
Transparent Batchable Time-lock Puzzles and
Applications to Byzantine Consensus

Shravan Julian Giulio Kartik Charalampos Sri
Srinivasan Loss Malavolta Nayak Papamanthou AravindaKrishnan

UMD CISPA MPI-SP Duke Yale Thyagarajan
NTT Research

PKC ’23

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”

• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”

• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”

• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”

• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”

• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”
• Fast puzzle generation

• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”
• Fast puzzle generation
• Security against parallel adversaries

• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Time-Lock Puzzles (TLP) [May92, RSW96]

• Encrypt a message “to the future”
• Fast puzzle generation
• Security against parallel adversaries
• Applications in auctions, blockchains,
timed-commitments, and more

mm

m

T

1

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:

• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users

• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Batchable Time-Lock Puzzles [MT19, TBM+20]

Traditional TLPs [RSW96]:
• Doesn’t scale with users
• Need to solve puzzles individually

Batchable TLPs [MT19, TBM+20]:
• Open multiple puzzles for the price of one
• Supports homomorphism

m1 m2 m3

m1 m2 m3

m1 | m2 | m3

m1 | m2 | m3

T

2

Problem Statement

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

RSA-based
[TBM+20, MT19]

✓ × × ×

Class-groups based
[TCLM21]

✓ ✓ × ×

? ✓ ✓ ✓ ✓

Unbounded
batching

Individual puzzle size
independent of the batch size

3

Problem Statement

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

RSA-based
[TBM+20, MT19]

✓ × × ×

Class-groups based
[TCLM21]

✓ ✓ × ×

? ✓ ✓ ✓ ✓

Unbounded
batching

Individual puzzle size
independent of the batch size

3

Problem Statement

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

RSA-based
[TBM+20, MT19]

✓ × × ×

Class-groups based
[TCLM21]

✓ ✓ × ×

? ✓ ✓ ✓ ✓

Unbounded
batching

Individual puzzle size
independent of the batch size

3

Problem Statement

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

RSA-based
[TBM+20, MT19]

✓ × × ×

Class-groups based
[TCLM21]

✓ ✓ × ×

? ✓ ✓ ✓ ✓

Unbounded
batching

Individual puzzle size
independent of the batch size

3

Why do we care?

Useful in the decentralized setting [TBM+20, WXDS20, tez22]:

• Impractical to rely on trusted setup

• Unknown number of nodes

• Large puzzles increases communication overhead

4

Contributions

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

This work ✓ ✓ ✓ ✓

Uses indistinguishability obfuscation

Applications in consensus:
• First permissionless protocol in themobile sluggishmodel
• First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

5

Contributions

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

This work ✓ ✓ ✓ ✓

Uses indistinguishability obfuscation

Applications in consensus:
• First permissionless protocol in themobile sluggishmodel
• First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

5

Contributions

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

This work ✓ ✓ ✓ ✓

Uses indistinguishability obfuscation

Applications in consensus:

• First permissionless protocol in themobile sluggishmodel
• First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

5

Contributions

Scheme Batchable
Transparent

setup
No apriori
bound

Compact
puzzles

This work ✓ ✓ ✓ ✓

Uses indistinguishability obfuscation

Applications in consensus:
• First permissionless protocol in themobile sluggishmodel
• First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting 5

Outline

1. Preliminaries

2. TLP construction
2.1 Puzzle generation
2.2 Batch Solving

3. Application: Permissionless Consensus
3.1 Network model
3.2 Protocol

Outline

1. Preliminaries

2. TLP construction
2.1 Puzzle generation
2.2 Batch Solving

3. Application: Permissionless Consensus
3.1 Network model
3.2 Protocol

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Preliminaries
Homomorphic Time-Lock Puzzles (HTLP) [MT19, TCLM21]:

m1 m2 m1 + m2 m1 + m2+ =

Key-Homomorphic Pseudorandom Functions (KH-PRF) [BV15]:

Informally, a (puncturable) pseudorandom function, F, is KH-PRF, if

F(k1,m) + F(k2,m) ≈ F(k1 + k2,m)

for all keys k1, k2 and all messagem.

6

Puzzle Generation

• Player i sends an obfuscated program Pi

• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input

– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired

– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki

and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

7

Puzzle Generation

• Player i sends an obfuscated program Pi
• Program Pi:

– Takes the batch size n as input
– Has the messagemi and the PRF key ki hardwired
– Returns HTLP of ki and structured vector of ciphertexts

ki

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F(ki, 1)
...

F(ki, i) + mi
...

F(ki,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
7

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki

∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving

P1P1

k1

F(k1, 1) + m1

F(k1, 2)

F(k1, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P2P2

k2

F(k2, 1)

F(k2, 2) + m2

F(k2, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

P3P3

k3

F(k3, 1)

F(k3, 2)

F(k3, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

Batch size n = 3

k∗ =
∑︀

i ki∑︀
i F(ki, 1) + m1∑︀
i F(ki, 2) + m2∑︀
i F(ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ + =

+ + =

Obf. prog.

HTLP

Masked
cipher txt.

8

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦− =

9

Batch Solving (contd.)

k∗ =
∑︀

i ki k∗

∑︀
i F(ki, 1) + m1F(
∑︀

i ki, 1) + m1F(
∑︀

i ki, 1) + m1∑︀
i F(ki, 2) + m2F(
∑︀

i ki, 2) + m2F(
∑︀

i ki, 2) + m2∑︀
i F(ki, 3) + m3F(
∑︀

i ki, 3) + m3F(
∑︀

i ki, 3) + m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

F(k∗, 1)

F(k∗, 2)

F(k∗, 3)

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

m1

m2

m3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦− =

9

Outline

1. Preliminaries

2. TLP construction
2.1 Puzzle generation
2.2 Batch Solving

3. Application: Permissionless Consensus
3.1 Network model
3.2 Protocol

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]

10

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]

10

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]

10

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]

10

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]

10

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]
10

Application: Permissionless Consensus

Permissionless setting:
• Exact number of nodes unknown

• No authentication mechanism

• Communication over unauthenticated channels

Nakamoto consensus:

Secure in the synchronous model [GKL15, PSS17, LG19]
10

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ
Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless ?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ
Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless ?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ

Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless ?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ

Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish

Partially/Asynchronous

Honest
msg. delay

Known Δ

Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish

Partially/Asynchronous

Honest
msg. delay

Known Δ

Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish

Partially/Asynchronous

Honest
msg. delay

Known Δ

Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ

Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous

Mobile

Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ
Prompt Known Δ

Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous Mobile Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ
Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless

?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Problem Statement [GPS19, AMN+20, PS17]

Δ upper bound on the honest message delay

Model Synchronous Mobile Sluggish Partially/Asynchronous

Honest
msg. delay

Known Δ
Prompt Known Δ
Sluggish No known Δ

No known Δ

Permissionless ?

Is it possible to achieve consensus in the permissionless setting
in the presence of mobile sluggish faults?

11

Overview

• Based on Nakamoto consensus

• All messages are time-lock encrypted

• Set hiding time, T = Δ

• Non-block winners send decoys
• Decoys give “cover” for the block winner
• Adversary has to corrupt or deliver messages randomly

12

Overview

• Based on Nakamoto consensus

• All messages are time-lock encrypted

• Set hiding time, T = Δ

• Non-block winners send decoys
• Decoys give “cover” for the block winner
• Adversary has to corrupt or deliver messages randomly

12

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Decoys

• Decoys: Dummy TLP messages

• Need to prevent Sybil attack

H(payload)H(payload)

0 2λ0 D1 D2

Block

Decoy

13

Protocol

1. Mine Phase:
– Pick the longest chain
– Mine a block or a decoy (if possible)
– Time-lock encrypt the block or decoy

2. Solve Phase:
– Multicast the puzzle
– Receive puzzles
– Batch open puzzles
– Extend the chain and go to step 1

14

Protocol

1. Mine Phase:
– Pick the longest chain
– Mine a block or a decoy (if possible)
– Time-lock encrypt the block or decoy

2. Solve Phase:
– Multicast the puzzle
– Receive puzzles
– Batch open puzzles
– Extend the chain and go to step 1

14

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Protocol

³

³

³

³

Miner 1

Miner 2

Miner 3

Miner 4

Mine PhaseSolve Phase

Block Decoy

15

Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching

• First permissionless protocol in mobile sluggish model
• Attack on Nakamoto consensus in mobile sluggish model
• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

@s_shravan

ePrint
2022/1421

16

https://twitter.com/s_shravan
https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching
• First permissionless protocol in mobile sluggish model

• Attack on Nakamoto consensus in mobile sluggish model
• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

@s_shravan

ePrint
2022/1421

16

https://twitter.com/s_shravan
https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching
• First permissionless protocol in mobile sluggish model
• Attack on Nakamoto consensus in mobile sluggish model

• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

@s_shravan

ePrint
2022/1421

16

https://twitter.com/s_shravan
https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching
• First permissionless protocol in mobile sluggish model
• Attack on Nakamoto consensus in mobile sluggish model
• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

@s_shravan

ePrint
2022/1421

16

https://twitter.com/s_shravan
https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching
• First permissionless protocol in mobile sluggish model
• Attack on Nakamoto consensus in mobile sluggish model
• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

@s_shravan

ePrint
2022/1421

16

https://twitter.com/s_shravan
https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Summary

• Transparent batchable TLP with compact puzzle
size and unbounded batching
• First permissionless protocol in mobile sluggish model
• Attack on Nakamoto consensus in mobile sluggish model
• Using any batchable TLP:

– A generic compiler to convert any weakly adaptive
broadcast into a strongly adaptive

– First expected O(1)-round Byzantine broadcast
under strongly adaptive and corrupt majority setting

@s_shravan

ePrint
2022/1421

16

https://twitter.com/s_shravan
https://eprint.iacr.org/2022/1421
https://eprint.iacr.org/2022/1421

Broadcast under strongly adaptive and majority corruptions

• Byzantine broadcast is a classical problem in consensus

• Building block for other flavours of consensus
• Strongly adaptive adversary:

– Can corrupt the victim on-the-fly
– Can perform after-the-fact removal in the ongoing round

• Weakly adaptive adversary:
– Can corrupt the victim on-the-fly
– Cannot perform after-the-fact removal

17

References I

[AMN+20] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin.

Sync HotStuff: Simple and Practical Synchronous State Machine Replication.

In 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan.

Constrained key-homomorphic prfs from standard lattice assumptions.

In Theory of Cryptography Conference, pages 1–30, 2015.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos.

The Bitcoin Backbone Protocol: Analysis and Applications.

In Advances in Cryptology - EUROCRYPT 2015, 2015.

18

References II

[GPS19] Yue Guo, Rafael Pass, and Elaine Shi.

Synchronous, with a Chance of Partition Tolerance.

In Advances in Cryptology – CRYPTO 2019, 2019.

[LG19] Jing Li and Dongning Guo.

On Analysis of the Bitcoin and Prism Backbone Protocols, 2019.

[May92] Timothy May.

Timed-release crypto.

1992.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan.

Homomorphic Time-Lock Puzzles and Applications.

In Advances in Cryptology – CRYPTO 2019, 2019. 19

References III

[PS17] Rafael Pass and Elaine Shi.

Rethinking Large-Scale Consensus.

In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), 2017.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat.

Analysis of the Blockchain Protocol in Asynchronous Networks.

In Advances in Cryptology – EUROCRYPT 2017, 2017.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner.

Time-Lock Puzzles and Timed-Release Crypto.

Technical report, 1996.

20

References IV

[TBM+20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döttling,
Aniket Kate, and Dominique Schröder.

Verifiable timed signatures made practical.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020.

[TCLM21] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie, and
Giulio Malavolta.

Efficient cca timed commitments in class groups.

In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021.

[tez22] Time-lock: Block producer extractable value - tezos, 2022.

[Online; accessed 01-Sept-2022]. 21

References V

[WXDS20] Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi.

Round-Efficient Byzantine Broadcast Under Strongly Adaptive and Majority
Corruptions.

In Theory of Cryptography, 2020.

22

	Preliminaries
	TLP construction
	Puzzle generation
	Batch Solving

	Application: Permissionless Consensus
	Network model
	Protocol

