Threshold Private Set Intersection with Better Communication Complexity

Satrajit Ghosh \& Mark Simkin

Private Set Intersection

Private Set Intersection

Threshold PSI

Only compute intersection when large enough

Threshold PSI

Only compute intersection when large enough

Threshold PSI

Only compute intersection when large enough larger than n-t

Threshold PSI

Threshold PSI

High-Level Idea

Threshold PSI

High-Level Idea

To determine intersection

Threshold PSI

High-Level Idea

To determine intersection, determine difference

Construction Blueprint
 [Ghosh \& Simkin 2019]

Threshold PSI

Construction Blueprint
 [Ghosh \& Simkin 2019]

Threshold PSI

Cardinality Testing

Construction Blueprint

[Ghosh \& Simkin 2019]

Construction Blueprint
 [Ghosh \& Simkin 2019]

Secure if intersection large

Construction Blueprint
 [Ghosh \& Simkin 2019]

Secure if intersection large
"Solved" in [GS19]

Construction Blueprint

[Ghosh \& Simkin 2019]

Secure if intersection large

What We Know

What We Know

Lower Bounds [GS19, BDP21]
Need linear in t communication

What We Know

Lower Bounds [GS19, BDP21]
Need linear in t communication

```
Two Parties
O(t) from FHE [GS19]
O(t2) from AHE [GS19]
O(t) from AHE [BMRR21]
```


What We Know

Lower Bounds [GS19, BDP21]
Need linear in t communication

```
Two Parties
O(t) from FHE [GS19]
O(t2) from AHE [GS19]
O(t) from AHE [BMRR21]
```

\bigcirc Many Parties

```
O(t2) from AHE [BMRR21]*
O(t2) from AHE [BDP21]
```


What We Know

Lower Bounds [GS19, BDP21]
Need linear in t communication

```
Two Parties
O(t) from FHE [GS19]
O(t²) from AHE [GS19]
\(O(t)\) from AHE [BMRR21]
```

〇 Many Parties

$$
\begin{aligned}
& O\left(t^{2}\right) \text { from AHE [BMRR21]* } \\
& O\left(t^{2}\right) \text { from AHE [BDP21] }
\end{aligned}
$$

This Work

```
Compiler
    Poly(t) -> O(t·eps)
```


Our Contribution

Ignoring Polylogs

Our Contribution

Secret shared outputs
Poly(t) communication

Our Contribution

Ignoring Polylogs

Cardinality Testing Divide \& Conquer

\square
\square

\square

Cardinality Testing

ロロ

\square

Cardinality Testing Divide \& Conquer

Cardinality Testing Divide \& Conquer

Cardinality Testing Divide \& Conquer

\square

Cardinality Testing Divide \& Conquer

$$
1+1+2=4
$$

Cardinality Testing
 Divide \& Conquer

Cardinality Testing Divide \& Conquer

Cardinality Testing Divide \& Conquer

Cardinality Testing
 Amplification

Cardinality Testing
 Amplification

Cardinality Testing Amplification

Cardinality Testing

The Multiparty Case

Cardinality Testing

The Multiparty Case

Two Parties
Intersection large <=> Symmetric set difference small

Cardinality Testing

The Multiparty Case

Two Parties
Intersection large <=> Symmetric set difference small

Multiple Parties

Cardinality Testing
 The Multiparty Case

Two Parties

Intersection large <=> Symmetric set difference small

Multiple Parties
Need to talk about intersection directly

Cardinality Testing
 The Multiparty Case

Two Parties

Intersection large <=> Symmetric set difference small

Multiple Parties

Need to talk about intersection directly
Buckets contain different amounts of elements

Cardinality Testing
 The Multiparty Case

Two Parties

Intersection large <=> Symmetric set difference small

Multiple Parties

Need to talk about intersection directly
Buckets contain different amounts of elements
Need padding elements in buckets

Questions?

