
Mihir Bellare, Hannah Davis, Zijing Di

PKC May 2023

Hardening Signature Schemes via
Derive-then-Derandomize:

Stronger Security Proofs for EdDSA

5/6/2023 2

Digital Signatures

KeyGen

pksk

Sign Verify

Message

0/1

Syntax Definition

5/6/2023 3

Digital Signatures

KeyGen

pksk

Sign Verify

Message

0/1

Syntax Definition Security Definition

Sign

Oracle A

The UF-CMA advantage of an adversary A

attacking a scheme S is the probability that A

produces a valid signature on any unsigned

message

m

(m’, .’)

KeyGen

pksk

5/7/2023 4

Schnorr Signatures[Schnorr91]

Order-p

DL Group
Hash function

H

Discrete Log (DL) problem:

Given generator and random group element ,

compute r such that

gKeyGen

pksk

Sign Verify

Message

0/1

Syntax Definition

5/7/2023 5

Order-p

DL Group

g

Hash function

H

Schnorr Signatures[Schnorr91]

KeyGen

pksk

Sign Verify

Message

0/1

Syntax Definition

5/6/2023 6

Pros

• Simple

• Efficient (for a DL-based

scheme)

• Short signatures compared to

RSA

Order-p

DL Group

g

Hash function

H

Schnorr Signatures[Schnorr91]

5/6/2023 7

Pros

• Simple

• Efficient (for a DL-based
scheme)

• Short signatures

• Reducible to DL in the
ROM

Order-p

DL Group

g

Schnorr Signatures[Schnorr91]

Random oracle

RO

5/7/2023 8

Pros

• Simple

• Efficient (for a DL-based scheme)

• Short signatures

• Reducible to DL in the ROM

• Many formal security proofs with
varying tightness & starting
assumptions

Schnorr Signatures[Schnorr91]

DL

assumption
Schnorr

identification

scheme

Schnorr Signature

[PS00]

[AABN02]

[RS21]

MBDL

assumption

[BD21]

DL + Algebraic

group model

[FPS21]

*curved arrows indicate non-tight reductions

[AABN02]

RO assumption on H

5/6/2023 9

Schnorr Signatures[Schnorr91]

DL

assumption
Schnorr

identification

scheme

Schnorr Signature

[PS00]

[AABN02]

[RS21]

MBDL

assumption

[BD21]

DL + Algebraic

group model

[FPS21]

*curved arrows indicate non-tight reductions

[AABN02]

RO assumption on H

Tighter reductions validate shorter

parameters

Pros

• Simple

• Efficient (for a DL-based scheme)

• Short signatures

• Reducible to DL in the ROM

• Many formal security proofs with
varying tightness & starting
assumptions

5/6/2023 10

Schnorr Signatures[Schnorr91]

Cons

• Susceptible to randomness-reuse attack

Given signatures and on two different messages

Pros

• Simple

• Efficient (for a DL-based scheme)

• Short signatures

• Reducible to DL in the ROM

• Many formal security proofs with
varying tightness & starting
assumptions

5/6/2023 11

EdDSA Signatures[BDLSY15]

EdDSA tweaks Schnorr for improved

efficiency and security

• Choice of group:

• Twisted Edwards curve

• order

“permissive” verification vs

“strict” verification

5/7/2023 12

EdDSA Signatures[BDLSY15]

EdDSA tweaks Schnorr for improved

efficiency and security

• Choice of group:

• Twisted Edwards curve

• order

• Hash RNG input and “clamp”

secret keys

5/7/2023 13

EdDSA tweaks Schnorr for improved

efficiency and security

• Choice of group:

• Twisted Edwards curve

• order

• Hash RNG input and “clamp”

secret keys

• Derandomize Sign algorithm
[Bar97][Wig97][NML97][Goldreich86][BPS16][BT16]

EdDSA Signatures[BDLSY15]

5/7/2023 14

EdDSA Signatures[BDLSY15]

EdDSA tweaks Schnorr for improved

efficiency and security

• Choice of group:

• Twisted Edwards curve

• order 2^b * p

• Hash RNG input and “clamp”

secret keys

• Derandomize Sign algorithm
[Bar97][Wig97][NML97][Goldreich86][BPS16][BT16]

EdDSA also specifies concrete choices of H

Ed25519 Ed448

SHA512 SHAKE

Can these be modeled as random oracles?

5/6/2023 17

Instantiating a Random Oracle

Do these functions behave like random oracles? No

SHA512

Compression

function sha512

SHAKE

Permutation

5/6/2023 18

Instantiating a Random Oracle

SHA512

Compression

function sha512

SHAKE

Permutation

Do these functions behave like random oracles? No

Do these functions behave like random oracles?

SHA512 SHAKE

Random

permutation
Random function h

5/6/2023 19

Instantiating a Random Oracle

Do these functions behave like random oracles? No

Do these functions behave like random oracles?
Are SHA512 and SHAKE

indifferentiable from a random

oracle?[MRH04]

SHA512

Compression

function sha512

SHAKE

Permutation

SHA512 SHAKE

Random

permutation
Random function h

5/7/2023 20

Instantiating a Random Oracle

Do these functions behave like random oracles? No

Do these functions behave like random oracles?

SHA512

Compression

function sha512

SHAKE

Permutation

SHA512 SHAKE

Random

permutation
Random function h

No[CDMP05] Yes[BDVA08]

5/7/2023 21

Instantiating a Random Oracle

Do these functions behave like random oracles? No

Do these functions behave like random oracles?

SHA512(m1||m2) =

sha512(SHA512(m1)||m2)

Given messages m1 and m2 and

compression function h

Does this make Ed25519 insecure? No.

But it does mean that SHA512 should not be

modeled as a random oracle.

Length Extension Attack on SHA512

SHA512

Compression

function sha512

SHAKE

Permutation

SHA512 SHAKE

Random

permutation
Random function h

No[CDMP05] Yes[BDVA08]

RO assumption on H

5/7/2023 22

Security Analysis of EdDSA

DL

assumption

Schnorr

identification

scheme

Schnorr Signature

[AABN02] [AABN02]

Custom

identification

scheme

EdDSA Signature

[BCJZ20]

[BCJZ20]

RO assumption on H

5/6/2023 23

Our Contributions

Schnorr Signature

EdDSA Signature

A new proof of security for

EdDSA

• Reduce directly to security

of Schnorr signatures

• Simpler, more modular

analysis

• Can leverage recent tighter

bounds for Schnorr

RO assumption on H

5/7/2023 24

Our Contributions

Schnorr Signature

EdDSA Signature

A new proof of security for

EdDSA

• Reduce directly to security

of Schnorr signatures

• Simpler, more modular

analysis

• Can leverage recent tighter

bounds for Schnorr

Ex: If attacker A performs up to 270 operations and

260 oracle queries, and curve x25519 has order ≈2252

Its DL advantage is at most 2^-112
[Shoup97]

Its UF-CMA advantage against Schnorr is at most

• 2-41 assuming DL [RS21]

• 2-52 assuming MBDL[BD21]

• 2-130 assuming DL in the AGM[FPS19]

Its UF-CMA advantage against Ed25519 is at most

• 2-26 by [BCJZ20]

• 2-37 by [BDD23]

• 2-48 by [BDD23] assuming MBDL

• 2-126 by [BDD23] assuming DL + AGM

RO assumption on h

5/7/2023 25

Our Contributions

Schnorr Signature

EdDSA Signature

RO assumption on h
A new proof of security for
EdDSA

• Reduce directly to security
of Schnorr signatures

• Simpler, more modular
analysis

• Can leverage recent tighter
bounds for Schnorr

• Weaker ROM assumption

• Idealize only compression
function/permutation

• Rely on standard-model
properties where possible

• Bounds attackers who use
extension attack

5/7/2023 26

Our contributions
+ some handy generic results

Derive-then-Derandomize Transform:

A generic signature-hardening

transform that captures EdDSA’s tweaks

A new proof of security for
EdDSA

• Reduce directly to security
of Schnorr signatures

• Simpler, more modular
analysis

• Can leverage recent tighter
bounds for Schnorr

• Weaker ROM assumption

• Idealize only compression
function/permutation

• Rely on standard-model
properties where possible

• Bounds attackers who use
extension attack

5/7/2023 27

Our contributions
+ some handy generic results

Derive-then-Derandomize Transform:

A generic signature-hardening

transform that captures EdDSA’s tweaks

A new proof of security for
EdDSA

• Reduce directly to security
of Schnorr signatures

• Simpler, more modular
analysis

• Can leverage recent tighter
bounds for Schnorr

• Weaker ROM assumption

• Idealize only compression
function/permutation

• Rely on standard-model
properties where possible

• Bounds attackers who use
extension attack

Improved indifferentiability analysis for

the Shrink-MD hash function class

that transforms the output of an MD

hash, including chop-MD

5/6/2023 28

Derive-then-Derandomize transform

Randomized UF-CMA

signature scheme DS
PRF F

Random oracle h

PRG G

DtD

transform

Deterministic UF-CMA

Signature Scheme TS

Clamping

Function CF

5/7/2023 29

Derive-then-Derandomize transform

Randomized UF-CMA

signature scheme DS
PRF F

Random oracle h

PRG G

DtD

transform

Deterministic UF-CMA

Signature Scheme TS

Clamping

Function CF

5/7/2023 30

Derive-then-Derandomize transform

• The reduction is tight, with only

constant loss depending on CF

• EdDSA’s parameters cause it to

lose a factor of 16

Randomized UF-CMA

signature scheme DS
PRF F

Random oracle h

PRG G

DtD

transform

Deterministic UF-CMA

Signature Scheme TS

Clamping

Function CF

5/6/2023 31

Proving security for DtD

We reverse the transform step-by-step

1

5/7/2023 32

Proving security for DtD

We reverse the transform step-by-step

1 2

5/7/2023 33

Proving security for DtD

We reverse the transform step-by-step

1 2 3

Lose a factor of

|Im(CF)|/|K|

5/7/2023 34

Instantiating F, G, and H

To cast EdDSA as the output of a DtD

transform, we must define DS = Schnorr and

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?

5/7/2023 35

Instantiating F, G, and H

To cast EdDSA as the output of a DtD

transform, we must define DS = Schnorr and

Yes, this is AMAC[BBT16]

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?

5/7/2023 36

Instantiating F, G, and H

To cast EdDSA as the output of a DtD

transform, we must define DS = Schnorr and

Yes, this is easily shown

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?

Yes, this is AMAC[BBT16]

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

5/7/2023 37

Instantiating F, G, and H

To cast EdDSA as the output of a DtD

transform, we must define DS = Schnorr and

Yes, we prove this

Yes, this is AMAC[BBT16]

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?

Yes, this is easily shown

C

D

ro

Real World

D

S

Ideal World
S is a simulator, an algorithm

whose job is to imitate the

random oracle H

We say C is indifferentiable with respect

to a simulator S if distinguisher D

cannot tell which world it is in.

RO

Indifferentiability [MRH04]

5/7/2023 39

Merkle-Damgard Hash Structure

• SHA512 is a Merkle-Damgard hash
function based on a compression
function h

hIV

m1

zh

m2

h

m3

5/7/2023 40

Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash

function based on a compression
function h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

hIV

m1

zh

m2

h

m3

This is almost the result we need, but replacing

2c with p introduces bias.

5/7/2023 41

Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash

function based on a compression
function h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

Shrink-MD[h, Out](M) = Out(MD[h](M))

hIV

m1

zh

m2

h

m3

This is almost the result we need, but replacing

2c with p introduces bias.

3 conditions on Out:
• Reversibility: we can sample from the preimage set

• Quasi-regularity: Every point in the image set S

has many preimages

• Near-Uniformity:

is close to the

uniform distribution

5/7/2023 42

Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash

function based on a compression
function h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

Shrink-MD[h, Out](M) = Out(MD[h](M))

3 conditions on Out:
• Reversibility: we can sample from the preimage set

• Quasi-regularity: Every point in the image set S

has many preimages

• Near-Uniformity:

is close to the

uniform distribution

hIV

m1

zh

m2

h

m3

This is almost the result we need, but replacing

2c with p introduces bias.

5/7/2023 43

Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash

function based on a compression
function h

h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

This is almost the result we need, but replacing

2c with p introduces bias.

Shrink-MD[h, Out](M) = Out(MD[h](M))

We prove indifferentiability for any

Shrink-MD construction, including Chop-MD

and MD mod p

IV

m1

zh

m2

h

m3

3 conditions on Out:
• Reversibility: we can sample from the preimage set

• Quasi-regularity: Every point in the image set S

has many preimages

• Near-Uniformity:

is close to the

uniform distribution

5/7/2023 44

The Indifferentiability of Shrink-MD

To show that a Shrink-MD hash function is indifferentiable,

we must consistently simulate a random compression function

Prior simulators for chop-MD construct a tree to store all the queries.

SimIV

m1

z

m2

Sim

IV

m1

m2

y1

z

z’

m'

The proofs add extra nodes to this tree that are detectable

in certain situations

We solve this problem by constructing two trees in our simulator:

one to answer adversarial queries, and one to track the extra nodes

5/7/2023 45

Our contributions

A new proof of security for EdDSA

• Reduce directly to security of
Schnorr signatures

• Simpler, more modular analysis

• Can leverage recent tighter bounds for
Schnorr

• Weaken ROM assumption

• Use indifferentiability to idealize only
compression function/permutation

• Rely on standard-model properties where
possible

• Explicitly capture length-extension attack

+ some handy generic results

Derive-then-Derandomize Transform:

A generic signature-hardening

transform that captures EdDSA’s tweaks

Improved indifferentiability analysis for

the Shrink-MD hash function class

that transforms the output of an MD

hash, including chop-MD

Thank you!

	Slide 1: Hardening Signature Schemes via Derive-then-Derandomize: Stronger Security Proofs for EdDSA
	Slide 2: Digital Signatures
	Slide 3: Digital Signatures
	Slide 4: Schnorr Signatures[Schnorr91]
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: EdDSA Signatures[BDLSY15]
	Slide 12: EdDSA Signatures[BDLSY15]
	Slide 13
	Slide 14: EdDSA Signatures[BDLSY15]
	Slide 17: Instantiating a Random Oracle
	Slide 18: Instantiating a Random Oracle
	Slide 19: Instantiating a Random Oracle
	Slide 20: Instantiating a Random Oracle
	Slide 21: Instantiating a Random Oracle
	Slide 22: Security Analysis of EdDSA
	Slide 23: Our Contributions
	Slide 24: Our Contributions
	Slide 25: Our Contributions
	Slide 26: Our contributions
	Slide 27: Our contributions
	Slide 28: Derive-then-Derandomize transform
	Slide 29: Derive-then-Derandomize transform
	Slide 30: Derive-then-Derandomize transform
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Instantiating F, G, and H
	Slide 35: Instantiating F, G, and H
	Slide 36: Instantiating F, G, and H
	Slide 37: Instantiating F, G, and H
	Slide 38: Indifferentiability [MRH04]
	Slide 39: Merkle-Damgard Hash Structure
	Slide 40: Merkle-Damgard Hash Structure
	Slide 41: Merkle-Damgard Hash Structure
	Slide 42: Merkle-Damgard Hash Structure
	Slide 43: Merkle-Damgard Hash Structure
	Slide 44: The Indifferentiability of Shrink-MD
	Slide 45: Our contributions
	Slide 46: Thank you!

