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Hidden Order Groups - Applications
Group exponentiations are (computationally) over ℤ

List not 
exhaustive

★ Accumulators [BdM94, BP97, CL02, LLX07, L12, BBF19] & Set Membership (zk-)proofs 
[CL02, BCFGK19, CDHKKO22]


★ (zk-)Range proofs [B00, L03, G05, CPP17, CKLR21]


★ Vector Commitments [CF13, LM19, BBF19, CFGKN20, TXN20, CFKS22]


★ Polynomial commitments & SNARKs [BFS20, BHRRS21, AGLMS23]


★ Verifiable delay functions [BBBF18, W19, P19] & time-lock puzzles [RSW96]


★ Additively Homomorphic Encryption [P99, CL15]
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Hidden Order Groups - Instantiations

RSA Groups Class Groups

❖ :  and  ‘safe’ primes


❖   





❖ Computing   Factoring 🙂


❖ Structured setup ☹

ℤ*N N = p ⋅ q p, q

gx mod N = gx mod ϕ(N)

𝗈𝗋𝖽(𝔾) = ϕ(N) = (p − 1)(q − 1)

𝗈𝗋𝖽(𝔾) ↔

❖ Class Groups of imaginary quadratic order


❖ Complicated Algebra… (see


[BuchamannHamdy01, Straka19]) 


❖ Computing   Less cryptanalysis effort ☹


❖ Uniformly random setup 🙂

𝗈𝗋𝖽(𝔾) ↔

[RSA78] [BW88]
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This Work: 


ZK proofs over  Subverted RSA  groups
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Fully additive variant [DJ10, L17]


❖    ,  , , 


❖    


❖   

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) : N = p ⋅ q h ← gN ∈ ℤ2
N 𝗉𝗄 = (N, h) 𝗌𝗄 = (p, q)

𝖤𝗇𝖼(𝗉𝗄, m) : 𝖼𝗍 ← (N + 1)mhr mod N2

𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) : ([𝖼𝗍 ⋅ 𝖼𝗍[N−1 mod ϕ(N)]⋅N mod N2] − 1)/N

Paillier Encryption & Key Subversion
RSA modulus
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𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) : ([𝖼𝗍 ⋅ 𝖼𝗍[N−1 mod ϕ(N)]⋅N mod N2] − 1)/N

Paillier Encryption & Key Subversion
RSA modulus

Encrypt-(under-your-own-key)-and-prove

•MPC Ceremony for RSA modulus generation [HMRT19]

•Threshold ECDSA [CGGMP20, BMP22]

•E-Voting [DJ01]

Why would anyone subvert their own key? 🤔
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Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if  then  knows a  s.t. 

❖ Zero-Knowledge (ZK):  learns nothing about 

❖ Non-interactive (NI):  generates  without any interaction with 

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one  holding  can verify  

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)



6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if  then  knows a  s.t. 

❖ Zero-Knowledge (ZK):  learns nothing about 

❖ Non-interactive (NI):  generates  without any interaction with 

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one  holding  can verify  

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π
 Computationally 


Unbounded/Bounded
𝒫

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)



6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if  then  knows a  s.t. 

❖ Zero-Knowledge (ZK):  learns nothing about 

❖ Non-interactive (NI):  generates  without any interaction with 

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one  holding  can verify  

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π
 Computationally 


Unbounded/Bounded
𝒫

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)

Public verifiability: 
vsk = ⊥



6/15

Zero-Knowledge Proofs [GMR89]

𝒫(𝗏𝗉𝗄, x, w) 𝒱(𝗏𝗌𝗄, x)
R(x, w) = 1

❖ (Proof/)Argument of Knowledge ((P/)AoKs): if  then  knows a  s.t. 

❖ Zero-Knowledge (ZK):  learns nothing about 

❖ Non-interactive (NI):  generates  without any interaction with 

❖ (Public/)Designated-Verifier (DV) [DFN06, PsV06]: (every /)only one  holding  can verify  

𝖵𝖾𝗋𝗂𝖿𝗒(x, π) = 1 𝒫 w′￼ R(x, w′￼) = 1
𝒱 w
𝒫 π 𝒱

𝒱 𝒱 𝗏𝗌𝗄 π

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗌𝗄, x, π) = 1

π

This work: DV-NIZK-AoK protocols

 Computationally 

Unbounded/Bounded
𝒫

π ← 𝖯𝗋𝗈𝗏𝖾(𝗏𝗉𝗄, x, w)

Public verifiability: 
vsk = ⊥



7/15

Our contributions

★A DV-zk-AoK of a pre-image of any (additive) homomorphism under subverted RSA groups.

e.g.    ,       for any 


★A DV-zk range argument  for any (additive) homomorphism under subverted RSA groups.

e.g.      for any 


★Technically: A new extraction technique for proving knowledge-soundness.

x : y = gx (mod N) x : 𝖼𝗍 = 𝖯𝖺𝗂𝗅𝗅𝗂𝖾𝗋 . 𝖤𝗇𝖼(x) N

x : 𝖼𝗍 = 𝖯𝖺𝗂𝗅𝗅𝗂𝖾𝗋 . 𝖤𝗇𝖼(x) ∧ x ∈ [A, B] N
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Possible Approaches

❖ -protocols


➜  repetitions (x  efficiency overhead) [BCK10, TW12]


❖ General purpose NIZK (e.g. SNARK)

➜ Very expensive to encode RSA operations (~80million gates for ar. circuits) [OWWB20]


❖ Prove correctness of  [CM99, …] & proof for non-subverted RSA groups:


➜ Proofs of correct moduli very expensive


❖ More elaborate approaches

➜ See the paper for discussion…

Σ

λ λ

N

 : arbitrary chosen by            N 𝒫 y = gx (mod N)
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Σ

λ λ

N

This Work: avoid repeZZons

 : arbitrary chosen by            N 𝒫 y = gx (mod N)
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𝒫(N, h, 𝖼𝗍, m) 𝒱(N, h, y)
a = gr

c

s = r+cm

r ← $
c ← 𝒞

gs =? a ⋅ yc (mod N)

Sigma-Protocols over HoGs (and pitfails)
 : arbitrary chosen by            N 𝒫 y = gx (mod N)
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 Non-interactive via Fiat-Shamir 
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gs−s′￼ = yc−c′￼ (mod N)
Cannot divide with  in the exponent:  is secret 
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Sigma-Protocols over HoGs (and pitfails)

(Knowledge) Soundness. Rewind to obtain 2 accepting transcripts on :
a

Rewind

{
[BCK10, TW12]

[FO97, DF01] circumvents it

but taking an assumption over 

➜ not applicable for arbitrary 

𝔾
N

 : arbitrary chosen by            N 𝒫 y = gx (mod N)

a = gr

c′￼

s = r+c′￼m
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Our Protocol (1): A new extraction approach
Assume M accepting transcripts on  we get:
a

1. {a, c(1), s(1)} : gs(1) = a ⋅ yc(1)

2. {a, c(2), s(2)} : gs(2) = a ⋅ yc(2)

⋮
M. {a, c(M), s(M)} : gs(M) = a ⋅ yc(M)

⇒

gβ2 = yδ2

gβ3 = yδ3

⋮
gβM = yδM

⇒

δi := c(i) − c(1)βi := s(i) − s(1)
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Our Protocol (2): Our core technical Lemma

How can we guarantee that  ?𝗀𝖼𝖽(δ2, …, δM) = 1
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Our Protocol (2): Our core technical Lemma

Our Information-Theoretical Lemma (Informal):

Let   uniformly random,  and  

then for any distribution of  one can obtain  transcripts such that: 


⃗d = (d1, …, dλ) ∈ ({0,1}λ)λ b⃗ = (b1, …, bn) ∈ ({0,1})λ c = ⟨ ⃗d, b⃗⟩
b⃗ M = 𝗉𝗈𝗅𝗒(λ)

Pr[𝗀𝖼𝖽 ((c(i) − c(1))M
i=2) = 1] = 1 − 𝗇𝖾𝗀𝗅(λ)
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Our Protocol (3): Bootstraping via DV

Our approach: 

❖ Partially hide  from the prover:  where  hidden,  sampled during the protocolc c = ⟨ ⃗d, b⃗⟩ ⃗d b⃗

Core-Lemma -extraction technique𝗀𝖼𝖽+ ➜ Knowledge-Sound Protocol❖ Then
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Our Protocol (3): Bootstraping via DV

Our approach: 

❖ Partially hide  from the prover:  where  hidden,  sampled during the protocolc c = ⟨ ⃗d, b⃗⟩ ⃗d b⃗

Core-Lemma -extraction technique𝗀𝖼𝖽+ ➜ Knowledge-Sound Protocol❖ Then

Question: How to hide  from ? 

                          ➜  encrypts it ➜ DV-model

⃗d = (d1, …, dλ) 𝒫
𝒱
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Performance-Extensions-Limitations
More on the paper:

★ Range proofs over Subverted RSA groups

★ Malicious and reusable DV keys


Implementation and Performance:

★ Paillier Range proof (with malicious-verifier security): 


 T( ) = 192ms, T( ) = 125ms, = 11.05KB 


Limitations:

❖ Designated-Verifier model

❖ Relatively expensive DV KeyGen for malicious zk

❖ Polynomial-reusability of DV keys (if verification oracles queries are assumed)

𝒫 𝒱 |π |



Summary:


★A new general extraction method for -protocols.

★DV-AoK and range proof-protocols  for subverted RSA groups.


Open questions:


❖Efficient Public-Verifier protocols for Subverted RSA groups?

❖Apply the extraction technique to other contexts (e.g. lattice-based zk-proofs)?

Σ

Thank you!

Full version: https://eprint.iacr.org/2023/364

Implementation: https://github.com/volhovm/rsa-zkps-impl 15/15

Conclusions and summary

https://eprint.iacr.org/2023/364

