unknown

Intuition – Inner products

$$\langle \boldsymbol{f}, \boldsymbol{q} \rangle = \sum_{i=0}^{\ell} f_i q_i$$

 $int_{\alpha}(\mathbf{f})$ $1 \quad \alpha \quad \text{Int} \quad \alpha^{\ell-1}$ $f_{0} \quad f_{1} \quad \text{Int} \quad f_{\ell-1}$

$$int_{\alpha}$$
 ($rev(q)$)

 1
 α
 I
 $\alpha^{\ell-1}$
 $q_{\ell-1}$
 $q_{\ell-2}$
 I
 q_0

1

$$\alpha$$
 $\alpha^{\ell-1}$
 $\alpha^{2\ell-2}$
 $f_0 q_{\ell-1}$
 $f_0 q_{\ell-2} + f_1 q_{\ell-1}$
 $\Sigma f_i q_i$
 $\Sigma f_i q_i$

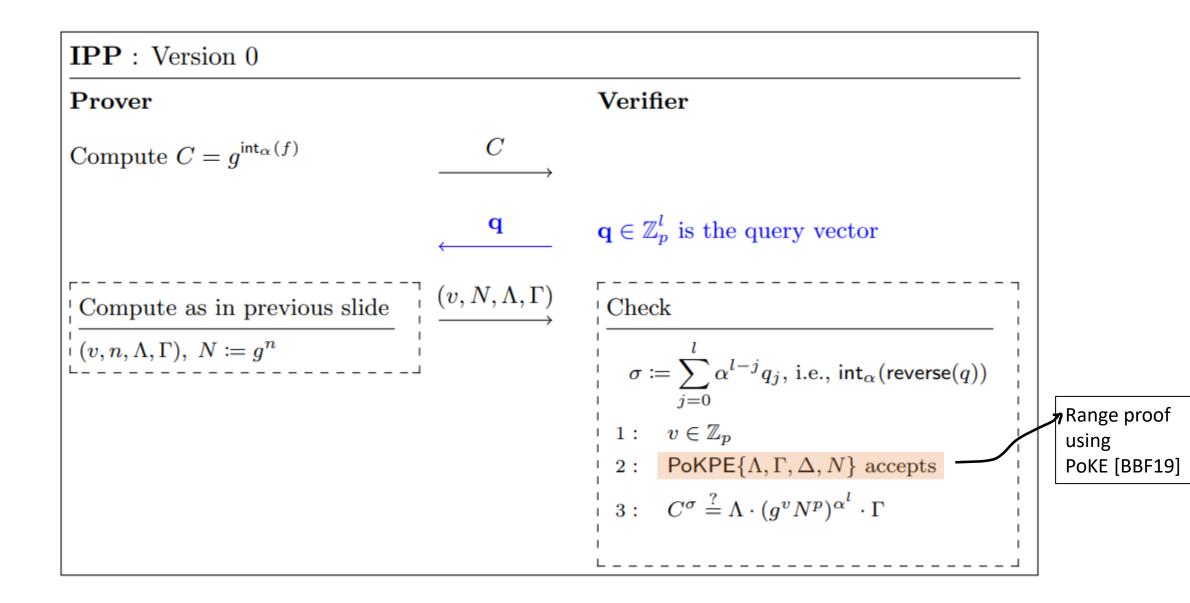
•

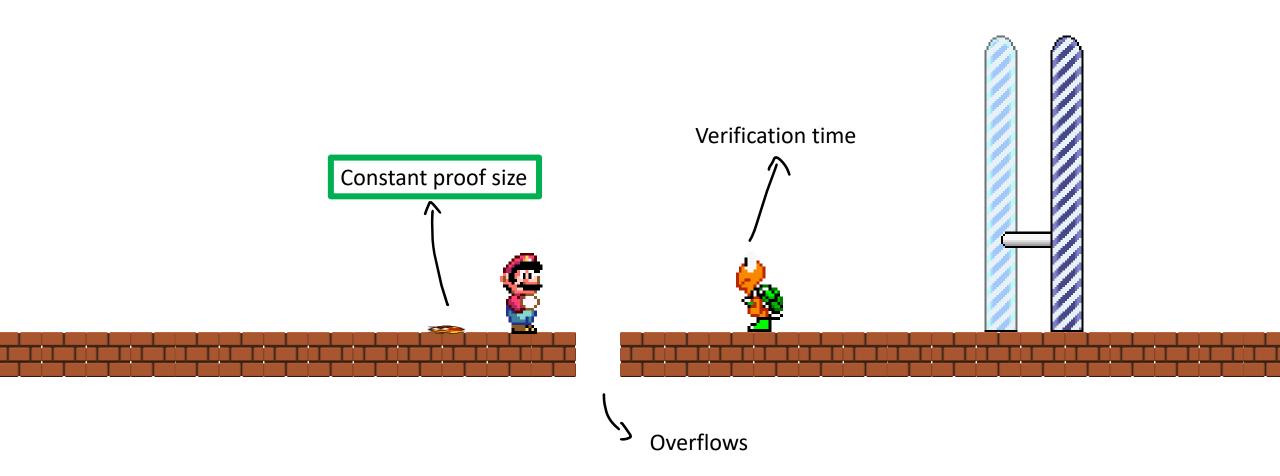
Intuition – Inner products

$$int_{\alpha}(f) \cdot int_{\alpha}(rev(q)) = L + \langle \langle f, q \rangle \rangle \cdot \alpha^{\ell} + H$$

$$\sigma$$
Verifier can compute
$$\mathcal{V} \leftarrow \text{Claimed inner product}$$

Putting both sides in the exponent of g, and since $C = g^{int_{\alpha}(f)}$





Overflow

A cheating prover can choose coefficients of f outside \mathbb{Z}_p .

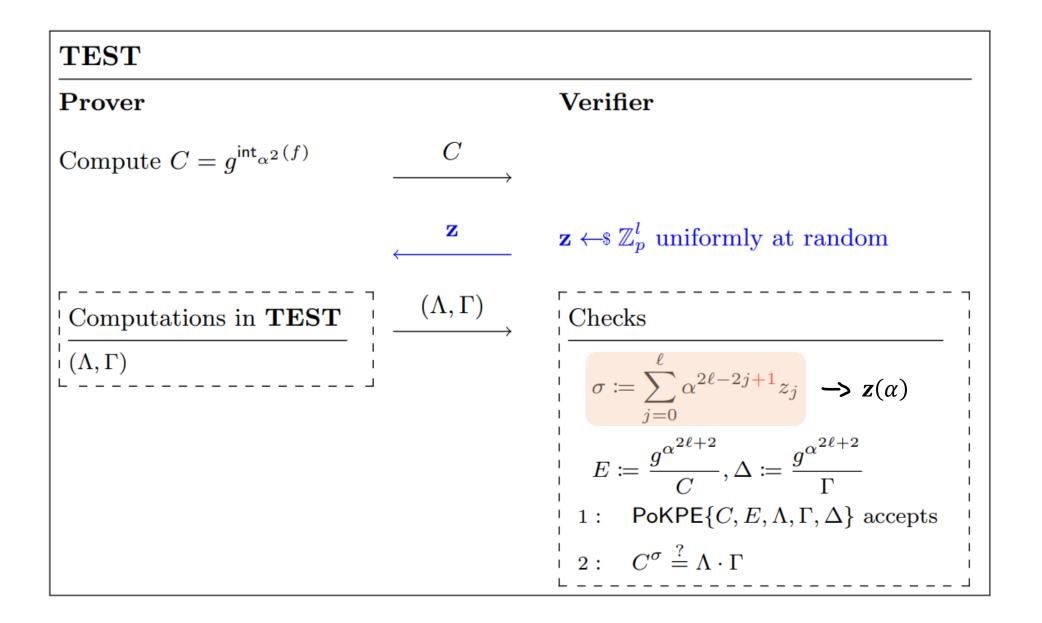
This will cause "overflows" in the basic equation for inner product (by violating the "sufficiently large" condition on α)

$$\begin{array}{l} & \text{int}_{\alpha}\left(f\right) \cdot \text{int}_{\alpha}\left(rev(q)\right) \\ & = \left(f_{0} + f_{1}\alpha + \dots + f_{\ell}\alpha^{\ell}\right) \cdot \left(q_{\ell} + q_{\ell-1}\alpha + \dots + q_{0}\alpha^{\ell}\right) \\ & = f_{0}q_{\ell} + \left(f_{0}q_{\ell-1} + f_{1}q_{\ell}\right)\alpha + \dots + \\ & + \left(f_{0}q_{1} + f_{1}q_{2} + \dots + f_{\ell-1}q_{\ell}\right)\alpha^{\ell-1} + \left(f_{0}q_{0} + f_{1}q_{1} + \dots + f_{\ell}q_{\ell}\right)\alpha^{\ell} + \\ & + \dots + f_{\ell}q_{0}\alpha^{2\ell} \end{array}$$

Controlling the overflow
• Intersperse 0's in
$$f: f_0 \ 0 \ f_1 \ 0 \ f_2 \ 0 \ \cdots \ \cdots \ f_{\ell} \ 0$$

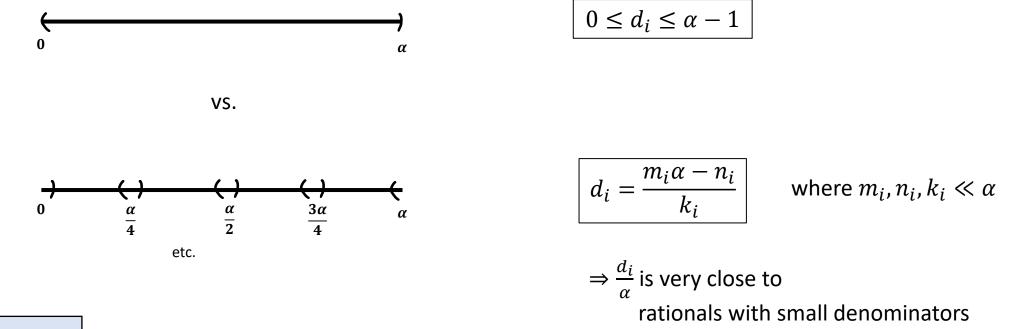
Query vector $q: q: q_0 \ 0 \ q_1 \ 0 \ q_2 \ 0 \ \cdots \ \cdots \ q_{\ell} \ 0$
Honest prover
Commitment $C = g^{int_{\alpha^2}(f)}$, where $int_{\alpha^2} \ (f) = \sum f_i \ \alpha^{2i}$
• Test that the prover indeed used 0's in odd positions
 $f: f_0 \ d_0 \ f_1 \ d_1 \ f_2 \ d_2 \ \cdots \ \cdots \ f_{\ell} \ d_{\ell}$
Random query $z: 0 \ z_0 \ 0 \ z_1 \ 0 \ z_2 \ \cdots \ \cdots \ 0 \ z_{\ell}$

Inner product $\langle f, z \rangle$ "must" be 0



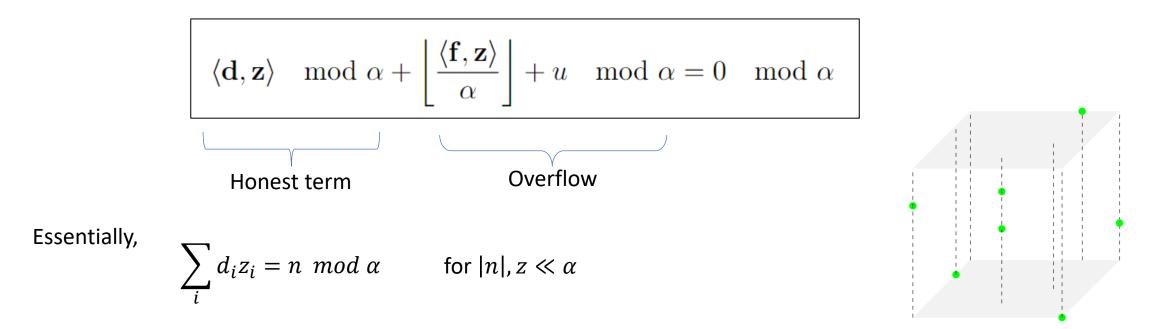
Structure on d_i

- Cannot show that $d_i = 0$
- But,



This suffices!

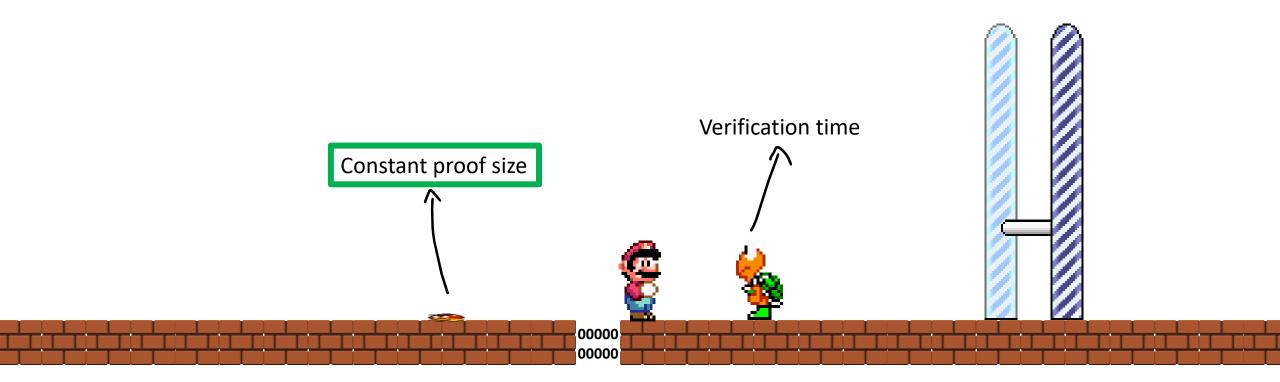
Structure on d_i



Since all z_i are random and *independently* chosen from \mathbb{Z}_p ,

If prover succeeds, can pick two satisfying assignments differing in one coordinate. $(r_0, r_1, ..., r_l)$ and $(r'_0, r_1, ..., r_l)$

$$\Rightarrow d_i(r_0 - r'_0) = (n - n') \mod \alpha$$
$$\boxed{d_i = \frac{m_i \alpha - n_i}{k_i}} \quad \text{where } m_i, n_i, k_i \ll \alpha$$



Verification time

All the z_i are independent and random \Rightarrow Takes linear time

$$\sigma \coloneqq \sum_{j=0}^{\ell} \alpha^{2\ell-2j+1} z_j \longrightarrow \mathbf{z}(\alpha)$$

Choose
$$z = x \otimes y$$
 for $x, y \in_R \mathbb{Z}_p^{\sqrt{\ell}}$, i.e., $z_{i\sqrt{\ell}+j} := x_i \cdot y_j$, for $0 \le i, j \le \sqrt{\ell}$.

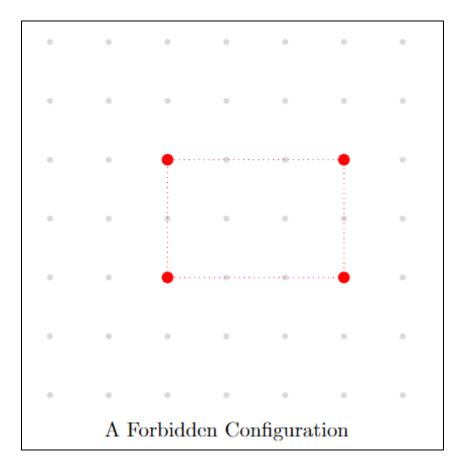
$$\sigma_{TEST} = \sum_{k} \alpha^{2\ell+1-2k} z^k = \alpha^{2\ell+1} \sum_{i,j} (\alpha^{-2})^{i\sqrt{\ell}+j} x_i y_j = \alpha^{2\ell+1} \cdot \left(\sum_{i} (\alpha^{-2\sqrt{\ell}})^i x_i\right) \cdot \left(\sum_{j} (\alpha^{-2})^j y_j\right) \quad \text{t}$$

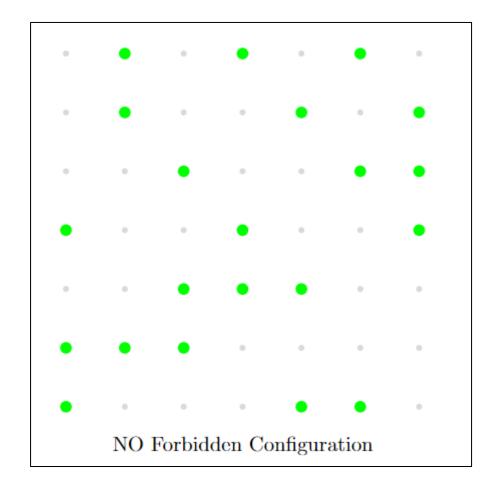
Can be computed in $O(\sqrt{\ell})$ time.

Soundness argument no longer works 😁

A question

Find the maximum number of points in an $n \times n$ grid that do *not* contain corners of a rectangle.





Cancellation from rectangles

Answer: $\sim n\sqrt{n}$ points In general, $\sim n^{d-2^{-d+1}}$ [Ros16]

Each coordinate = $i\sqrt{l} + j$ for some $i, j \le \sqrt{l}$

Pick *four* accepting random choices of x_i , y_j such that they differ only in the i^{th} and j^{th} coordinates –

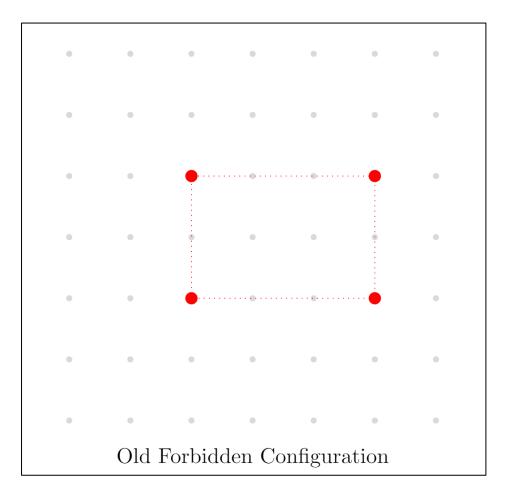
$$(x_i, y_j), (x_i, +h, y_j), (x_i, y_j + t), (x_i, +h, y_j + t)$$

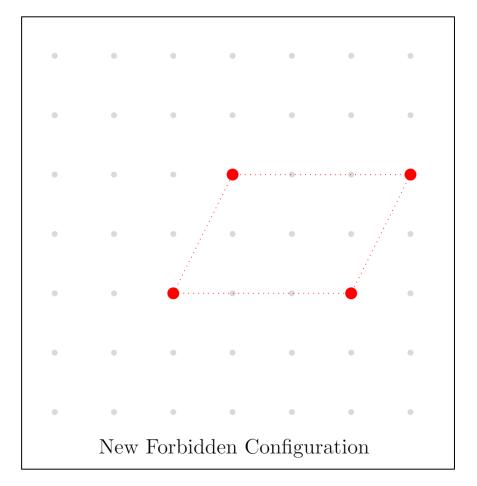
 $z_1 \quad z_2 \quad z_3 \quad z_4$

 $\sum_{i,j} d_{i,j} x_i y_j = n \mod \alpha$

Can isolate $d_{i,i}$ with four equations

Rectangles vs Parallelograms



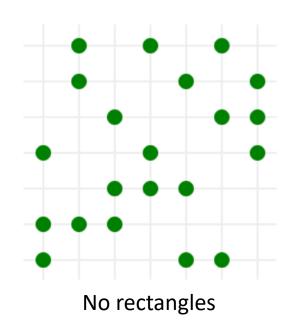


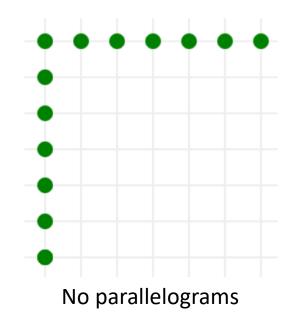
Are these easier to find?

Better bounds

For dimension d, to find at least one

Box $\sim Cn^{d-2^{-d+1}}$ out of n^d points d-cancellation structure $\sim dn^{d-1}$ out of n^d points





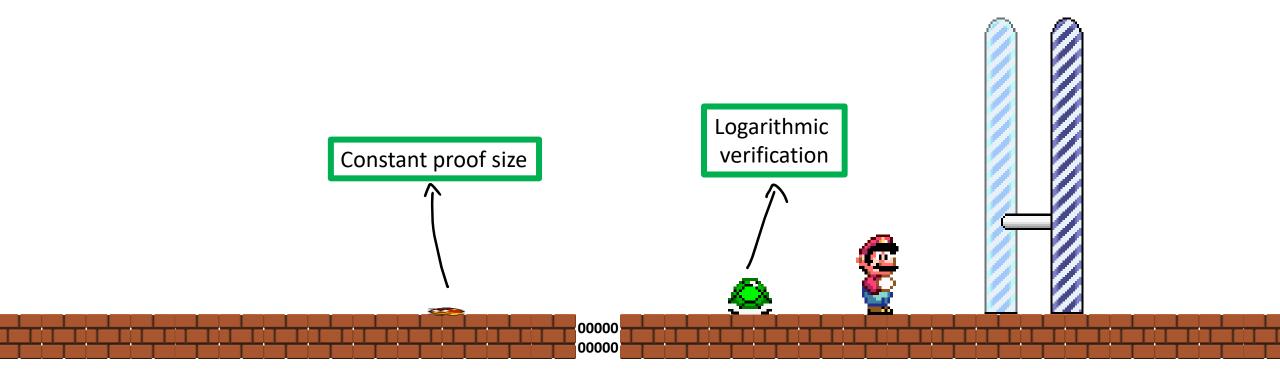
Logarithmic verification

Pick random $x_1, x_2, \dots, x_{\log l}$ from \mathbb{Z}_p^2 where $x_j = (x_{j,0}, x_{j,1})$

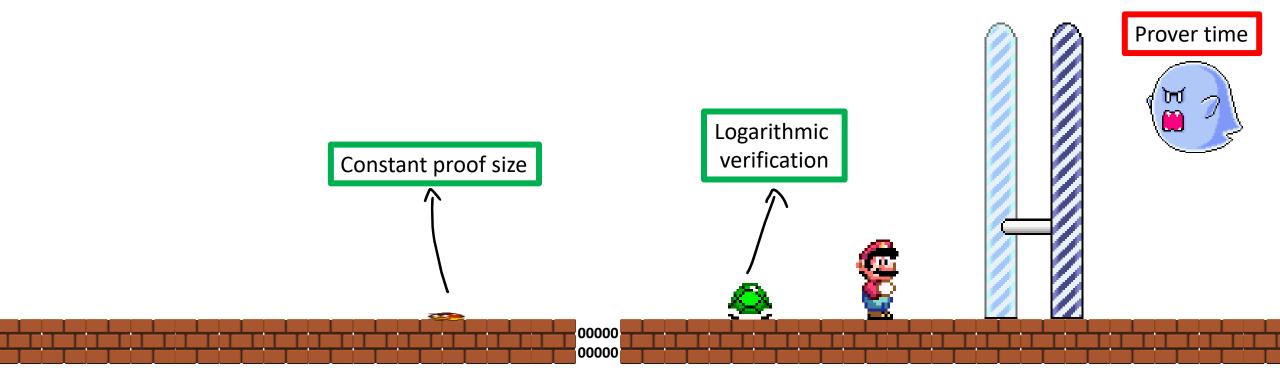
Random query vector of the form

$$z_k \equiv z_{k_0,\dots,k_{\log l-1}} \coloneqq \prod_{j=1}^{\log l} x_{j,k_{j-1}}.$$

Soundness error
$$\sim \frac{\log l}{n}$$
 = negl.



Open problems



Thanks!

https://ia.cr/2022/419