The Hidden Number Problem with Small Unknown Multipliers

Cryptanalyzing MEGA in Six Queries and Other Applications

Nadia Heninger Keegan Ryan
UC San Diego

MEGA encrypted cloud storage

M MEGA

MEGA: Malleable Encryption Goes Awry

Matilda Backendal ©, Miro Haller © and Kenneth G. Paterson ©
Department of Computer Science, ETH Zurich, Zurich, Switrerland
Email \{mbackendal, kenny.paterson\}eint.ethz.ch, miro.hallerealumni.ethz.ch

Abstract-MEGA is a leading clond storage plattorm with nore than 250 million users and 1000 Petabytes of stered data MEGA claims to offer usere-coutrollided, end-th-end security. This is achieved by having all data encrpption and decryption eperations
done en MEGA clients, under the control of keys that are ouly available to those clients. This is intended to protect MEGA wser from attucks by MEGA itself, or by adversuries who have taken ootrol of MEGA \& infrastructure.
We provide a detailied analysis or MEGA's use of cryptography
in such a malicious server setting We presnt five distinct attacks against MEGGA, which together allow for a full cempromise of the is damaged to the extent that an attacker can insert maticious is damaged of their thopee which pass all authenticity checks of the client. We milt proof-of-concept versions of all the attucks. Four
of the five attacks are eminently practical. They have all been reponsibly discklosed to MEGA and remediation is underway. responsibly lisctosed to MEGA and remediation is underway.
Taken togecther, our attacks highlight significant shortcoming in MEGA's eryptographic architecture, We present immediately deployable coumtermpasares, us well as hoger-terme recommen-
dathons. We also provide a broader discession of the challenges of dathons, we also provide a broaster disceussion or the chalenges of
ryptographic deploynent at maxive scale under strung threni modelc.
I. Introduction

The clowd - for outsourcing of both computation and data storage - has become a very popular approach to addres scaling and management problems in IT. This applies to bot enterprise and consumer domains. In the latter case, the markict having different combinations of storage, computation and collaboration features, and making a range of security and privacy clamms. The consumer storage market alone was valued at USD 13.6 billion in 2021.
As a promincent example, MEGA ${ }^{2}$ is a cloud storage and collaboration platform founded in 2013 offering "secure stor-
age and communication" services. With ower 250 million reg age and communication services. With owr 10 million daily active users 11 and 1000 PB of stored danta [2], MEGA is a significant player in the consumer domain. What sets them apari from their competiors such as DropBox, Google Drive, iCloud and Microsoft OneDrive is the claimed security guarantees: MEGA advertise themselves as "the privacy company" and promise user-controlled end-so. end encryption (UCE).
UCE refers to the fact that dita uploaded to the MEGA cloud is encrypted, and that only the user who owns the acedef to decryot. Thus MEGA's min selling noint
onfidentiality of user data even against MEGA themselves. showcased in the following quote from their wehsite [3]: MEGA does not have access to your password or ensure that your a strong is protected from being hacked and gives you total confidence that your information will remain just that - yours"
This impliex a threat moxdel in which the service provider iself should be considered potentially adversarial, and yet the service should remain sccure. All the scrvice is then trustod for setting for cryptanalysis: not only does the adversary have coess to encrypted user keys and data, it can also interac with users through kegitimate channels during steps like user uthentication and file access.
This may seem a very strong adversarial model. However. we stress that it is consistent with the security claims made by MEGA themelvex Morezver, we must consider the pas. ibility that even if MEGA is not adversarial, their system may have been compromised by malicious third partics, for wish to gain access to user' data and files. Indeed, the wheer ize of MEGA - and the likelibond of it attracting users whe wish to protect highly sensitive data precively because of the security the service clains to offec - surely make MEGA in attractive turget. Additionally. UCE should ensure thot MEGA cannot be coercod into revealing uxer data, eg. through subpoenas, since they are technically unable to do so.
In this work, we review the security of MEGA in this threal model and find significant issues in how it uses cryptography integrity of user data in the MEGA cloud
A. The MEGA Key Hierarchy

MEGA's approach to UCE begins with the user password. PW, which acts as the root of the key hierarchy depicted in Figure 1. The MEGA client derives an amenication key and an encrypuon key from the pais encrypes a randomly gencrited moter key, which in turn encrypos other key material of the user. Every account has set of asymmerric keys: an RSA key pair for sharing data, Curve25519 key pair for exchanging chat keys for MEGA chat functionality, and an Ed25519 key pair for signing the

MEGA encrypted cloud storage

ENGINEERING

MEGA Security Update

Mathias OrtmannChief Architect

MEGA: Malleable Encryption Goes Awry

Matilda Backendal ©, Miro Haller © and Kenneth G. Paterson ©
Department of Computer Scieace, ETH Zurich, Zurich, Switserland
Email: \{mbackendal, kenny.pateraon\}eint.ethz.ch, miro.hallerealumni.ethz.ch

Abstract-MEGA is a leading cload storage plattorm with more than 250 million users and 1000 Petabytes of stored data.
MEGA claims to offer user-coutrolled, end-to-end security. This is MEGA claims to offer usere-controllided, end-th-end security. This is achieved by having all data encryption and decryption operations
done on MEGA clients, under the control of keys that are outy available to those clients. This is intended to protect MEGA users from attacks by MEGA itself, or by adversaries who have taket coatrol of MEGA's infrastricture.

解 a detailed analysis of MEGA's use of cryptograpty A, which together albow for a full compromemise of the
yof user files. Addilioually, the integrity of user data Vof user files. Additionully, the integrity of user dota choice which pass all autherticicity checks of the ith proof-of-omucept versions of all the attacks. Four
tacks are eminently practical. They have all been tacks are eminently practical. They have all beem ischosed to MEGA and remediation is underway.
ther, our attacks highlight significant shortcoming ryptographic architecture. We present inmediatedy
puatermasares, as well as lonerotern recommen. cutermuasures, us well as honger-term recomimen
ss provide a broader discusion of the challenges of so provide a broader discussion of the challenges of
deployment at maxsive scale under strung threat

I. Introduction

- for cutsourcing of both computation and data s become a very popular approach to address nanagement problems in IT. This applies to both fiad of different cloud services, with products ent combinations of storage, computation and features, and making a range of security and . The consumner storage market illone was valued billion in 2021.
As a prominent example, MEG A^{2} is a clood storage and collaboration platform founded in 2013 offering "secure stor-
age and communication". services. With over 250 million registered users. 10 million daily active users [1] and 1000 PB of stored dita [2], MEGA is a significant player in the consume domain. What sets them apart from their competiors such as DropBox, Google Drive, iCloud and Mierosoft OneDrive is the claimed security guarantees: MEGA advertise themselves as "the privacy company and promise user-controlled end-soand encrypuion (UCE).
UCE refers to the fact that dita uploaded to the MEGA cloud is encrypted, and that only the user who owns the codef thus MEGA' min selline noint
onfidentiality of user data even against MEGA themselves, show cased in the following quote from their wehsite [3]: MeGA does not have access to your password or your data. Using a strong and unique password will and gives you total confidence that your information will remain just that - yours"
This impliex a threat moxdel in which the service provider iself should be considered potentially adversarial, and yet the service should remain secure. All the service is then trustod for seting for cryptanalysis: not only does the adversary have iccess to encrypted user keys and data, it can also interact with users through legitimate channels during steps like user authentication and file acceas.
This may seem a very strong adversarial model. However. we stress that it is consisisent with the security claims made by MEGiA themavelvex Moreover, we must consider the paw sibility that even if MEGA is not adversarial, their system moy have been compromised by malicious third partics for tample nation state secunty agencers or hacking groups, who ize of MEGA - and the likelibood of it attracting users who wish to protect highly sensitive data precively because of the security the service claims to offer - surely make MEGA in attractive turget. Additionally. UCE should ensure tho MEGA cannot be coerted into revealing uxer data, eg. through subpocnas, since they are technically unable to do so.
In this work, we review the security of MEGA in this threat model and find significant issucs in how it uses cryptography integrity of user data in the MEGA cloud.
A. The MEGA Key Hierarchy

MEGA's approach to UCE begins with the user password. PW, which acts as the root of the key hierarchy depicted in Figure 1 . The MEGA client derives an amsenication key nd an encrypuon key from the password. The aunhentication encryps a randomly gencrited moter bey, which in turn encryps other key material of the usec. Every account has aet of asymmetric keys: an RSA key pair for sharing data, a Curve25519 key pair for exchanging chat keys for MEGA chat functionality, and an Ed25519 key pair for signing the

MEGA encrypted cloud storage

MEGA

MEGA: Malleable Encryption Goes Awry

Matilda Backendal ©, Miro Haller © and Kenneth G. Paterson ©
Department of Computer Science, ETH Zurich, Zurich, Switzerland
Email \{mbackendal, kenny.pateraon\}einf.ethz.ch, miro.hallerealumni.ethz.ch

Who is potentially affected?

Customers who have logged into their MEGA account at least 512 times (the more, the higher the exposure). Note that resuming an existing session does not count as a login. While all MEGA client products use permanent sessions by default, some third-party clients such as Rclone do not, so their users may be exposed.

Mathias Ortmann
Chief Architect

- for cultsourcing of both computation and data is become a very popular approach to address namagement problems in IT. This applies to both consumer domains. In the latter cnse, the market iad of different cload services, with product ent combinations of storage. computation and features, and making a range of security and The consumner storage market alone was valued billion in 2021.
As a prominent example, MEGA ${ }^{2}$ is a cloud storage and collaboration platform founded in 2013 offering "secure stor istered users, 10 million daily active users [1] and 1000 PB of tored danta [2], MEGA is a significant player in the consumer domain. What sets chem apari from their competiors such as DropBox, Google Drive, iCloud and Microsoft OneDrive is the claimed security guarantess: MEGA advertise themselves as "the privacy company and promise user-controlled end-soend encryption (UCE).
UCE refers to the fact that dita uploaded to the MEGA cloud is encrypted, and that only the user who owns th asess and
by MEGiA themvelver Morewver, we must consider the paw ibility that even if MEGA is not adversarial, their system may have becen compromised by maficious third partics, for wish to gain access to user' data and files. Indeed, the sheer ize of MEGA - and the likelihood of it attracting users who wish to protect highly sensitive data precively because of the security the service claims to offet - surely make MEGA in attractive turget. Additionally. UCE should ensure tho MEGA cannot be coerced into revealing user data, eg. through subpoenas, since they are technically unable to do so.
In this work, we review the security of MEGA in this threat model and find significant issucs in how it uses cryptography ntegrity of user data in the MEGA cloud
A. The MELA Key Hierarchy

MEGA's approach to UCE begins with the user password PW, which acts as the root of the key hierarchy depicted in Figure 1 . The MEGA client derives an authentication key and an encryption key from the password. The authentication encryps a randomly gencrated moter bey, which in turn acrypos other key material of the user. Every account has set of asymmerric keys: an RSA key pair for sharing data, Curve25519 key pair for exchanging chat keys for MEGA chat functionality, and an Ed25519 key pair for signing the

MEGA encrypted cloud storage login (simplified)

MEGA encrypted cloud storage login (simplified)

Client
Password-derived AES key

Server

Client's RSA public key AES(RSA private key)

MEGA encrypted cloud storage login (simplified)

Client
 Password-derived AES key AES(RSA private key)

Server

Client's RSA public key AES(RSA private key)

1. Server sends the client's password-encrypted RSA private key.

MEGA encrypted cloud storage login (simplified)

Client
Password-derived AES key
RSA private key

Server

Client's RSA public key AES(RSA private key)

1. Server sends the client's password-encrypted RSA private key.

MEGA encrypted cloud storage login (simplified)

> Server
> Client's RSA public key
> AES(RSA private key)
> RSA challenge plaintext

1. Server sends the client's password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.

MEGA encrypted cloud storage login (simplified)

Client
Password-derived AES key
RSA private key
RSA challenge ciphertext

Server

Client's RSA public key
AES(RSA private key)
RSA challenge plaintext

1. Server sends the client's password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.

MEGA encrypted cloud storage login (simplified)

Client
Password-derived AES key
RSA private key
RSA challenge ciphertext
Decrypted RSA plaintext

Server

Client's RSA public key
AES(RSA private key)
RSA challenge plaintext

1. Server sends the client's password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.

MEGA encrypted cloud storage login (simplified)

> Client
> Password-derived AES key
> RSA private key
> RSA challenge ciphertext
> Decrypted RSA plaintext

Server

Client's RSA public key
AES(RSA private key)
RSA challenge plaintext
Client's challenge

1. Server sends the client's password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.

MEGA encrypted cloud storage login (simplified)

> Client
> Password-derived AES key
> RSA private key
> RSA challenge ciphertext
> Decrypted RSA plaintext

Server

Client's RSA public key
AES(RSA private key)
RSA challenge plaintext
Client's challenge

1. Server sends the client's password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.
3. Authenticate if the challenge value matches.

MEGA encrypted cloud storage login (simplified)

Client
Password-derived AES key
RSA private key
RSA challenge ciphertext
Decrypted RSA plaintext

Server

Client's RSA public key
AES(RSA private key)
RSA challenge plaintext
Client's challenge

1. Server sends the client's password-encrypted RSA private key.
2. Send an RSA-encrypted challenge to verify decryption.
3. Authenticate if the challenge value matches.
4. In reality, only 43 bytes are sent as verification.

Malicious MEGA login process (simplified)

Client
Password-derived AES key

Malicious MEGA login process (simplified)

Client
Password-derived AES key (Modified) RSA private key

Attacker
 Client's RSA public key AES-ECB(RSA private key)

1. Attacker modifies 128-bit blocks of encrypted private key.

Malicious MEGA login process (simplified)

Client
Password-derived AES key
(Modified) RSA "private key"

Attacker
 Client's RSA public key AES-ECB(RSA private key)

1. Attacker modifies 128-bit blocks of encrypted private key.

Malicious MEGA login process (simplified)

Client
Password-derived AES key
(Modified) RSA "private key" RSA challenge ciphertext

Attacker
Client's RSA public key AES-ECB(RSA private key)
RSA challenge plaintext

1. Attacker modifies 128-bit blocks of encrypted private key.
2. Modified values used to "decrypt" the challenge.

Malicious MEGA login process (simplified)

Client

Password-derived AES key (Modified) RSA "private key" RSA challenge ciphertext
"Decrypted" RSA ciphertext

Attacker

Client's RSA public key AES-ECB(RSA private key)

RSA challenge plaintext

1. Attacker modifies 128 -bit blocks of encrypted private key.
2. Modified values used to "decrypt" the challenge.

Malicious MEGA login process (simplified)

Client

Password-derived AES key (Modified) RSA "private key" RSA challenge ciphertext
"Decrypted" RSA ciphertext

Attacker

Client's RSA public key AES-ECB(RSA private key)
RSA challenge plaintext

1. Attacker modifies 128-bit blocks of encrypted private key.
2. Modified values used to "decrypt" the challenge.
3. Custom padding scheme was not checked.

Malicious MEGA login process (simplified)

Client

Password-derived AES key (Modified) RSA "private key" RSA challenge ciphertext
"Decrypted" RSA ciphertext

Attacker

Client's RSA public key AES-ECB(RSA private key)
RSA challenge plaintext
43 bytes from "decryption"

1. Attacker modifies 128-bit blocks of encrypted private key.
2. Modified values used to "decrypt" the challenge.
3. Custom padding scheme was not checked.
4. The 43 bytes leak information about the RSA private key.

Cryptanalysis of (Backendal, Haller, Paterson, Oakland 23)

Private key (q, p, d, u) is encrypted with AES-ECB.

Cryptanalysis of (Backendal, Haller, Paterson, Oakland 23)

Private key (q, p, d, u) is encrypted with AES-ECB.
Modify 128 bits of RSA-CRT coefficient $u \mapsto \tilde{u}$.

Cryptanalysis of (Backendal, Haller, Paterson, Oakland 23)

Private key (q, p, d, u) is encrypted with AES-ECB.
Modify 128 bits of RSA-CRT coefficient $u \mapsto \tilde{u}$.
Do binary search for q based on 43-byte response.

Cryptanalysis of (Backendal, Haller, Paterson, Oakland 23)

Private key (q, p, d, u) is encrypted with AES-ECB.
Modify 128 bits of RSA-CRT coefficient $u \mapsto \tilde{u}$.
Do binary search for q based on 43-byte response.
One login attempt reveals one bit of information.

Cryptanalysis of (Backendal, Haller, Paterson, Oakland 23)

Private key (q, p, d, u) is encrypted with AES-ECB.
Modify 128 bits of RSA-CRT coefficient $u \mapsto \tilde{u}$.
Do binary search for q based on 43-byte response.
One login attempt reveals one bit of information.

512 login attempts are required.

Representing the client response

$$
\text { Client response }=\operatorname{MSB}\left(\left(\tilde{u}_{i}\left(m_{p}-m_{q}\right) q+m_{q}\right) \quad \bmod N\right)
$$

- Each login attempt returns 43 bytes from Garner's formula.

Representing the client response

Client response $=\operatorname{MSB}\left(\left(\tilde{u}_{i} x+m_{q}\right) \bmod N\right)$

- Each login attempt returns 43 bytes from Garner's formula.
- There is a large hidden number x shared between samples.

Representing the client response

$$
a_{i}=\tilde{u}_{i} x+e_{i} \quad(\bmod N)
$$

- Each login attempt returns 43 bytes from Garner's formula.
- There is a large hidden number x shared between samples.
- There is a bounded error e_{i} in the samples.

Representing the client response

$$
a_{i}=\tilde{u}_{i} x+e_{i} \quad(\bmod N)
$$

- Each login attempt returns 43 bytes from Garner's formula.
- There is a large hidden number x shared between samples.
- There is a bounded error e_{i} in the samples.
- The unknown multiplier is decrypted 128-bit AES blocks.
- Goal: recover the unknown multipliers.

Hidden Number Problem with Small Unknown Multipliers

$$
a_{i}=t_{i} x+e_{i} \quad(\bmod N)
$$

- The attacker is given two or more samples.
- There is a large hidden number x shared between samples.
- There is a bounded error e_{i} in the samples.
- The unknown multiplier is bounded.
- Goal: recover the unknown multipliers.

Challenges to solving HNP-SUM

We know a_{i}, N, and bounds for $\left|t_{i}\right| \leq T,\left|e_{i}\right| \leq E$. Recover t_{i}.

$$
a_{i}=t_{i} x+e_{i} \quad(\bmod N)
$$

Challenges to solving HNP-SUM

We know a_{i}, N, and bounds for $\left|t_{i}\right| \leq T,\left|e_{i}\right| \leq E$. Recover t_{i}.

$$
a_{i}=t_{i} x+e_{i} \quad(\bmod N)
$$

- Two new unknowns for every new sample.

Challenges to solving HNP-SUM

We know a_{i}, N, and bounds for $\left|t_{i}\right| \leq T,\left|e_{i}\right| \leq E$. Recover t_{i}.

$$
a_{i}=t_{i} x+e_{i} \quad(\bmod N)
$$

- Two new unknowns for every new sample.
- Resembles the Hidden Number Problem of Boneh and Venkatesan (Crypto 1996), except multipliers t_{i} are unknown.

Challenges to solving HNP-SUM

We know a_{i}, N, and bounds for $\left|t_{i}\right| \leq T,\left|e_{i}\right| \leq E$. Recover t_{i}.

$$
a_{i}=t_{i} x+e_{i} \quad(\bmod N)
$$

- Two new unknowns for every new sample.
- Resembles the Hidden Number Problem of Boneh and Venkatesan (Crypto 1996), except multipliers t_{i} are unknown.
- Linearization fails because $\left(t_{i} x \bmod N\right)$ is unbounded.

Challenges to solving HNP-SUM

We know a_{i}, N, and bounds for $\left|t_{i}\right| \leq T,\left|e_{i}\right| \leq E$. Recover t_{i}.

$$
a_{i}=t_{i} x+e_{i} \quad(\bmod N)
$$

- Two new unknowns for every new sample.
- Resembles the Hidden Number Problem of Boneh and Venkatesan (Crypto 1996), except multipliers t_{i} are unknown.
- Linearization fails because $\left(t_{i} x \bmod N\right)$ is unbounded.

HNP-SUM lets us cryptanalyze MEGA with 6 samples.

Solving HNP-SUM

Solving HNP-SUM with two samples

$$
\begin{array}{rlr}
a_{1} & =t_{1} x+e_{1} & (\bmod N) \\
a_{2} & =t_{2} x+e_{2} & (\bmod N)
\end{array}
$$

Solving HNP-SUM with two samples

$$
\begin{array}{rllll}
t_{2}\left(\begin{array}{ccc}
a_{1} & = & t_{1} x+e_{1} \\
-t_{1}(& a_{2} & = \\
t_{2} x+e_{2}
\end{array}\right) & (\bmod N) \\
& (\bmod N) \\
t_{2} a_{1}+-t_{1} a_{2} & = & t_{2} e_{1}-t_{1} e_{2} & (\bmod N)
\end{array}
$$

We know there exists a small linear combination of known values with small coefficients.

Solving HNP-SUM with two samples

$$
\begin{aligned}
& t_{2}\left(a_{1} \quad=t_{1} x+e_{1}\right) \quad(\bmod N) \\
& -t_{1}\left(\quad a_{2} \quad=t_{2} x+e_{2}\right) \quad(\bmod N) \\
& t_{2} a_{1}+-t_{1} a_{2}=t_{2} e_{1}-t_{1} e_{2} \quad(\bmod N)
\end{aligned}
$$

We know there exists a small linear combination of known values with small coefficients. We want to find these coefficients.

Solving HNP-SUM with two samples

Consider the lattice spanned by the rows of

$$
\left[\begin{array}{lll}
1 & 0 & a_{1} \\
0 & 1 & a_{2} \\
0 & 0 & N
\end{array}\right]
$$

This lattice contains the short vector

$$
\left[\begin{array}{lll}
t_{2} & -t_{1} & t_{2} e_{1}-t_{1} e_{2}
\end{array}\right] .
$$

Solving HNP-SUM with two samples

Consider the lattice spanned by the rows of

$$
\left[\begin{array}{lll}
1 & 0 & a_{1} \\
0 & 1 & a_{2} \\
0 & 0 & N
\end{array}\right]
$$

This lattice contains the short vector

$$
\left[\begin{array}{lll}
t_{2} & -t_{1} & t_{2} e_{1}-t_{1} e_{2}
\end{array}\right] .
$$

Lattice reduction finds this target vector.

Trying to solve HNP-SUM with three samples

Consider the lattice spanned by the rows of

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & a_{2} \\
0 & 0 & 1 & a_{3} \\
0 & 0 & 0 & N
\end{array}\right]
$$

This lattice contains the short vectors

$$
\begin{aligned}
& {\left[\begin{array}{llll}
t_{2} & -t_{1} & 0 & t_{2} e_{1}-t_{1} e_{2}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
t_{3} & 0 & -t_{1} & t_{3} e_{1}-t_{1} e_{3}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & -t_{3} & t_{2} & t_{3} e_{2}-t_{2} e_{3}
\end{array}\right]}
\end{aligned}
$$

Trying to solve HNP-SUM with three samples

Consider the lattice spanned by the rows of

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a_{1} \\
0 & 1 & 0 & a_{2} \\
0 & 0 & 1 & a_{3} \\
0 & 0 & 0 & N
\end{array}\right]
$$

This lattice contains the short vectors

$$
\begin{aligned}
& {\left[\begin{array}{llll}
t_{2} & -t_{1} & 0 & t_{2} e_{1}-t_{1} e_{2}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
t_{3} & 0 & -t_{1} & t_{3} e_{1}-t_{1} e_{3}
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & -t_{3} & t_{2} & t_{3} e_{2}-t_{2} e_{3}
\end{array}\right]}
\end{aligned}
$$

But these are not found by lattice reduction.

Solving HNP-SUM with three samples

HNP-SUM instance with multipliers (-292, 264, 185):
$\left[\begin{array}{cccc}1 & 0 & 0 & 16434376644250 \\ 0 & 1 & 0 & 18067839662587 \\ 0 & 0 & 1 & 6420926526082 \\ 0 & 0 & 0 & 27006979257190\end{array}\right]$

Solving HNP-SUM with three samples

HNP-SUM instance with multipliers (-292, 264, 185):
$\left[\begin{array}{lllc}1 & 0 & 0 & 16434376644250 \\ 0 & 1 & 0 & 18067839662587 \\ 0 & 0 & 1 & 6420926526082 \\ 0 & 0 & 0 & 27006979257190\end{array}\right] \rightarrow\left[\begin{array}{cccc}15 & 25 & -12 & 71 \\ -47 & -66 & 20 & 68 \\ -36967 & 16082 & -25946 & -2238 \\ 12565 & -30656 & -63041 & -2494\end{array}\right]$

Lattice reduction finds a dense sublattice, but none of the target vectors. We want to find a vector with 0 in the correct spot.

Solving HNP-SUM with three samples

HNP-SUM instance with multipliers (-292, 264, 185):
$\left[\begin{array}{llll}1 & 0 & 0 & 16434376644250 \\ 0 & 1 & 0 & 18067839662587 \\ 0 & 0 & 1 & 6420926526082 \\ 0 & 0 & 0 & 27006979257190\end{array}\right] \rightarrow\left[\begin{array}{cccc}15 & 25 & -12 & 71 \\ -47 & -66 & 20 & 68 \\ -36967 & 16082 & -25946 & -2238 \\ 12565 & -30656 & -63041 & -2494\end{array}\right]$

Lattice reduction finds a dense sublattice, but none of the target vectors. We want to find a vector with 0 in the correct spot.

$$
\left[\begin{array}{cccc}
15 & 25 & -12 & 71 \\
-47 & -66 & 20 & 68
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 88 & -124 & 2038 \\
0 & 185 & -264 & 4357
\end{array}\right]
$$

Hermite Normal Form finds one, reveals multipliers 264 and 185

Solving HNP-SUM

Observation \#1:
We build a lattice that cancels out terms involving x.

Solving HNP-SUM

Observation \#1:
We build a lattice that cancels out terms involving x.

Observation \#2:
Lattice reduction finds a dense sublattice, not just a short vector.

Application:

The RSA Implicit Factoring Problem

Implicit factoring problem (May and Ritzenhofen, PKC 2009)

Given multiple RSA moduli whose unbalanced factors share the same most significant bits, recover the factorization.

$$
\begin{aligned}
& 3709606718119160021=637279972190201 \times 5821 \\
& 4244922075900467567=637279999384547 \times 6661 \\
& 3078699429183112997
\end{aligned}=637279948081787 \times 4831 .
$$

We can also consider cases where the least significant bits are shared, some of each, or bits in the middle.

Solving Implicit factoring using HNP-SUM

$$
N_{i}=\left(p_{\mathrm{msb}}+p_{\mathrm{sb}, i}\right) q_{i}=q_{i} p_{\mathrm{msb}}+\left(q_{i} p_{\mathrm{lsb}, i \mathrm{i}}\right)
$$

$N_{i} \quad$ is the HNP-SUM sample.
$p_{\text {msb }} \quad$ is the hidden number shared between samples.
$q_{i} \quad$ is the small unknown multiplier.
$q_{i} p_{\text {Isb }, i}$ is the bounded error.
Similar modular equations exist for other types of shared bits.

Implicit factoring results

We compare our HNP-SUM approach to prior lattice constructions.

Bits shared
Comparison

Implicit factoring results

We compare our HNP-SUM approach to prior lattice constructions.

Bits shared Comparison
LSBs Improve upon (May and Ritzenhofen, PKC 2009)

Implicit factoring results

We compare our HNP-SUM approach to prior lattice constructions.

Bits shared
Comparison
$\begin{array}{ll}\text { LSBs } & \text { Improve upon (May and Ritzenhofen, PKC 2009) } \\ \text { MSBs } & \text { Close to (Faugère, Marinier, Renault, PKC 2010) }\end{array}$

Implicit factoring results

We compare our HNP-SUM approach to prior lattice constructions.

Bits shared
Comparison

LSBs	Improve upon (May and Ritzenhofen, PKC 2009)
MSBs	Close to (Faugère, Marinier, Renault, PKC 2010)
Middle	Polynomially smaller lattices than in [FMR10]

Implicit factoring results

We compare our HNP-SUM approach to prior lattice constructions.
Bits shared
Comparison

LSBs	Improve upon (May and Ritzenhofen, PKC 2009)
MSBs	Close to (Faugère, Marinier, Renault, PKC 2010)
Middle	Polynomially smaller lattices than in [FMR10]
LSB+MSBs	No direct lattice construction

Cryptanalyzing MEGA in Six Queries

Cryptanalyzing MEGA: The aftermath

June 21, 2022 - Backendal, Haller, and Paterson publish 512-login attack on MEGA (Oakland 2023).

```
Who is potentially affected?
Customers who have logged into their MEGA account at least 512 times (the more, the higher the exposure).
Note that resuming an existing session does not count as a login. While all MEGA client products use
permanent sessions by default, some third-party clients such as Rclone do not, so their users may be
exposed.
```


Cryptanalyzing MEGA: The aftermath

June 21, 2022 - Backendal, Haller, and Paterson publish 512-login attack on MEGA (Oakland 2023).

July 13, 2022 - We disclose improved 6-login attack on unpatched systems (PKC 2023).

```
Summary
The original ETHZ results put a relatively small subset of MEGA users at risk. The UCSD research lowers the threshold from 512 to just six logins, broadening the potential exposure to the vast majority of users. This confirms the importance of using MEGA client software released on 22 June 2022 or later, which is immune to both attacks.
```


Cryptanalyzing MEGA: The aftermath

June 21, 2022 - Backendal, Haller, and Paterson publish 512-login attack on MEGA (Oakland 2023).

July 13, 2022 - We disclose improved 6-login attack on unpatched systems (PKC 2023).

Sep. 29, 2022 - Albrecht, Haller, Mareková, Paterson disclose 2-login attack (Eurocrypt 2023).

Cryptanalyzing MEGA

Analyzing MEGA's real-world design has been productive.

Cryptanalyzing MEGA

Analyzing MEGA's real-world design has been productive.

- Three new papers (Oakland, PKC, Eurocrypt)

Cryptanalyzing MEGA

Analyzing MEGA's real-world design has been productive.

- Three new papers (Oakland, PKC, Eurocrypt)
- HNP-SUM involves unusual lattice techniques

Cryptanalyzing MEGA

Analyzing MEGA's real-world design has been productive.

- Three new papers (Oakland, PKC, Eurocrypt)
- HNP-SUM involves unusual lattice techniques
- Surprising applications to implicit factoring

The Hidden Number Problem with Small Unknown Multipliers: Cryptanalyzing MEGA in Six Queries and Other Applications

https://ia.cr/2022/914

