Satrajit Ghosh & Mark Simkin

<u>Private Set Intersection</u>

Private Set Intersection

Only compute intersection when large enough

Only compute intersection when large enough

Only compute intersection when large enough larger than n-t

Threshold PSI High-Level Idea

Communication can just depend on t [GS19]

Communication can just depend on t [GS19]

High-Level Idea

8 9 4

Threshold PSI High-Level Idea

Communication can just depend on t [GS19]

Construction Blueprint

[Ghosh & Simkin 2019]

Threshold PSI

Construction Blueprint [Ghosh & Simkin 2019] Threshold PSI Cardinality Testing

Construction Blueprint [Ghosh & Simkin 2019] Cardinality Testing

Construction Blueprint [Ghosh & Simkin 2019] Cardinality Testing

Construction Blueprint [Ghosh & Simkin 2019] Cardinality Testing

What We Know

What We Know

Lower Bounds [GS19, BDP21] Need linear in t communication

What We Know Ignoring Polylogs

Lower Bounds [GS19, BDP21] Need linear in t communication

Two Parties

O(t) from FHE [GS19]

- $O(t^2)$ from AHE [GS19]
- O(t) from AHE [BMRR21]

What We Know Ignoring Polylogs

Lower Bounds [GS19, BDP21] Need linear in t communication

Many Parties

 $O(t^2)$ from AHE [BMRR21]* O(t²) from AHE [BDP21]

Two Parties

O(t) from FHE [GS19]

- $O(t^2)$ from AHE [GS19]
- O(t) from AHE [BMRR21]

What We Know Ignoring Polylogs

Lower Bounds [GS19, BDP21] Need linear in t communication

Many Parties

O(t²) from AHE [BMRR21]* $O(t^2)$ from AHE [BDP21]

Two Parties

O(t) from FHE [GS19] $O(t^2)$ from AHE [GS19] O(t) from AHE [BMRR21]

This Work

Compiler $Poly(t) \rightarrow O(t \cdot eps)$

Our Contribution

Our Contribution

Secret shared outputs Poly(t) communication

Our Contribution Ignoring Polylogs

t buckets

<u>Cardinality Testing</u>

1

1

2

1 + 1 + 2 = 4

Amplification

Amplification

Amplification

Two Parties

Intersection large <=> Symmetric set difference small

Multiple Parties

Two Parties Intersection large <=> Symmetric set difference small

Multiple Parties Need to talk about intersection directly

Two Parties Intersection large <=> Symmetric set difference small

Multiple Parties

Need to talk about intersection directly Buckets contain different amounts of elements

Two Parties Intersection large <=> Symmetric set difference small

Multiple Parties

Need to talk about intersection directly Buckets contain different amounts of elements Need padding elements in buckets

Questions?

