
PKC 2023, Atlanta

10 May 2023

Zero-Knowledge Arguments for
Subverted RSA Groups

Dimitris Kolonelos
IMDEA Software Institute

& Universidad Politecnica de Madrid

Mikhail Volkhov

The University of Edinburgh

Mary Maller
Ethereum Foundation

& PQShield

1/15

2/15

Hidden Order Groups

(aka Groups of Unknown Order)

Group where computing is hard𝔾 𝗈𝗋𝖽(𝔾)

2/15

Hidden Order Groups

(aka Groups of Unknown Order)

Group where computing is hard𝔾 𝗈𝗋𝖽(𝔾)
wlog

multiplicative

Group exponentiation: gx mod 𝗈𝗋𝖽(g) = gx{

unknown

computationally

2/15

Hidden Order Groups

(aka Groups of Unknown Order)

Group where computing is hard𝔾 𝗈𝗋𝖽(𝔾)
wlog

multiplicative

Group exponentiations are (computationally) over ℤ

Group exponentiation: gx mod 𝗈𝗋𝖽(g) = gx{

unknown

computationally

3/15

Hidden Order Groups - Applications
Group exponentiations are (computationally) over ℤ

List not
exhaustive

★ Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] & Set Membership (zk-)proofs
[CL02, BCFGK19, CDHKKO22]

★ (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21]

★ Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22]

★ Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23]

★ Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96]

★ Additively Homomorphic Encryption [P99, CL15]

3/15

Hidden Order Groups - Applications
Group exponentiations are (computationally) over ℤ

List not
exhaustive

[AGLMS23]:
next talk!

★ Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] & Set Membership (zk-)proofs
[CL02, BCFGK19, CDHKKO22]

★ (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21]

★ Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22]

★ Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23]

★ Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96]

★ Additively Homomorphic Encryption [P99, CL15]

3/15

Hidden Order Groups - Applications
Group exponentiations are (computationally) over ℤ

List not
exhaustive

[AGLMS23]:
next talk!

★ Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] & Set Membership (zk-)proofs
[CL02, BCFGK19, CDHKKO22]

★ (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21]

★ Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22]

★ Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23]

★ Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96]

★ Additively Homomorphic Encryption [P99, CL15]

4/15

Hidden Order Groups - Instantiations

RSA Groups Class Groups

❖ : and ‘safe’ primes

❖

❖ Computing Factoring 🙂

❖ Structured setup ☹

ℤ*N N = p ⋅ q p, q

gx mod N = gx mod ϕ(N)

𝗈𝗋𝖽(𝔾) = ϕ(N) = (p − 1)(q − 1)

𝗈𝗋𝖽(𝔾) ↔

❖ Class Groups of imaginary quadratic order

❖ Complicated Algebra… (see

[BuchamannHamdy01, Straka19])

❖ Computing Less cryptanalysis effort ☹

❖ Uniformly random setup 🙂

𝗈𝗋𝖽(𝔾) ↔

[RSA78] [BW88]

4/15

Hidden Order Groups - Instantiations

RSA Groups Class Groups

❖ : and ‘safe’ primes

❖

❖ Computing Factoring 🙂

❖ Structured setup ☹

ℤ*N N = p ⋅ q p, q

gx mod N = gx mod ϕ(N)

𝗈𝗋𝖽(𝔾) = ϕ(N) = (p − 1)(q − 1)

𝗈𝗋𝖽(𝔾) ↔

❖ Class Groups of imaginary quadratic order

❖ Complicated Algebra… (see

[BuchamannHamdy01, Straka19])

❖ Computing Less cryptanalysis effort ☹

❖ Uniformly random setup 🙂

𝗈𝗋𝖽(𝔾) ↔

[RSA78] [BW88]

Subverted RSA Groups

❖ Natural setting when the setup is adversarial

❖ E.g. but not safe primes, , N = pq N = p1p2…pk N = pk1
1 pk2

2

4/15

Hidden Order Groups - Instantiations

RSA Groups Class Groups

❖ : and ‘safe’ primes

❖

❖ Computing Factoring 🙂

❖ Structured setup ☹

ℤ*N N = p ⋅ q p, q

gx mod N = gx mod ϕ(N)

𝗈𝗋𝖽(𝔾) = ϕ(N) = (p − 1)(q − 1)

𝗈𝗋𝖽(𝔾) ↔

❖ Class Groups of imaginary quadratic order

❖ Complicated Algebra… (see

[BuchamannHamdy01, Straka19])

❖ Computing Less cryptanalysis effort ☹

❖ Uniformly random setup 🙂

𝗈𝗋𝖽(𝔾) ↔

[RSA78] [BW88]

Subverted RSA Groups

❖ Natural setting when the setup is adversarial

❖ E.g. but not safe primes, , N = pq N = p1p2…pk N = pk1
1 pk2

2

This Work:

ZK proofs over Subverted RSA groups

5/15

Fully additive variant [DJ10, L17]

❖ , , ,

❖

❖

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) : N = p ⋅ q h ← gN ∈ ℤ2
N 𝗉𝗄 = (N, h) 𝗌𝗄 = (p, q)

𝖤𝗇𝖼(𝗉𝗄, m) : 𝖼𝗍 ← (N + 1)mhr mod N2

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) : ([𝖼𝗍 ⋅ 𝖼𝗍[N−1 mod ϕ(N)]⋅N mod N2] − 1)/N

Paillier Encryption & Key Subversion
RSA modulus

5/15

Fully additive variant [DJ10, L17]

❖ , , ,

❖

❖

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) : N = p ⋅ q h ← gN ∈ ℤ2
N 𝗉𝗄 = (N, h) 𝗌𝗄 = (p, q)

𝖤𝗇𝖼(𝗉𝗄, m) : 𝖼𝗍 ← (N + 1)mhr mod N2

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) : ([𝖼𝗍 ⋅ 𝖼𝗍[N−1 mod ϕ(N)]⋅N mod N2] − 1)/N

Paillier Encryption & Key Subversion
RSA modulus

Encrypt-(under-your-own-key)-and-prove

•MPC Ceremony for RSA modulus generation [HMRT19]

•Threshold ECDSA [CGGMP20, BMP22]

•E-Voting [DJ01]

Why would anyone subvert their own key? 🤔

6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if then knows a s.t.

❖ Zero-Knowledge (ZK): learns nothing about

❖ Non-interactive (NI): generates without any interaction with

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one holding can verify

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)

6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if then knows a s.t.

❖ Zero-Knowledge (ZK): learns nothing about

❖ Non-interactive (NI): generates without any interaction with

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one holding can verify

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π
 Computationally

Unbounded/Bounded
𝒫

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)

6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if then knows a s.t.

❖ Zero-Knowledge (ZK): learns nothing about

❖ Non-interactive (NI): generates without any interaction with

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one holding can verify

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π
 Computationally

Unbounded/Bounded
𝒫

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)

Public verifiability:
vsk = ⊥

6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if then knows a s.t.

❖ Zero-Knowledge (ZK): learns nothing about

❖ Non-interactive (NI): generates without any interaction with

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one holding can verify

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π

This work: DV-NIZK-AoK protocols

 Computationally

Unbounded/Bounded
𝒫

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)

Public verifiability:
vsk = ⊥

7/15

Our contributions

★A DV-zk-AoK of a pre-image of any (additive) homomorphism under subverted RSA groups.

e.g. , for any

★A DV-zk range argument for any (additive) homomorphism under subverted RSA groups.

e.g. for any

★Technically: A new extraction technique for proving knowledge-soundness.

x : y = gx (mod N) x : 𝖼𝗍 = 𝖯𝖺𝗂𝗅𝗅𝗂𝖾𝗋 . 𝖤𝗇𝖼(x) N

x : 𝖼𝗍 = 𝖯𝖺𝗂𝗅𝗅𝗂𝖾𝗋 . 𝖤𝗇𝖼(x) ∧ x ∈ [A, B] N

8/15

Possible Approaches

❖ -protocols

➜ repetitions (x efficiency overhead) [BCK10, TW12]

❖ General purpose NIZK (e.g. SNARK)

➜ Very expensive to encode RSA operations (~80million gates for ar. circuits) [OWWB20]

❖ Prove correctness of [CM99, …] & proof for non-subverted RSA groups:

➜ Proofs of correct moduli very expensive

❖ More elaborate approaches

➜ See the paper for discussion…

Σ

λ λ

N

 : arbitrary chosen by N 𝒫 y = gx (mod N)

8/15

Possible Approaches

❖ -protocols

➜ repetitions (x efficiency overhead) [BCK10, TW12]

❖ General purpose NIZK (e.g. SNARK)

➜ Very expensive to encode RSA operations (~80million gates for ar. circuits) [OWWB20]

❖ Prove correctness of [CM99, …] & proof for non-subverted RSA groups:

➜ Proofs of correct moduli very expensive

❖ More elaborate approaches

➜ See the paper for discussion…

Σ

λ λ

N

This Work: avoid repeZZons

 : arbitrary chosen by N 𝒫 y = gx (mod N)

9/15

𝒫(N, h, 𝖼𝗍, m) 𝒱(N, h, y)
a = gr

c

s = r+cm

r ← $
c ← 𝒞

gs =? a ⋅ yc (mod N)

Sigma-Protocols over HoGs (and pitfails)
 : arbitrary chosen by N 𝒫 y = gx (mod N)

9/15

𝒫(N, h, 𝖼𝗍, m) 𝒱(N, h, y)
a = gr

c

s = r+cm

r ← $
c ← 𝒞

gs =? a ⋅ yc (mod N)

Sigma-Protocols over HoGs (and pitfails)
 : arbitrary chosen by N 𝒫 y = gx (mod N)

 Non-interactive via Fiat-Shamir

10/15

a = gr

c

s = r+cm

gs =? a ⋅ yc (mod N)

Sigma-Protocols over HoGs (and pitfails)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on :
a

 : arbitrary chosen by N 𝒫 y = gx (mod N)

10/15

a = gr

c

s = r+cm

gs =? a ⋅ yc (mod N)

Sigma-Protocols over HoGs (and pitfails)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on :
a

Rewind

 : arbitrary chosen by N 𝒫 y = gx (mod N)

a = gr

c′￼

s = r+c′￼m

gs′￼ =? a ⋅ yc′￼ (mod N)

10/15

a = gr

c

s = r+cm

gs =? a ⋅ yc (mod N)

gs−s′￼ = yc−c′￼ (mod N)

Sigma-Protocols over HoGs (and pitfails)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on :
a

Rewind

{

 : arbitrary chosen by N 𝒫 y = gx (mod N)

a = gr

c′￼

s = r+c′￼m

gs′￼ =? a ⋅ yc′￼ (mod N)

10/15

a = gr

c

s = r+cm

gs =? a ⋅ yc (mod N)

gs−s′￼ = yc−c′￼ (mod N)
Cannot divide with in the exponent: is secret

➜ Unable to extract unless ➜ soundess error = 1/2 ➜ requires repetitions
c − c′￼ ϕ(N2)

c ∈ 𝒞 = {0,1} λ

Sigma-Protocols over HoGs (and pitfails)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on :
a

Rewind

{
[BCK10, TW12]

 : arbitrary chosen by N 𝒫 y = gx (mod N)

a = gr

c′￼

s = r+c′￼m

gs′￼ =? a ⋅ yc′￼ (mod N)

10/15

a = gr

c

s = r+cm

gs =? a ⋅ yc (mod N)

gs−s′￼ = yc−c′￼ (mod N)
Cannot divide with in the exponent: is secret

➜ Unable to extract unless ➜ soundess error = 1/2 ➜ requires repetitions
c − c′￼ ϕ(N2)

c ∈ 𝒞 = {0,1} λ

Sigma-Protocols over HoGs (and pitfails)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on :
a

Rewind

{
[BCK10, TW12]

[FO97, DF01] circumvents it

but taking an assumption over

➜ not applicable for arbitrary

𝔾
N

 : arbitrary chosen by N 𝒫 y = gx (mod N)

a = gr

c′￼

s = r+c′￼m

gs′￼ =? a ⋅ yc′￼ (mod N)

11/15

Our Protocol (1): A new extraction approach
Assume M accepting transcripts on we get:
a

1. {a, c(1), s(1)} : gs(1) = a ⋅ yc(1)

2. {a, c(2), s(2)} : gs(2) = a ⋅ yc(2)

⋮
M. {a, c(M), s(M)} : gs(M) = a ⋅ yc(M)

⇒

gβ2 = yδ2

gβ3 = yδ3

⋮
gβM = yδM

⇒

δi := c(i) − c(1)βi := s(i) − s(1)

11/15

Our Protocol (1): A new extraction approach

Bezout’s theorem (Informal):

If then there exist such that (over)𝗀𝖼𝖽(δ2, …, δM) = 1 k2, …, kM k2δ2 + … + kMδM = 1 ℤ

Assume M accepting transcripts on we get:
a
1. {a, c(1), s(1)} : gs(1) = a ⋅ yc(1)

2. {a, c(2), s(2)} : gs(2) = a ⋅ yc(2)

⋮
M. {a, c(M), s(M)} : gs(M) = a ⋅ yc(M)

⇒

gβ2 = yδ2

gβ3 = yδ3

⋮
gβM = yδM

⇒

δi := c(i) − c(1)βi := s(i) − s(1)

11/15

Our Protocol (1): A new extraction approach

Bezout’s theorem (Informal):

If then there exist such that (over)𝗀𝖼𝖽(δ2, …, δM) = 1 k2, …, kM k2δ2 + … + kMδM = 1 ℤ

Assume M accepting transcripts on we get:
a
1. {a, c(1), s(1)} : gs(1) = a ⋅ yc(1)

2. {a, c(2), s(2)} : gs(2) = a ⋅ yc(2)

⋮
M. {a, c(M), s(M)} : gs(M) = a ⋅ yc(M)

⇒

gβ2 = yδ2

gβ3 = yδ3

⋮
gβM = yδM

⇒ g ∑M
i=2 kiβi = y ∑M

i=2 kiδi = y (mod N)

δi := c(i) − c(1)βi := s(i) − s(1)

11/15

Our Protocol (1): A new extraction approach

Bezout’s theorem (Informal):

If then there exist such that (over)𝗀𝖼𝖽(δ2, …, δM) = 1 k2, …, kM k2δ2 + … + kMδM = 1 ℤ

How can we guarantee that ?𝗀𝖼𝖽(δ2, …, δM) = 1

Assume M accepting transcripts on we get:
a
1. {a, c(1), s(1)} : gs(1) = a ⋅ yc(1)

2. {a, c(2), s(2)} : gs(2) = a ⋅ yc(2)

⋮
M. {a, c(M), s(M)} : gs(M) = a ⋅ yc(M)

⇒

gβ2 = yδ2

gβ3 = yδ3

⋮
gβM = yδM

⇒ g ∑M
i=2 kiβi = y ∑M

i=2 kiδi = y (mod N)

δi := c(i) − c(1)βi := s(i) − s(1)

12/15

Our Protocol (2): Our core technical Lemma

How can we guarantee that ?𝗀𝖼𝖽(δ2, …, δM) = 1

12/15

Our Protocol (2): Our core technical Lemma

Caveat: Prover can choose the ‘type’ of to answer so that never (e.g. only even)c 𝗀𝖼𝖽 ((c(i) − c(1))M
i=2) = 1 c

How can we guarantee that ?𝗀𝖼𝖽(δ2, …, δM) = 1

12/15

Our Protocol (2): Our core technical Lemma

Caveat: Prover can choose the ‘type’ of to answer so that never (e.g. only even)c 𝗀𝖼𝖽 ((c(i) − c(1))M
i=2) = 1 c

Our approach: Partially hide from the prover ➜ where hidden, sampled during the protocolc c = ⟨ ⃗d, b⃗⟩ ⃗d b⃗

How can we guarantee that ?𝗀𝖼𝖽(δ2, …, δM) = 1

12/15

Our Protocol (2): Our core technical Lemma

Our Information-Theoretical Lemma (Informal):

Let uniformly random, and

then for any distribution of one can obtain transcripts such that:

⃗d = (d1, …, dλ) ∈ ({0,1}λ)λ b⃗ = (b1, …, bn) ∈ ({0,1})λ c = ⟨ ⃗d, b⃗⟩
b⃗ M = 𝗉𝗈𝗅𝗒(λ)

Pr[𝗀𝖼𝖽 ((c(i) − c(1))M
i=2) = 1] = 1 − 𝗇𝖾𝗀𝗅(λ)

Caveat: Prover can choose the ‘type’ of to answer so that never (e.g. only even)c 𝗀𝖼𝖽 ((c(i) − c(1))M
i=2) = 1 c

Our approach: Partially hide from the prover ➜ where hidden, sampled during the protocolc c = ⟨ ⃗d, b⃗⟩ ⃗d b⃗

How can we guarantee that ?𝗀𝖼𝖽(δ2, …, δM) = 1

13/15

Our Protocol (3): Bootstraping via DV

Our approach:

❖ Partially hide from the prover: where hidden, sampled during the protocolc c = ⟨ ⃗d, b⃗⟩ ⃗d b⃗

Core-Lemma -extraction technique𝗀𝖼𝖽+ ➜ Knowledge-Sound Protocol❖ Then

13/15

Our Protocol (3): Bootstraping via DV

Our approach:

❖ Partially hide from the prover: where hidden, sampled during the protocolc c = ⟨ ⃗d, b⃗⟩ ⃗d b⃗

Core-Lemma -extraction technique𝗀𝖼𝖽+ ➜ Knowledge-Sound Protocol❖ Then

Question: How to hide from ?

 ➜ encrypts it ➜ DV-model

⃗d = (d1, …, dλ) 𝒫
𝒱

14/15

Performance-Extensions-Limitations
More on the paper:

★ Range proofs over Subverted RSA groups

★ Malicious and reusable DV keys

Implementation and Performance:

★ Paillier Range proof (with malicious-verifier security):

 T() = 192ms, T() = 125ms, = 11.05KB

Limitations:

❖ Designated-Verifier model

❖ Relatively expensive DV KeyGen for malicious zk

❖ Polynomial-reusability of DV keys (if verification oracles queries are assumed)

𝒫 𝒱 |π |

Summary:

★A new general extraction method for -protocols.

★DV-AoK and range proof-protocols for subverted RSA groups.

Open questions:

❖Efficient Public-Verifier protocols for Subverted RSA groups?

❖Apply the extraction technique to other contexts (e.g. lattice-based zk-proofs)?

Σ

Thank you!

Full version: https://eprint.iacr.org/2023/364

Implementation: https://github.com/volhovm/rsa-zkps-impl 15/15

Conclusions and summary

https://eprint.iacr.org/2023/364

