

erc

Dimitris Kolonelos

IMDEA Software Institute & Universidad Politecnica de Madrid

Ethereum Foundation & PQShield

PKC 2023, Atlanta 10 May 2023

Zero-Knowledge Arguments for Subverted RSA Groups

Mary Maller

Mikhail Volkhov

The University of Edinburgh

Hidden Order Groups (aka Groups of Unknown Order)

Group G where computing ord(G) is hard

Hidden Order Groups (aka Groups of Unknown Order)

Group G where computing ord(G) is hard

wlog multiplicative

computationally

 g^{χ}

Group exponentiation: $g^x \mod \operatorname{ord}(g)$

unknown

Hidden Order Groups (aka Groups of Unknown Order)

Group G where computing ord(G) is hard

wlog multiplicative

Group exponentiations are (computationally) over \mathbb{Z}

Hidden Order Groups - Applications

* Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] & Set Membership (zk-)proofs [CL02, BCFGK19, CDHKK022] **★** (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21] ★ Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22] * Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23] * Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96] ★ Additively Homomorphic Encryption [P99, CL15]

List not exhaustive

Group exponentiations are (computationally) over \mathbb{Z}

Hidden Order Groups - Applications

* Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] & Set Membership (zk-)proofs [CL02, BCFGK19, CDHKK022] ★ (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21] * Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22] * Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23] * Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96] * Additively Homomorphic Encryption [P99, CL15]

List not exhaustive

Group exponentiations are (computationally) over \mathbb{Z}

[AGLMS23]: next talk!

Hidden Order Groups - Applications

★ Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] [CL02, BCFGK19, CDHKK022] **★** (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21] * Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22] * Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23] ★ Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96] * Additively Homomorphic Encryption [P99, CL15]

List not exhaustive

Group exponentiations are (computationally) over \mathbb{Z}

& Set Membership (zk-)proofs

[AGLMS23]: next talk!

Hidden Order Groups - Instantiations

[RSA78]

RSA Groups

★ Z^{*}_N: N = p · q and p, q 'safe' primes
★ g^x mod N = g^{x mod $\phi(N)$ ord(G) = $\phi(N) = (p - 1)(q - 1)$ ★ Computing ord(G) ↔ Factoring \bigcirc ★ Structured setup \bigotimes}

Class Groups

Class Groups of imaginary quadratic order
 Complicated Algebra... (see
 [BuchamannHamdy01, Straka19])
 Computing ord(G) ↔ Less cryptanalysis effort
 Uniformly random setup

[BW88]

Hidden Order Groups - Instantiations

[RSA78]

RSA Groups

* $\mathbb{Z}_N^*: N = p \cdot q$ and p, q 'safe' primes $ord(\mathbb{G}) = \phi(N) = (p-1)(q-1)$ **\bullet** Computing ord(\mathbb{G}) \leftrightarrow Factoring \bigcirc Structured setup

Subverted RSA Groups

* Natural setting when the setup is adversarial * E.g. N = pq but not safe primes, $N = p_1 p_2 ... p_k$, $N = p_1^{k_1} p_2^{k_2}$

Class Groups

Class Groups of imaginary quadratic order * Complicated Algebra... (see [BuchamannHamdy01, Straka19]) * Computing $\operatorname{ord}(\mathbb{G}) \leftrightarrow \operatorname{Less} \operatorname{cryptanalysis} \operatorname{effort} \otimes$ Uniformly random setup

[BW88]

Hidden Order Groups - Instantiations

[RSA78]

RSA Groups

* $\mathbb{Z}_N^*: N = p \cdot q$ and p, q 'safe' primes $\bigstar g^x \mod N = g^x \mod \phi(N)$ $ord(\mathbb{G}) = \phi(N) = (p-1)(q-1)$ **\bullet** Computing ord(\mathbb{G}) \leftrightarrow Factoring \bigcirc Structured setup

Subverted RSA Groups

Natural setting when the setup is adversarial * E.g. N = pq but not safe primes, $N = p_1 p_2 ... p_k$, $N = p_1^{k_1} p_2^{k_2}$

Class Groups

Class Groups of imaginary quadratic order * Complicated Algebra... (see [BuchamannHamdy01, Straka19]) * Computing $ord(\mathbb{G}) \leftrightarrow Less cryptanalysis effort <math>\otimes$

[BW88]

Paillier Encryption & Key Subversion

Fully additive variant [DJ10, L17]

★KeyGen(1^λ): $N = p \cdot q$, $h \leftarrow g^N \in \mathbb{Z}_N^2$, pk = (N, h), sk = (p, q) $\bigstar \text{Enc}(\text{pk}, m) : \frac{\text{ct} \leftarrow (N+1)^m h^r \mod N^2}{N}$ $\bigstar \mathsf{Dec}(\mathsf{sk},\mathsf{ct}): ([\mathsf{ct}\cdot\mathsf{ct}^{[N^{-1} \mod \phi(N)]\cdot N} \mod N^2] - 1)/N$

RSA modulus

Paillier Encryption & Key Subversion

Fully additive variant [DJ10, L17]

★KeyGen(1^λ): $N = p \cdot q$, $h \leftarrow g^N \in \mathbb{Z}_N^2$, pk = (N, h), sk = (p, q) $\bigstar Enc(pk, m) : \frac{ct \leftarrow (N+1)^m h^r \mod N^2}{n \log N^2}$ $\textbf{Output} Dec(sk, ct): ([ct \cdot ct^{[N^{-1} \mod \phi(N)] \cdot N} \mod N^2] - 1)/N$

Why would anyone subvert their own key? 🤪

Encrypt-(under-your-own-key)-and-prove

- MPC Ceremony for RSA modulus generation [HMRT19]
- Threshold ECDSA [CGGMP20, BMP22]
- E-Voting [DJ01]

RSA modulus

$\pi \leftarrow \text{Prove}(\text{vpk}, x, w)$

☆ <u>Zero-Knowledge (ZK)</u>: 𝒴 learns nothing about * Non-interactive (NI): \mathcal{P} generates π without any interaction with \mathcal{V}

R(x, w) = 1

 π

$Verify(vsk, x, \pi) = 1$

- * (Proof/)Argument of Knowledge ((P/)AoKs): if Verify $(x, \pi) = 1$ then \mathscr{P} knows a w's.t. R(x, w') = 1
- * (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every \mathcal{V} /)only one \mathcal{V} holding vsk can verify π

P Computationally Unbounded/Bounded

 $\pi \leftarrow \text{Prove}(\text{vpk}, x, w)$

✤ <u>Zero-Knowledge (ZK)</u>: 𝒴 learns nothing about * Non-interactive (NI): \mathcal{P} generates π without any interaction with \mathcal{V}

R(x, w) = 1

 π

$Verify(vsk, x, \pi) = 1$

- * (Proof/)Argument of Knowledge ((P/)AoKs): if Verify $(x, \pi) = 1$ then \mathcal{P} knows a w's.t. R(x, w') = 1
- * (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every \mathcal{V} /)only one \mathcal{V} holding vsk can verify π

P Computationally Unbounded/Bounded

 $\pi \leftarrow \text{Prove}(\text{vpk}, x, w)$

☆ Zero-Knowledge (ZK): 𝒴 learns nothing about * Non-interactive (NI): \mathcal{P} generates π without any interaction with \mathcal{V}

Public verifiability: $vsk = \bot$

Verify(vsk, x, π) = 1

- * (Proof/)Argument of Knowledge ((P/)AoKs): if Verify $(x, \pi) = 1$ then \mathscr{P} knows a w's.t. R(x, w') = 1

R(x, w) = 1

 π

* (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every \mathcal{V} /)only one \mathcal{V} holding vsk can verify π

P Computationally Unbounded/Bounded

 $\pi \leftarrow \text{Prove}(\text{vpk}, x, w)$

* (Proof/)Argument of Knowledge ((P/)AoKs): if Verify $(x, \pi) = 1$ then \mathscr{P} knows a w's.t. R(x, w') = 1✤ <u>Zero-Knowledge (ZK)</u>: 𝒴 learns nothing about * Non-interactive (NI): \mathcal{P} generates π without any interaction with \mathcal{V} * (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every \mathcal{V} /)only one \mathcal{V} holding vsk can verify π

R(x, w) = 1

 π

Public verifiability: $vsk = \bot$

Verify(vsk, x, π) = 1

This work: DV-NIZK-AoK protocols

Our contributions

* A <u>DV-zk-AoK</u> of a pre-image of any (additive) homomorphism under <u>subverted RSA groups</u>. e.g. $x: y = g^x \pmod{N}$, $x: ct = Paillier \cdot Enc(x)$ for any N

e.g. $x : ct = Paillier \cdot Enc(x) \land x \in [A, B]$ for any N

<u> Technically</u>: A new <u>extraction technique</u> for proving knowledge-soundness.

* A <u>DV-zk range argument</u> for any (additive) homomorphism under <u>subverted RSA groups</u>.

Possible Approaches

N: arbitrary chosen by \mathcal{P}

* Σ -protocols

 $\rightarrow \lambda$ repetitions (x λ efficiency overhead) [BCK10, TW12]

* General purpose NIZK (e.g. SNARK) → Very expensive to encode RSA operations (~80million gates for ar. circuits) [OWWB20]

* Prove correctness of N [CM99, ...] & proof for non-subverted RSA groups: → Proofs of correct moduli very expensive

* More elaborate approaches → See the paper for discussion...

Possible Approaches

N: arbitrary chosen by P

* Σ -protocols

→ λ repetitions (x λ efficiency overhead) [BCK10, TW12] al purpose NIZK (e.g. SNARK) This Work: avoid repetitions

★ General purpose NIZK (e.g. SNARK)
 → Very expensive to encode RSA operations (~80million gates for ar. circuits) [OWWB20]

Prove correctness of N [CM99, ...] & proof for non-subverted RSA groups:
 Proofs of correct moduli very expensive

More elaborate approaches
 See the paper for discussion...

N: arbitrary chosen by \mathcal{P}

N: arbitrary chosen by \mathcal{P}

Non-interactive via Fiat-Shamir

N: arbitrary chosen by \mathcal{P}

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on a:

 $g^s = a \cdot y^c \pmod{N}$

Rewind

N: arbitrary chosen by \mathcal{P}

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on a:

$g^s = a \cdot y^c \pmod{N}$

 $y = g^x \pmod{N}$

 $g^{s'} = a \cdot y^{c'} \pmod{N}$

N: arbitrary chosen by \mathscr{P} $y = g^x \pmod{N}$

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on a:

$g^s = a \cdot y^c \pmod{N}$

Rewind

a = g'C's = r + c'm

N: arbitrary chosen by \mathscr{P} $y = g^x \pmod{N}$

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on a:

$g^s = a \cdot y^c \pmod{N}$

Rewind

[BCK10, TW12] Cannot divide with c - c' in the exponent: $\phi(N^2)$ is secret → Unable to extract unless $c \in \mathcal{C} = \{0,1\}$ → soundess error = 1/2 → requires λ repetitions

a = g'c's = r + c'm

N: arbitrary chosen by \mathcal{P}

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on a:

$g^s = a \cdot y^c \pmod{N}$

[BCK10, TW12] Cannot divide with c - c' in the exponent: $\phi(N^2)$ is secret \rightarrow Unable to extract unless $c \in \mathcal{C} = \{0,1\} \rightarrow$ soundess error = 1/2 \rightarrow requires λ repetitions

$y = g^x \pmod{N}$

a = g'C's = r + c'm

$$g^{s'} = a \cdot y^{c'} \pmod{N}$$

[FO97, DF01] circumvents it but taking an assumption over \mathbb{G} \rightarrow not applicable for arbitrary N

(mod N)

Rewind

Assume M accepting transcripts on a we get: 1. $\{a, c^{(1)}, s^{(1)}\} : g^{s^{(1)}} = a \cdot y^{c^{(1)}}$ 2. $\{a, c^{(2)}, s^{(2)}\} : g^{s^{(2)}} = a \cdot y^{c^{(2)}}$. M. $\{a, c^{(M)}, s^{(M)}\} : g^{s^{(M)}} = a \cdot y^{c^{(M)}}$

 $\beta_i := s^{(i)} - s^{(1)}$ $\delta_i := c^{(i)} - c^{(1)}$ $g^{\beta_{2}} = y^{\delta_{2}}$ $\Rightarrow g^{\beta_{3}} = y^{\delta_{3}}$ \vdots $g^{\beta_{M}} = y^{\delta_{M}}$

Assume M accepting transcripts on a we get: 1. $\{a, c^{(1)}, s^{(1)}\} : g^{s^{(1)}} = a \cdot y^{c^{(1)}}$ 2. $\{a, c^{(2)}, s^{(2)}\} : g^{s^{(2)}} = a \cdot y^{c^{(2)}}$ M. $\{a, c^{(M)}, s^{(M)}\}$: $g^{s^{(M)}} = a \cdot y^{c^{(M)}}$

Bezout's theorem (Informal): If $gcd(\delta_2, \dots, \delta_M) = 1$ then there exist k_2, \dots, k_M such that $k_2\delta_2 + \dots + k_M\delta_M = 1$ (over \mathbb{Z})

Assume M accepting transcripts on a we get: 1. $\{a, c^{(1)}, s^{(1)}\}$: $g^{s^{(1)}} = a \cdot y^{c^{(1)}}$ 2. $\{a, c^{(2)}, s^{(2)}\} : g^{s^{(2)}} = a \cdot y^{c^{(2)}}$ M. $\{a, c^{(M)}, s^{(M)}\} : g^{s^{(M)}} = a \cdot y^{c^{(M)}}$

Bezout's theorem (Informal): If $gcd(\delta_2, \dots, \delta_M) = 1$ then there exist k_2, \dots, k_M such that $k_2\delta_2 + \dots + k_M\delta_M = 1$ (over \mathbb{Z})

 $\beta_i := s^{(i)} - s^{(1)}$ $\delta_i := c^{(i)} - c^{(1)}$ $g^{\beta_2} = y^{\delta_2}$ $\Rightarrow g^{\beta_3} = y^{\delta_3}$ \vdots $g^{\beta_M} = y^{\delta_M}$ $\Rightarrow g^{\sum_{i=2}^{M} k_i \beta_i} = y^{\sum_{i=2}^{M} k_i \delta_i} = y \pmod{N}$

Assume M accepting transcripts on a we get: 1. $\{a, c^{(1)}, s^{(1)}\}$: $g^{s^{(1)}} = a \cdot y^{c^{(1)}}$ 2. $\{a, c^{(2)}, s^{(2)}\} : g^{s^{(2)}} = a \cdot y^{c^{(2)}}$ M. $\{a, c^{(M)}, s^{(M)}\} : g^{s^{(M)}} = a \cdot y^{c^{(M)}}$

Bezout's theorem (Informal): If $gcd(\delta_2, \dots, \delta_M) = 1$ then there exist k_2, \dots, k_M such that $k_2\delta_2 + \dots + k_M\delta_M = 1$ (over \mathbb{Z})

How can we guarantee that $gcd(\delta_2, \ldots, \delta_M) = 1$?

 $\beta_i := s^{(i)} - s^{(1)}$ $\delta_i := c^{(i)} - c^{(1)}$ $g^{\beta_2} = y^{\delta_2}$ $\Rightarrow g^{\beta_3} = y^{\delta_3}$ \vdots $g^{\beta_M} = y^{\delta_M}$ $\Rightarrow g^{\sum_{i=2}^{M} k_i \beta_i} = y^{\sum_{i=2}^{M} k_i \delta_i} = y \pmod{N}$

How can we guarantee that $gcd(\delta_2, ..., \delta_M) = 1$?

<u>Caveat</u>: Prover can choose the 'type' of c to answer so that never $gcd\left((c^{(i)} - c^{(1)})_{i=2}^M\right) = 1$ (e.g. only even c)

How can we guarantee that $gcd(\delta_2, ..., \delta_M) = 1$?

<u>Caveat</u>: Prover can choose the 'type' of c to answer so that **never** $gcd\left((c^{(i)} - c^{(1)})_{i=2}^{M}\right) = 1$ (e.g. only even c) <u>Our approach</u>: **Partially** hide c from the prover $\Rightarrow c = \langle \vec{d}, \vec{b} \rangle$ where \vec{d} hidden, \vec{b} sampled during the protocol

How can we guarantee that $\frac{\text{gcd}(\delta_2, \ldots, \delta_M) = 1}{2}$?

Our Information-Theoretical Lemma (Informal): Let $\vec{d} = (d_1, \dots, d_{\lambda}) \in (\{0, 1\}^{\lambda})^{\lambda}$ uniformly random, $\vec{b} = (b_1, \dots, b_n) \in (\{0, 1\})^{\lambda}$ and $c = \langle \vec{d}, \vec{b} \rangle$ then for any distribution of \dot{b} one can obtain $M = \text{poly}(\lambda)$ transcripts such that: $Pr[gcd((c^{(i)} - c^{(1)})_{i=2}^{M}) = 1] = 1 - negl(\lambda)$

<u>Caveat</u>: Prover can choose the 'type' of c to answer so that never $gcd\left((c^{(i)} - c^{(1)})_{i=2}^M\right) = 1$ (e.g. only even c) <u>Our approach</u>: Partially hide c from the prover $\rightarrow c = \langle \vec{d}, \vec{b} \rangle$ where \vec{d} hidden, \vec{b} sampled during the protocol

Our Protocol (3): Bootstraping via DV

<u>Our approach</u>: *** Partially** hide c from the prover: $c = \langle \vec{d}, \vec{b} \rangle$ where \vec{d} hidden, \vec{b} sampled during the protocol ***** Then Core-Lemma + gcd-extraction technique ***** Knowledge-Sound Protocol

Our Protocol (3): Bootstraping via DV

Our approach: * Partially hide c from the prover: $c = \langle \vec{d}, \vec{b} \rangle$ where \vec{d} hidden, \vec{b} sampled during the protocol * Then Core-Lemma + gcd-extraction technique Knowledge-Sound Protocol

<u>Question</u>: How to hide $\vec{d} = (d_1, \dots, d_\lambda)$ from \mathcal{P} ? $\rightarrow \mathcal{V}$ encrypts it \rightarrow DV-model

Performance-Extensions-Limitations

More on the paper: * Range proofs over Subverted RSA groups * Malicious and reusable DV keys

Implementation and Performance: * Paillier Range proof (with malicious-verifier security): $T(\mathcal{P}) = 192 \text{ms}, T(\mathcal{V}) = 125 \text{ms}, |\pi| = 11.05 \text{KB}$

Limitations:

Designated-Verifier model

Relatively expensive DV KeyGen for malicious zk * Polynomial-reusability of DV keys (if verification oracles queries are assumed)

Conclusions and summary

Summary:

 \star A new general extraction method for Σ -protocols. **★**DV-AoK and range proof-protocols for subverted RSA groups.

Open questions:

*Efficient Public-Verifier protocols for Subverted RSA groups? *Apply the extraction technique to other contexts (e.g. lattice-based zk-proofs)?

Thank you!

Full version: https://eprint.iacr.org/2023/364 Implementation: https://github.com/volhovm/rsa-zkps-impl

