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Hidden Order Groups - Applications

List not

o . exhaustive
Group exponentiations are (computationally) over Z

% Accumulators & Set Membership (zk-)proofs

% (zk-)Range proofs

% Vector Commitments

% Polynomial commitments & SNARKs

% Verifiable delay functions & time-lock puzzles

% Additively Homomorphic Encryption
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Hidden Order Groups - Applications
List not
m exhaustive

[CLO2, BCFGK19, CDHKKO22]

% (zk-)Range proofs [BOO, L03, GO5, CPP17, CKLR21]
[AGLMS23]:

% Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22] hext talk!

* Polynomial commitments & SNARKs [BF520, BHRRS21, AGLMS23]
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Hidden Order Groups - Instantiations

RSA Groups Class Groups
w Zf\? N =p - q and p, q 'safe’ primes * Class Groups of imaginary quadratic order
% g* mod N = g* mod ¢0V) * Complicated Algebra... (see
ord(G) = h(N) = (p — 1)(g — 1) )

% Computing ord(G) <> Factoring @ < Computing ord((z) < Less cryptanalysis effort @

% Structured setup @ ** Uniformly random setup @
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Paillier Encryption & Key Subversion

i . RSA modulus
Fully additive variant

»KeyGen(1%) : WIENXXA, h < g € Zzzv, pk = (N, h), sk = (p,q)
IS @ ct «— (N + 1)"h" mod N?
»Dec(sk, ct) : ([ct-ctV" mod ¢MWIN mod N2] — 1)/N
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Paillier Encryption & Key Subversion

i : RSA modul
Fully additive variant [DJ10, L17] mocHiEs

»KeyGen(1%) : WIENXXA, h < g € Zzzv, pk = (N, h), sk = (p,q)
IS @ ct «— (N + 1)"h" mod N?
»Dec(sk, ct) : ([ct-ctV" mod ¢MWIN mod N2] — 1)/N

Why would anyone subvert their own key? @

Encrypt-(under-your-own-key)-and-prove

* MPC Ceremony for RSA modulus generation [HIVIRT19]
 Threshold ECDSA [CGGMP20, BMP22]

» E-Voting [DJO1] e



Zero-Knowledge Proofs

By o) =1

Pvpk,x, )

% (Proof/)Argument of Knowledge ((P/)AoKs): if Verify(x,z) = 1 then &? knowsa st R(x, )=1
 Zero-Knowledge (ZK): 7" learns nothing about

< Non-interactive (NI): & generates & without any interaction with 7

% (Public/)Designated-Verifier (DV) : (every 7/ /)only one 7' holding vsk can verify x
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< Non-interactive (NI): & generates & without any interaction with 7

% (Public/)Designated-Verifier (DV) : (every 7/ /)only one 7' holding vsk can verify x
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Our contributions

A DV-zk-AoK of a pre-image of any (additive) homomorphism under subverted RSA groups.

el x cy=g" (mod N) B x : ct = Paillier. Enc(x) Bgegt {2\

A DV-zk range argument for any (additive) homomorphism under subverted RSA groups.
el x : ct = Palllier. Enc(x) A x € |A, B] Bl 2\

Technically: A new extraction technique for proving knowledge-soundness.
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Possible Approaches

N: arbitrary chosen by & y=g" (mod N)

< 2.-protocols

-» A repetitions (x4 efficiency overhead)

“ General purpose NIZK (e.g. SNARK)
-» Very expensive to encode RSA operations (~80million gates for ar. circuits)

* Prove correctness of N & proof for non-subverted RSA groups:

=» Proofs of correct moduli very expensive

“* More elaborate approaches

-» See the paper for discussion...
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Sigma-Protocols over HoGs (and pitfails)

N: arbitrary chosen by &

g =,a-y° (mod N)
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Sigma-Protocols over HoGs (and pitfails)

N: arbitrary chosen by &

g =,a-y° (mod N)

Non-interactive via Fiat-Shamir
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Sigma-Protocols over HoGs (and pitfails)

N: arbitrary chosen by & y=g" (mod N)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on a:

gS’ =, a - ycl (mod N)

[FO97, DFO1] circumvents it
but taking an assumption over (o
=» not applicable for arbitrary NV

Cannot divide with ¢ — ¢’ in the exponent: d(N?) is secret
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Our Protocol (1): A new extraction approach

B = s® — g 5 = c® oM
Assume M accepting transcripts on a we get: ’ l

1. {a,cD,sD1 - gs<” - yc<” gh = y%
St e g Pz — ;03
2 {lae =3 }..g =a-Yy = .y 5
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Our Protocol (1): A new extraction approach

Assume M accepting transcripts on a we get: : ’
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Our Protocol (2): Our core technical Lemma

How can we guarantee that [{{ele[( SN IWIECEI ?

Caveat: Prover can choose the 'type' of ¢ to answer so that never gcd ((c(i) — c(l))ﬁ.‘i 2) = ] (e.g. only even ¢)
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Caveat: Prover can choose the 'type’ of ¢ to answer so that never gcd ((C(i) — c(l))y__ 2) = ] (e.g. only even ¢)
Our approach: Partially hide ¢ from the prover = & (cz I;) where hidden, b sampled during the protocol

Let € ({0,1}%)" uniformly random, b = (by, ..., b,) € ({0,1})" and ¢ = ( ,b)
then for any distribution of b one can obtain M = poly(A) transcripts such that:

r[gcd (c(i) — c(l))?iz
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Our Protocol (3): Bootstraping via DV

Our approach:
< Partially hide ¢ from the prover: [ERMAM where hidden, b sampled during the protocol

% Then Core-Lemma 4 gcd-extraction technigue =2 Knowledge-Sound Protocol
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Question: How to hide d = (d,....d,) from 9P?

-7 encrypts it =» DV-model




Performance-Extensions-Limitations

More on the paper:
% Range proofs over Subverted RSA groups
% Malicious and reusable DV keys

Implementation and Performance:
% Paillier Range proof (with malicious-verifier security):

T(P) = 192ms, T(¥) = 125ms, | 7| = 11.05KB

Limitations:
* Designated-Verifier model
< Relatively expensive DV KeyGen for malicious zk
* Polynomial-reusability of DV keys (if verification oracles queries are assumed)
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Conclusions and summary

Summary:

% A new general extraction method for 2-protocols.

% DV-AoK and range proof-protocols for subverted RSA groups.

Open questions:

“Efficient Public-Verifier protocols for Subverted RSA groups?
“Apply the extraction technique to other contexts (e.g. lattice-based zk-proofs)?

Thank you!

Full version:

Implementation: 15/15
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