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MEGA encrypted cloud storage login (simplified)

Client Server
Password-derived AES key

Client’s RSA public key
AES(RSA private key)

1. Server sends the client’s password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.
3. Authenticate if the challenge value matches.
4. In reality, only 43 bytes are sent as verification.
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Malicious MEGA login process (simplified)

Client Attacker
Password-derived AES key Client’s RSA public key

AES-ECB(RSA private key)

1. Attacker modifies 128-bit blocks of encrypted private key.
2. Modified values used to “decrypt” the challenge.
3. Custom padding scheme was not checked.
4. The 43 bytes leak information about the RSA private key.
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Malicious MEGA login process (simplified)

Client Attacker
Password-derived AES key Client’s RSA public key

(Modified) RSA “private key” AES-ECB(RSA private key)
RSA challenge ciphertext RSA challenge plaintext

“Decrypted” RSA ciphertext 43 bytes from “decryption”

1. Attacker modifies 128-bit blocks of encrypted private key.
2. Modified values used to “decrypt” the challenge.
3. Custom padding scheme was not checked.
4. The 43 bytes leak information about the RSA private key.
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Cryptanalysis of (Backendal, Haller, Paterson, Oakland 23)

Private key (q, p, d, u) is encrypted with AES-ECB.

Modify 128 bits of RSA-CRT coefficient u 7→ ũ.

Do binary search for q based on 43-byte response.

One login attempt reveals one bit of information.

512 login attempts are required.
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Representing the client response

Client response = MSB((ũi(mp − mq)q + mq) mod N)

• Each login attempt returns 43 bytes from Garner’s formula.

• There is a large hidden number x shared between samples.
• There is a bounded error ei in the samples.
•
• Goal: recover the unknown multipliers.
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Representing the client response

ai = ũix + ei (mod N)

• Each login attempt returns 43 bytes from Garner’s formula.
• There is a large hidden number x shared between samples.
• There is a bounded error ei in the samples.
• The unknown multiplier is decrypted 128-bit AES blocks.
• Goal: recover the unknown multipliers.
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Hidden Number Problem with Small Unknown Multipliers

ai = tix + ei (mod N)

• The attacker is given two or more samples.
• There is a large hidden number x shared between samples.
• There is a bounded error ei in the samples.
• The unknown multiplier is bounded.
• Goal: recover the unknown multipliers.
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Challenges to solving HNP-SUM

We know ai, N, and bounds for |ti| ≤ T, |ei| ≤ E. Recover ti.

ai = tix + ei (mod N)

• Two new unknowns for every new sample.
• Resembles the Hidden Number Problem of Boneh and

Venkatesan (Crypto 1996), except multipliers ti are unknown.
• Linearization fails because (tix mod N) is unbounded.

HNP-SUM lets us cryptanalyze MEGA with 6 samples.
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Solving HNP-SUM
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Solving HNP-SUM with two samples

t2(

a1 = t1x + e1

)

(mod N)

− t1(

a2 = t2x + e2

)

(mod N)

t2a1 +−t1a2 = t2e1 − t1e2 (mod N)

We know there exists a small linear combination of known values
with small coefficients.

We want to find these coefficients.
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Solving HNP-SUM with two samples

Consider the lattice spanned by the rows of1 0 a1
0 1 a2
0 0 N


This lattice contains the short vector[

t2 −t1 t2e1 − t1e2
]
.

Lattice reduction finds this target vector.
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Trying to solve HNP-SUM with three samples

Consider the lattice spanned by the rows of
1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 N


This lattice contains the short vectors[

t2 −t1 0 t2e1 − t1e2
]

[
t3 0 −t1 t3e1 − t1e3

]
[
0 −t3 t2 t3e2 − t2e3

]

But these are not found by lattice reduction.
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Solving HNP-SUM with three samples

HNP-SUM instance with multipliers (-292, 264, 185):
1 0 0 16434376644250
0 1 0 18067839662587
0 0 1 6420926526082
0 0 0 27006979257190



→


15 25 −12 71
−47 −66 20 68

−36967 16082 −25946 −2238
12565 −30656 −63041 −2494


Lattice reduction finds a dense sublattice, but none of the target

vectors. We want to find a vector with 0 in the correct spot. 15 25 −12 71
−47 −66 20 68

 →

1 88 −124 2038
0 185 −264 4357


Hermite Normal Form finds one, reveals multipliers 264 and 185
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Solving HNP-SUM

Observation #1:
We build a lattice that cancels out terms involving x.

Observation #2:
Lattice reduction finds a dense sublattice, not just a short vector.
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Application:
The RSA Implicit Factoring Problem
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Implicit factoring problem (May and Ritzenhofen, PKC 2009)

Given multiple RSA moduli whose unbalanced factors share the
same most significant bits, recover the factorization.

3709606718119160021 = 637279972190201 × 5821
4244922075900467567 = 637279999384547 × 6661
3078699429183112997 = 637279948081787 × 4831

We can also consider cases where the least significant bits are
shared, some of each, or bits in the middle.
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Solving Implicit factoring using HNP-SUM

Ni = (pmsb + plsb,i)qi = qipmsb + (qiplsb,i)

Ni is the HNP-SUM sample.
pmsb is the hidden number shared between samples.

qi is the small unknown multiplier.
qiplsb,i is the bounded error.

Similar modular equations exist for other types of shared bits.

15



Implicit factoring results

We compare our HNP-SUM approach to prior lattice constructions.

Bits shared Comparison

LSBs Improve upon (May and Ritzenhofen, PKC 2009)
MSBs Close to (Faugère, Marinier, Renault, PKC 2010)
Middle Polynomially smaller lattices than in [FMR10]

LSB+MSBs No direct lattice construction
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Cryptanalyzing MEGA in Six Queries
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Cryptanalyzing MEGA: The aftermath

June 21, 2022 - Backendal, Haller, and Paterson publish
512-login attack on MEGA (Oakland 2023).

July 13, 2022 - We disclose improved 6-login attack on
unpatched systems (PKC 2023).

Sep. 29, 2022 - Albrecht, Haller, Mareková, Paterson
disclose 2-login attack (Eurocrypt 2023).
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Cryptanalyzing MEGA

Analyzing MEGA’s real-world design has been productive.

• Three new papers (Oakland, PKC, Eurocrypt)

• HNP-SUM involves unusual lattice techniques

• Surprising applications to implicit factoring
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Thank You

The Hidden Number Problem with Small
Unknown Multipliers: Cryptanalyzing MEGA

in Six Queries and Other Applications

https://ia.cr/2022/914
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