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Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”

• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more
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Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:

• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3
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Problem Statement

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

RSA-based
[TBM+20, MT19]

✓ × × ×

Class-groups based
[TCLM21]

✓ ✓ × ×

? ✓ ✓ ✓ ✓

Unbounded
batching

Individual puzzle size
independent of the batch size
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Why do we care?

Useful in the decentralized setting [TBM+20, WXDS20, tez22]:

• Impractical to rely on trusted setup

• Unknown number of nodes

• Large puzzles increases communication overhead

4



Contributions

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

This work ✓ ✓ ✓ ✓

Uses indistinguishability obfuscation

Applications in consensus:
• First permissionless protocol in themobile sluggishmodel
• First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting
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Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.
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Puzzle Generation

• Player i sends an obfuscated program Pi

• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.
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Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ
Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless  ?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?
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Overview
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• Non-block winners send decoys
• Decoys give “cover” for the block winner
• Adversary has to corrupt or deliver messages randomly
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Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack
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Protocol

1. Mine Phase:
– Pick the longest chain
– Mine a block or a decoy (if possible)
– Time-lock encrypt the block or decoy

2. Solve Phase:
– Multicast the puzzle
– Receive puzzles
– Batch open puzzles
– Extend the chain and go to step 1
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Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching

• First permissionless protocol in mobile sluggish model
• Attack on Nakamoto consensus in mobile sluggish model
• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting
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Broadcast under strongly adaptive and majority corruptions

• Byzantine broadcast is a classical problem in consensus

• Building block for other flavours of consensus
• Strongly adaptive adversary:

– Can corrupt the victim on-the-fly
– Can perform after-the-fact removal in the ongoing round

• Weakly adaptive adversary:
– Can corrupt the victim on-the-fly
– Cannot perform after-the-fact removal
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