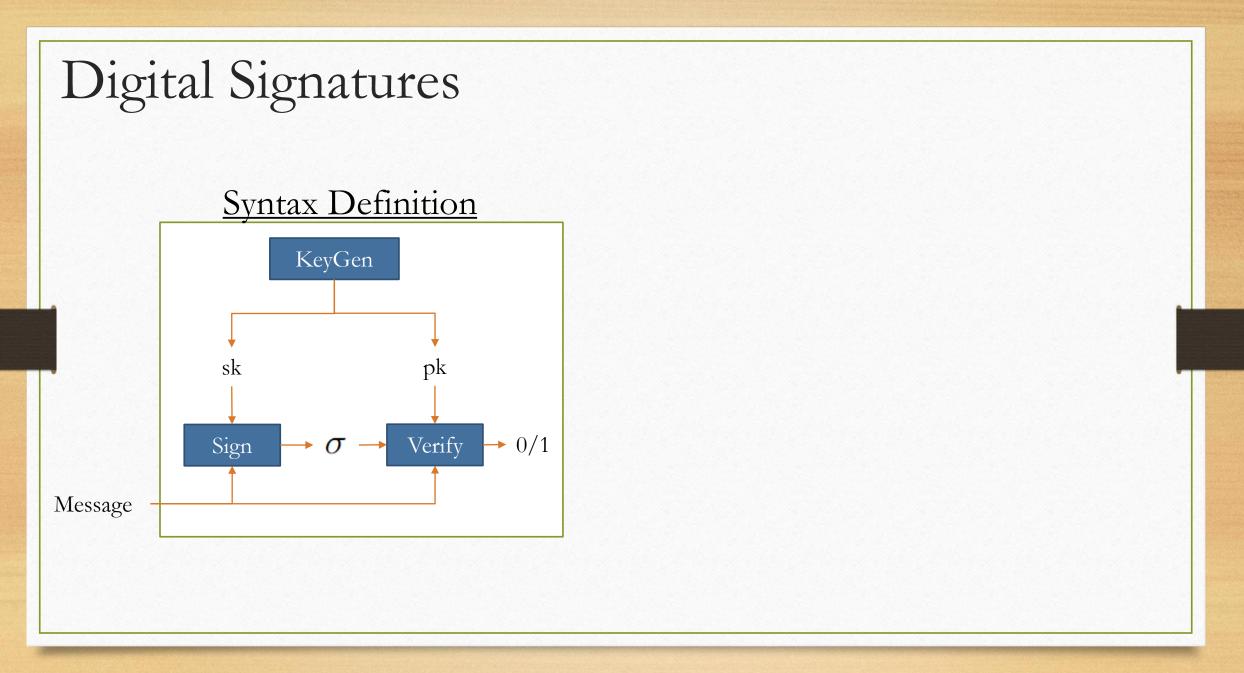
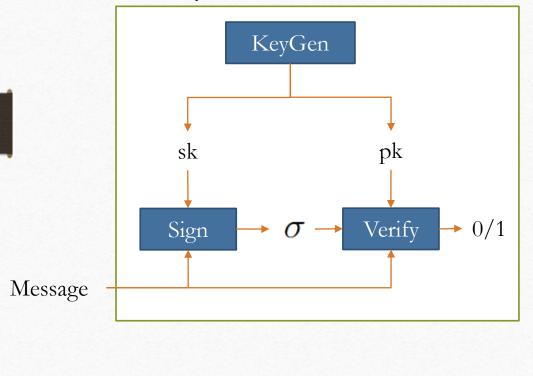
Hardening Signature Schemes via Derive-then-Derandomize: Stronger Security Proofs for EdDSA

Mihir Bellare, Hannah Davis, Zijing Di

PKC May 2023

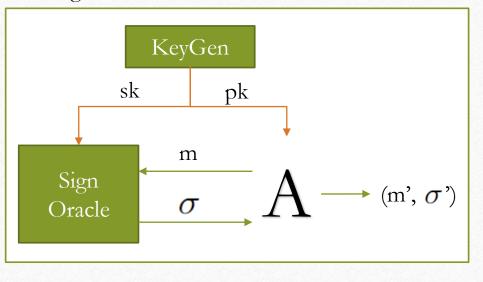


Syntax Definition

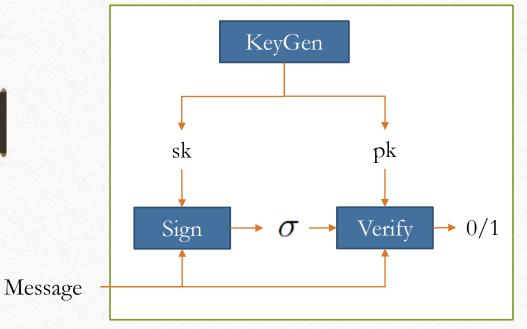


Security Definition

The **UF-CMA** advantage of an adversary **A** attacking a scheme **S** is the probability that **A** produces a valid signature on any unsigned message



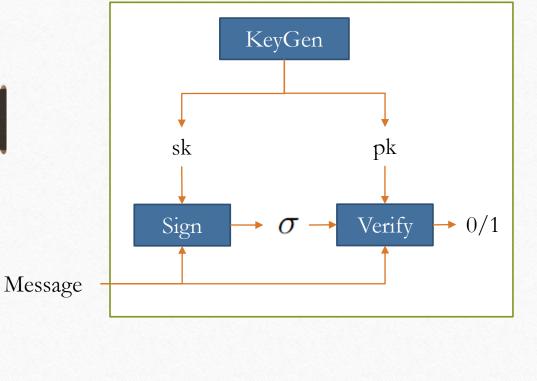
Syntax Definition

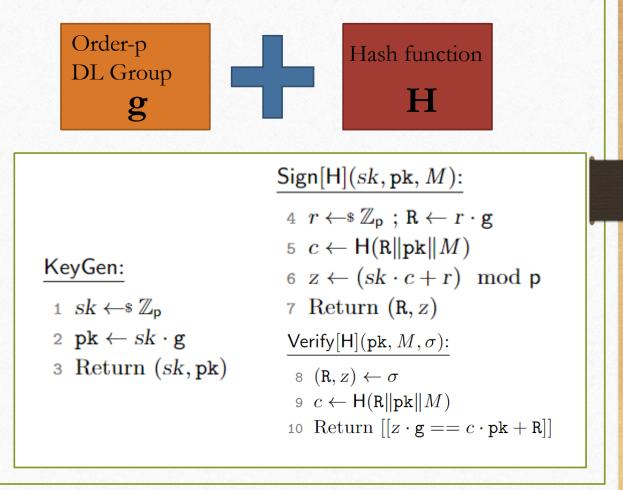


Discrete Log (DL) problem:

Given generator g and random group element R compute r such that $R = r \cdot g$

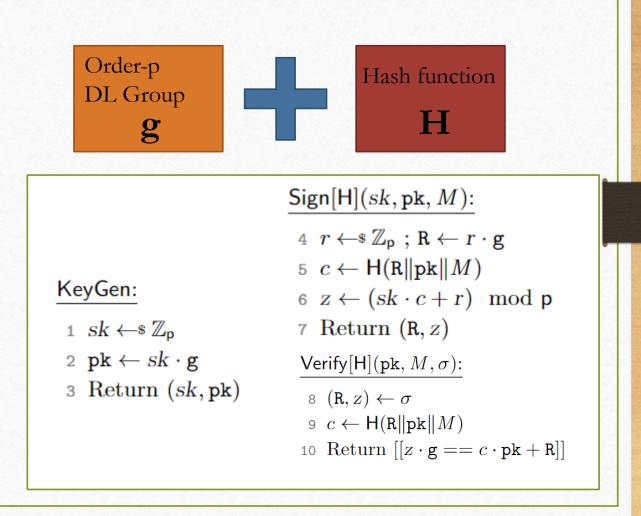
4





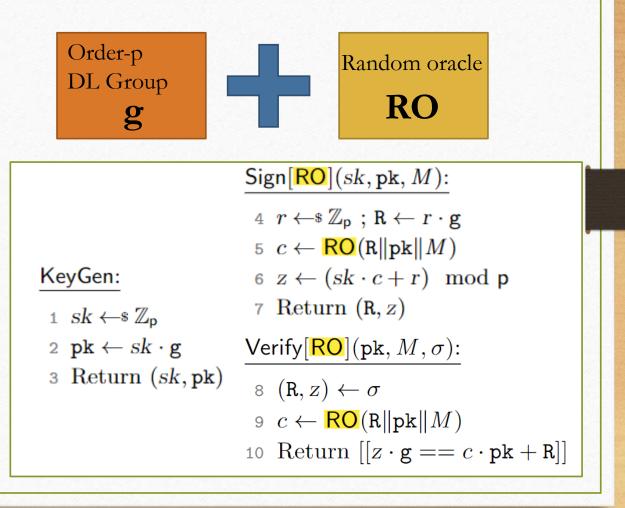
Pros

- Simple
- Efficient (for a DL-based scheme)
- Short signatures compared to RSA



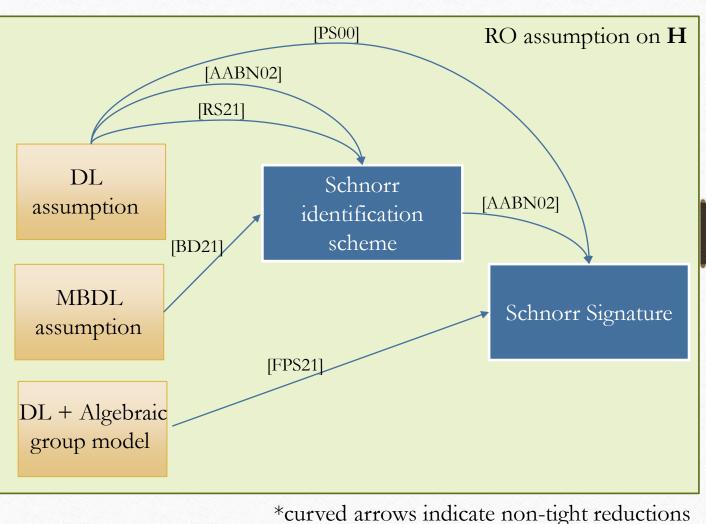
Pros

- Simple
- Efficient (for a DL-based scheme)
- Short signatures
- Reducible to DL in the ROM



Pros

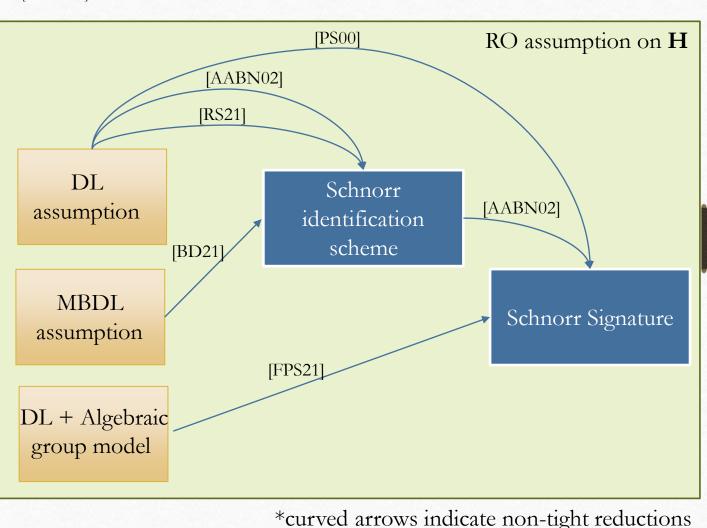
- Simple
- Efficient (for a DL-based scheme)
- Short signatures
- Reducible to DL in the ROM
- Many formal security proofs with varying tightness & starting assumptions



Pros

- Simple
- Efficient (for a DL-based scheme)
- Short signatures
- Reducible to DL in the ROM
- Many formal security proofs with varying tightness & starting assumptions

Tighter reductions validate shorter parameters



Schnorr Signatures_[Schnorr91]

Pros

- Simple
- Efficient (for a DL-based scheme)
- Short signatures
- Reducible to DL in the ROM
- Many formal security proofs with varying tightness & starting assumptions

Cons

• Susceptible to randomness-reuse attack

 $\frac{\text{Sign}[\text{H}](sk, pk, M):}{4 \quad r \leftarrow \mathbb{Z}_{p} ; \text{R} \leftarrow r \cdot \text{g}} \\ 4 \quad r \leftarrow \mathbb{Z}_{p} ; \text{R} \leftarrow r \cdot \text{g}}{5 \quad c \leftarrow \text{H}(\text{R}\|\text{pk}\|M)} \\ 6 \quad z \leftarrow (sk \cdot c + r) \mod p \\ 7 \quad \text{Return } (\text{R}, z) \\ 2 \quad \text{pk} \leftarrow sk \cdot \text{g} \\ 3 \quad \text{Return } (sk, pk) \frac{\text{Verify}[\text{H}](\text{pk}, M, \sigma):}{8 \quad (\text{R}, z) \leftarrow \sigma} \\ 8 \quad (\text{R}, z) \leftarrow \sigma \\ 9 \quad c \leftarrow \text{H}(\text{R}\|\text{pk}\|M) \\ 10 \quad \text{Return } [[z \cdot \text{g} == c \cdot \text{pk} + \text{R}]]$

Given signatures (\mathbf{R}, z) and (\mathbf{R}, z') on two different messages

$$\mathbf{R} = z \cdot \mathbf{g} = (sk * c + r) \cdot \mathbf{g} = z' \cdot \mathbf{g} = (sk * c' + r) \cdot \mathbf{g}$$

$$sk = \frac{z - z}{c - c}$$

EdDSA Signatures_(BDLSY15)

EdDSA tweaks Schnorr for improved efficiency and security

- Choice of group:
 - Twisted Edwards curve
 - order $2^f \cdot p$

KeyGen:	Sign[H](sk, pk, M):	
1 $sk \leftarrow \mathbb{Z}_p$	4 $r \leftarrow \mathbb{Z}_p$; $\mathbf{R} \leftarrow r \cdot \mathbf{B}$	
2 pk $\leftarrow sk \cdot \mathbf{B}$	5 $c \leftarrow H(\mathtt{R} \ \mathtt{pk} \ M)$	
з Return (sk, \mathbf{pk})	6 $z \leftarrow (sk \cdot c + r) \mod p$	
	7 Return (\mathbf{R}, z)	
	$\underline{Verify}[H](pk,M,\sigma):$	
	8 $(\mathbf{R},z) \leftarrow \sigma$	
	9 $c \leftarrow H(\mathtt{R} \ \mathtt{pk} \ M)$	
	10 Return $[[2^f(\cdot z \cdot B) = 2^f(c \cdot pk + R)]$]]
"pe	rmissive" verification vs	
"str	rict" verification	
	5/6/2023 11	

EdDSA Signatures_[BDLSY15]

EdDSA tweaks Schnorr for improved efficiency and security

- Choice of group:
 - Twisted Edwards curve
 - order $2^f \cdot p$
- Hash RNG input and "clamp" secret keys

KeyGen:	Sign[H](sk, pk, M):
1 $sk \leftarrow \{0,1\}^k$ 2 $e_1 \ e_2 \leftarrow H(sk)$	$\begin{array}{c} \mathbf{e}_1 \ \mathbf{e}_2 \leftarrow H(sk) \\ \mathbf{Z} \in CF(s) \end{array}$
$\begin{array}{c} 2 & e_1 \parallel e_2 \leftarrow \Pi(s_k) \\ 3 & s \leftarrow \operatorname{CF}(e_1) \end{array}$	7 $s \leftarrow \operatorname{CF}(e_1)$ 8 $r \leftarrow \mathbb{Z}_p$; $\mathbb{R} \leftarrow r \cdot \mathbb{B}$
4 pk $\leftarrow \mathbf{s} \cdot \mathbf{B}$ 5 Return (sk, pk)	9 $c \leftarrow H(R \ pk \ M)$ 10 $z \leftarrow (\mathbf{s} \cdot c + r) \mod p$
$Gr(z) / z \in \{0, 1\}^k$	11 Return (\mathbf{R}, z)
$\frac{\operatorname{CF}(e)}{1} \not / e \in \{0,1\}^k:$	$\frac{Verify[H](pk, M, \sigma):}{(\pi, \pi)}$
2 for $i \in [4k-2]$ 3 $s \leftarrow s + 2^{i-1} \cdot e[s]$	12 $(\mathbf{R}, z) \leftarrow \sigma$ 13 $c \leftarrow H(\mathbf{R} \ \mathbf{pk} \ M)$
$3 s \leftarrow s + 2 \cdot e_{1}$ $4 \text{ return } s$	^{<i>b</i>}] 14 Return [[2 ^{<i>f</i>} (· <i>z</i> · B) == 2 ^{<i>f</i>} (<i>c</i> · pk + R)]]

5/7/2023 12

EdDSA Signatures_[BDLSY15]

EdDSA tweaks Schnorr for improved efficiency and security

- Choice of group:
 - Twisted Edwards curve
 - order $2^f \cdot \mathbf{p}$
- Hash RNG input and "clamp" secret keys
- Derandomize Sign algorithm [Bar97][Wig97][NML97][Goldreich86][BPS16][BT16]

KeyGen:	Sign[H](sk, pk, M):
1 $sk \leftarrow \{0, 1\}^k$ 2 $e_1 \ e_2 \leftarrow H(sk)$ 3 $s \leftarrow \operatorname{CF}(e_1)$ 4 $pk \leftarrow s \cdot B$	6 $e_1 e_2 \leftarrow H(sk)$ 7 $s \leftarrow \operatorname{CF}(e_1)$ 8 $r \leftarrow H(e_2 M)$; $R \leftarrow r \cdot B$ 9 $c \leftarrow H(R pk M)$
5 Return (sk, pk)	10 $z \leftarrow (s \cdot c + r) \mod p$ 11 Return (R, z)
$\frac{\operatorname{CF}(e)}{1} \not / e \in \{0,1\}^k:$ $\frac{1}{1} s \leftarrow 2^{k-2}$ $2 \text{ for } i \in [4k-2]$	$\frac{Verify[H](pk, M, \sigma):}{12 (R, z) \leftarrow \sigma}$ $13 c \leftarrow H(R \ pk \ M)$
3 $s \leftarrow s + 2^{i-1} \cdot e[i]$ 4 return s	13 $c \leftarrow H(R pk M)$ 14 Return $[[2^f(\cdot z \cdot B) == 2^f(c \cdot pk + R)]]$

5/7/2023 13

EdDSA Signatures_[BDLSY15]

EdDSA tweaks Schnorr for improved efficiency and security

- Choice of group:
 - Twisted Edwards curve
 - order $2^b * p$
- Hash RNG input and "clamp" • secret keys
- Derandomize Sign algorithm • [Bar97][Wig97][NML97][Goldreich86][BPS16][BT16]

EdDSA also specifies concrete choices of H

Ed25519	Ed448
SHA512	SHAKE

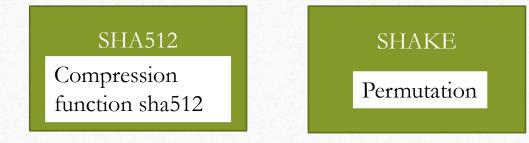
Can these be modeled as random oracles?

KeyGen:	Sign[H](sk, pk, M):
1 $sk \leftarrow \{0, 1\}^k$ 2 $e_1 \parallel e_2 \leftarrow H(sk)$ 3 $s \leftarrow \operatorname{CF}(e_1)$ 4 $pk \leftarrow s \cdot B$	6 $e_1 e_2 \leftarrow H(sk)$ 7 $s \leftarrow \operatorname{CF}(e_1)$ 8 $r \leftarrow \mathbb{Z}_p ; R \leftarrow r \cdot B$ 9 $c \leftarrow H(R pk M)$
5 Return (sk, \mathbf{pk})	10 $z \leftarrow (s \cdot c + r) \mod p$
$ \underline{\operatorname{CF}(e)} \not \mid e \in \{0,1\}^k: $ 1 $s \leftarrow 2^{k-2}$ 2 for $i \in [4k-2]$ 3 $s \leftarrow s + 2^{i-1} \cdot e[i]$ 4 return s	11 Return (\mathbf{R}, z) $\frac{\text{Verify}[\mathbf{H}](\mathbf{pk}, M, \sigma):}{12 (\mathbf{R}, z) \leftarrow \sigma}$ 13 $c \leftarrow \mathbf{H}(\mathbf{R} \ \mathbf{pk} \ M)$ 14 Return $[[2^{f}(\cdot z \cdot \mathbf{B}) == 2^{f}(c \cdot \mathbf{pk} + \mathbf{R})]]$

5/7/2023 14

Do these functions behave like random oracles? No

5/6/2023 17

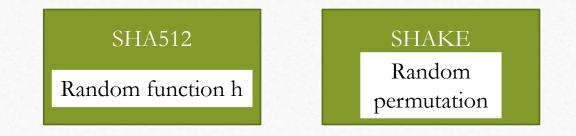


Do these functions behave like random oracles? No

Do these functions behave like random oracles?

5/6/2023 18

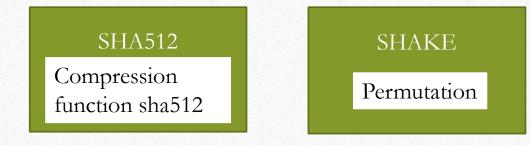
Do these functions behave like random oracles? No



Do these functions behave like random oracles?

Are SHA512 and SHAKE **indifferentiable** from a random oracle?[MRH04] 5/6/2023

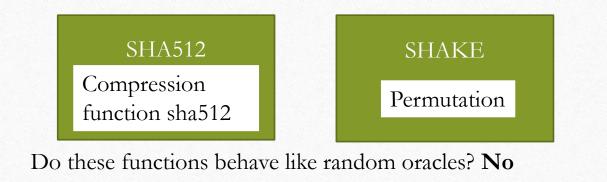
3 19

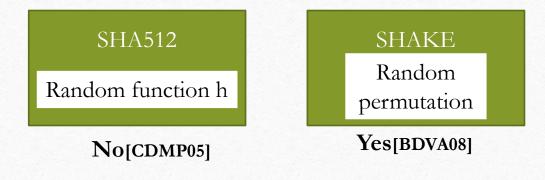


Do these functions behave like random oracles? No



Do these functions behave like random oracles?





Do these functions behave like random oracles?

Length Extension Attack on SHA512

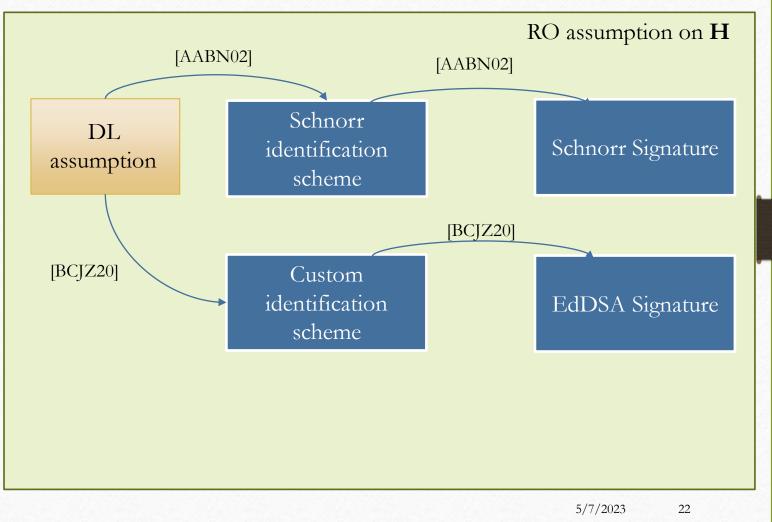
Given messages m1 and m2 and compression function h

SHA512($m_1 | | m_2$) = sha512(SHA512(m_1) | $| m_2$)

Does this make Ed25519 insecure? **No**. But it does mean that SHA512 should not be modeled as a random oracle.

5/7/2023 21

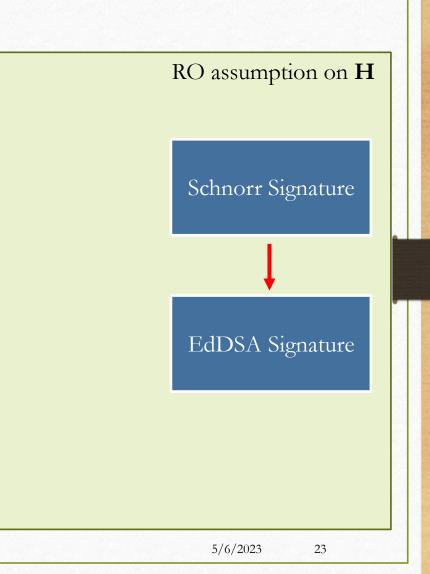
Security Analysis of EdDSA



Our Contributions

<u>A new proof of security for</u> <u>EdDSA</u>

- Reduce directly to security of Schnorr signatures
 - Simpler, more modular analysis
 - Can leverage recent tighter bounds for Schnorr



Our Contributions

A new proof of security for **EdDSA**

- Reduce directly to security • of Schnorr signatures
 - Simpler, more modular • analysis
 - Can leverage recent tighter ٠ bounds for Schnorr

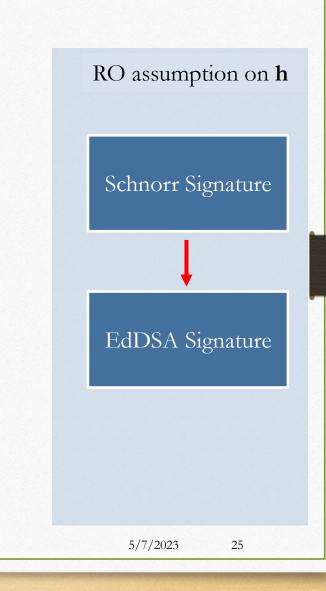
	RO assumption on ${f H}$
Ex: If attacker A performs up to 2^{70} operations and 2^{60} oracle queries, and curve x25519 has order $\approx 2^{252}$	
Its DL advantage is at most 2 ⁻¹¹² _[Shoup97] Its UF-CMA advantage against Schnorr is at most	Schnorr Signature
 2⁻⁴¹ assuming DL _[RS21] 2⁻⁵² assuming MBDL_[BD21] 2⁻¹³⁰ assuming DL in the AGM_[FPS19] 	Ļ
Its UF-CMA advantage against Ed25519 is at most • 2 ⁻²⁶ by [BCJZ20]	EdDSA Signature
 2⁻³⁷ by [BDD23] 2⁻⁴⁸ by [BDD23] assuming MBDL 2⁻¹²⁶ by [BDD23] assuming DL + AGM 	

5/7/2023 24

Our Contributions

<u>A new proof of security for</u> <u>EdDSA</u>

- Reduce directly to security of Schnorr signatures
 - Simpler, more modular analysis
 - Can leverage recent tighter bounds for Schnorr
- Weaker ROM assumption
 - Idealize only compression function/permutation
 - Rely on standard-model properties where possible
 - Bounds attackers who use extension attack



Our contributions

A new proof of security for EdDSA

- Reduce directly to security of Schnorr signatures
 - Simpler, more modular analysis
 - Can leverage recent tighter bounds for Schnorr

• Weaker ROM assumption

- Idealize only compression function/permutation
- Rely on standard-model properties where possible
- Bounds attackers who use extension attack

+ some handy generic results

Derive-then-Derandomize Transform: A generic signature-hardening

transform that captures EdDSA's tweaks

Our contributions

A new proof of security for EdDSA

- Reduce directly to security of Schnorr signatures
 - Simpler, more modular analysis
 - Can leverage recent tighter bounds for Schnorr

• Weaker ROM assumption

- Idealize only compression function/permutation
- Rely on standard-model properties where possible
- Bounds attackers who use extension attack

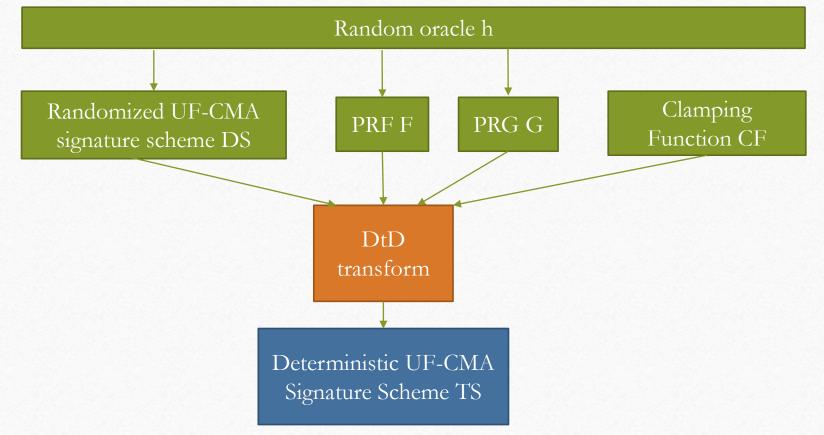
+ some handy generic results

Derive-then-Derandomize Transform: A generic signature-hardening transform that captures EdDSA's tweaks

Improved indifferentiability analysis for the **Shrink-MD hash function class** that transforms the output of an MD hash, **including chop-MD**

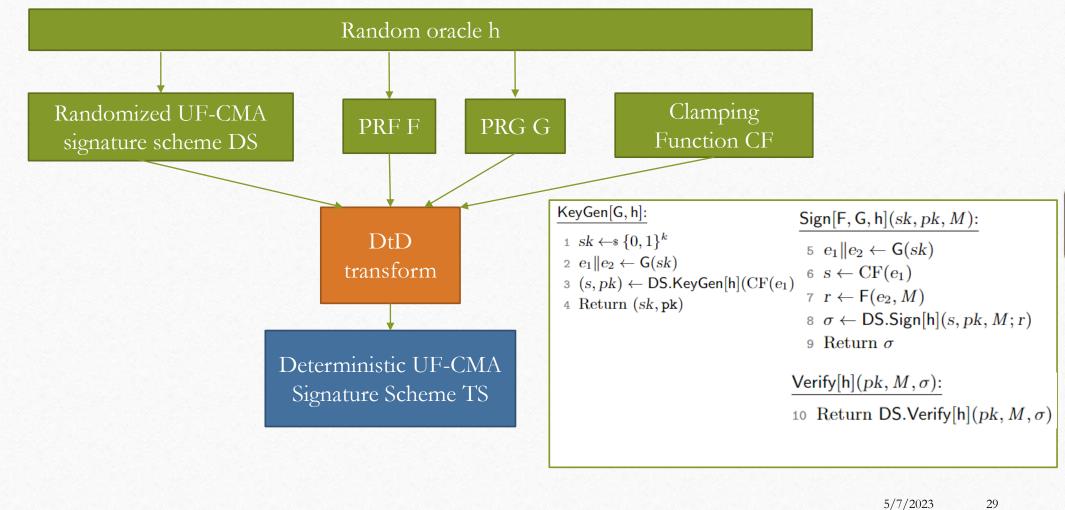
5/7/2023 27

Derive-then-Derandomize transform

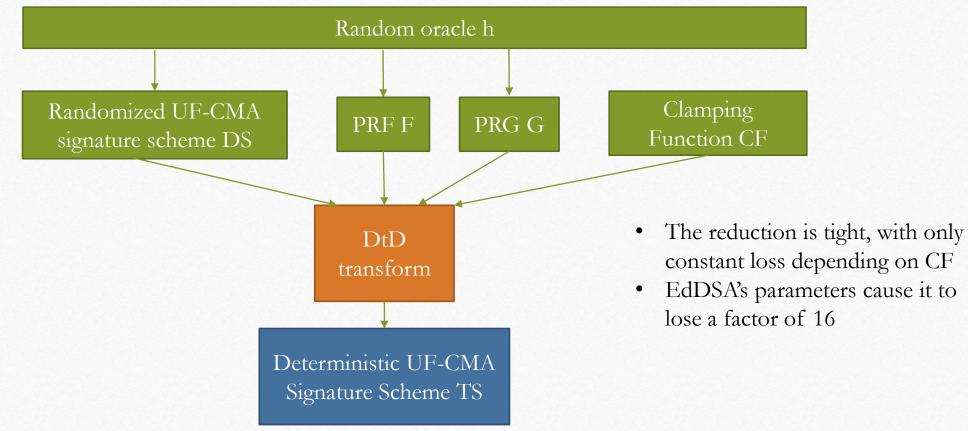


5/6/2023 28

Derive-then-Derandomize transform



Derive-then-Derandomize transform



Proving security for DtD

We reverse the transform step-by-step

KeyGen[G, h]:

- $e_1 \| e_2 \leftarrow \{0, 1\}^{2k}$
- 2 $(s, pk) \leftarrow \mathsf{DS}.\mathsf{KeyGen}[\mathsf{h}](\mathrm{CF}(e_1))$
- з Return $(\frac{\mathbf{e}_1 \| \mathbf{e}_2}{\mathbf{p}_k}, \mathbf{p}_k)$

Sign[F, G, h](sk, pk, M):

- 4 $e_1 \| e_2 \leftarrow sk$ 5 $s \leftarrow CF(e_1)$
- 6 $r \leftarrow \mathsf{F}(e_2, M)$
- 7 $\sigma \leftarrow \mathsf{DS.Sign}[\mathsf{h}](s, pk, M; r)$
- 8 Return σ

5/6/2023 31

Proving security for DtD

We reverse the transform step-by-step

KeyGen[G, h]:

- $e_1 \| e_2 \leftarrow \{0, 1\}^{2k}$
- 2 $(s, pk) \leftarrow \mathsf{DS}.\mathsf{KeyGen}[\mathsf{h}](\mathrm{CF}(e_1))$
- з Return $(e_1 || e_2, pk)$

Sign[F, G, h](sk, pk, M):

 $e_1 || e_2 \leftarrow sk$ $s \leftarrow CF(e_1)$ $r \leftarrow F(e_2, M)$ $\sigma \leftarrow DS.Sign[h](s, pk, M; r)$ 8 Return σ

KeyGen[G, h]:

- $e_1 \leftarrow \{0,1\}^k$
- 2 $(s, pk) \leftarrow \mathsf{DS}.\mathsf{KeyGen}[\mathsf{h}](\mathrm{CF}(e_1))$
- з Return (<mark>е1</mark>, pk)

Sign[F, G, h](sk, pk, M):

4 $e_1 \leftarrow sk$

- 5 $s \leftarrow CF(e_1)$
- 6 $r \leftarrow \mathbb{Z}_p$

7
$$\sigma \leftarrow \mathsf{DS.Sign}[\mathsf{h}](s, pk, M; r$$

8 Return σ

5/7/2023 32

Proving security for DtD

We reverse the transform step-by-step

KeyGen[G, h]:

- $e_1 \| e_2 \leftarrow \{0, 1\}^{2k}$
- 2 $(s, pk) \leftarrow \mathsf{DS}.\mathsf{KeyGen}[\mathsf{h}](\mathrm{CF}(e_1))$
- з Return $(e_1 || e_2, pk)$

Sign[F, G, h](sk, pk, M):

 $e_1 || e_2 \leftarrow sk$ $s \leftarrow CF(e_1)$ $r \leftarrow F(e_2, M)$ $\sigma \leftarrow DS.Sign[h](s, pk, M; r)$ 8 Return σ

KeyGen[G, h]:

- $e_1 \leftarrow \{0,1\}^k$
- 2 $(s, pk) \leftarrow \mathsf{DS}.\mathsf{KeyGen}[\mathsf{h}](\mathrm{CF}(e_1))$
- з Return (<mark>е1</mark>, pk)

Sign[F, G, h](sk, pk, M):

- 4 $e_1 \leftarrow sk$ 5 $s \leftarrow CF(e_1)$
 - 6 $r \leftarrow \mathbb{Z}_p$

7
$$\sigma \leftarrow \mathsf{DS.Sign}[\mathsf{h}](s, pk, M; r$$

8 Return σ

3
KeyGen[G, h]:
1 $(sk, pk) \leftarrow SKeyGen[h]()$
2 Return (<mark>sk</mark> , pk)

Lose a factor of |Im(CF)|/|K|

To cast EdDSA as the output of a DtD transform, we must define DS = Schnorr and

Function	Desired security	Instantiation in EdDSA
F	Pseudorandom function	$F(sk, M) = H(sk M) \mod p$
G	Pseudorandom generator	G(sk) = H(sk)
Н	Random oracle	$H(R A M) = H(R A M) \mod p$

Can we achieve the desired security when **H** is an **MD** hash like **SHA512** if we assume the compression function is ideal?

5/7/2023 34

To cast EdDSA as the output of a DtD transform, we must define DS = Schnorr and

Function	Desired security	Instantiation in EdDSA	
F	Pseudorandom function	$F(sk, M) = H(sk M) \mod p$	Yes, this is AMAC[BBT16]
G	Pseudorandom generator	G(sk) = H(sk)	
Н	Random oracle	$H(R \mid A \mid M) = H(R \mid A \mid M) \mod p$	

5/7/2023

35

Can we achieve the desired security when **H** is an **MD** hash like **SHA512** if we assume the compression function is ideal?

To cast EdDSA as the output of a DtD transform, we must define DS = Schnorr and

Function	Desired security	Instantiation in EdDSA	
F	Pseudorandom function	F(sk, M) = H(sk M) mod p	Yes, this is AMAC[BBT16]
G	Pseudorandom generator	G(sk) = H(sk)	Yes, this is easily shown
Н	Random oracle	$H(R A M) = H(R A M) \mod p$	

5/7/2023

36

Can we achieve the desired security when **H** is an **MD** hash like **SHA512** if we assume the compression function is ideal?

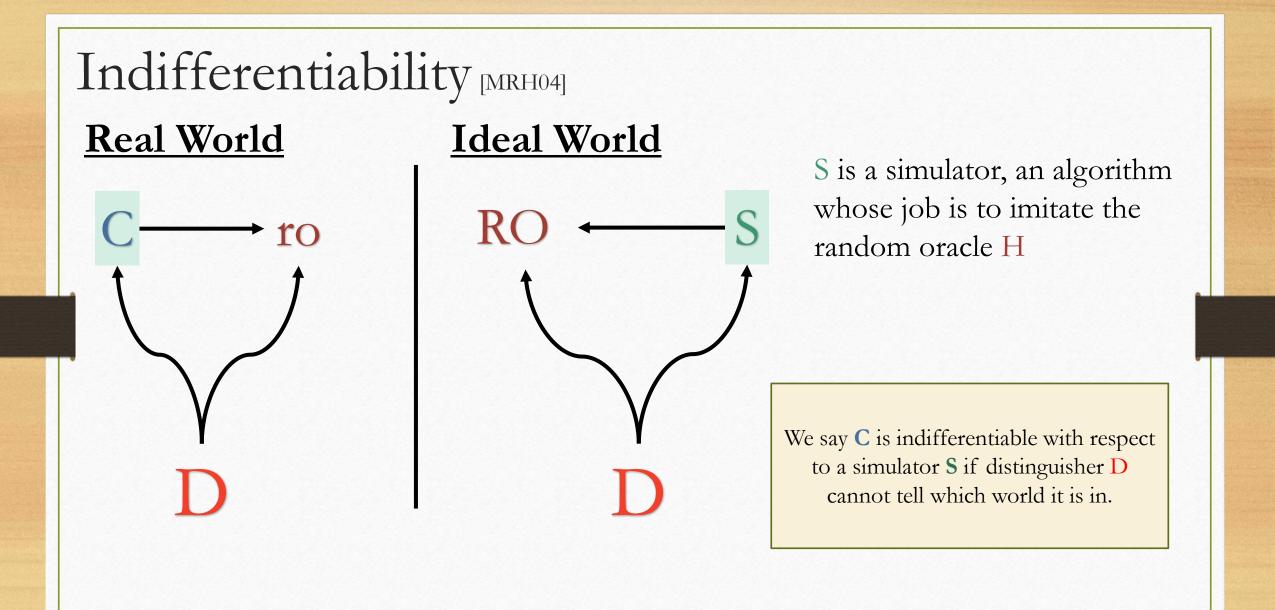
To cast EdDSA as the output of a DtD transform, we must define DS = Schnorr and

Function	Desired security	Instantiation in EdDSA	
F	Pseudorandom function	F(sk, M) = H(sk M) mod p	Yes, this is AMAC[BBT16]
G	Pseudorandom generator	G(sk) = H(sk)	Yes, this is easily shown
Н	Random oracle	$H(R A M) = H(R A M) \mod p$	Yes, we prove this

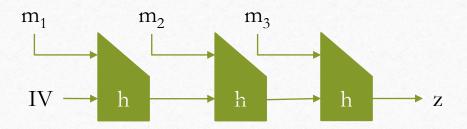
5/7/2023

37

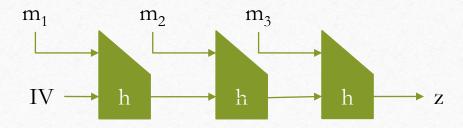
Can we achieve the desired security when **H** is an **MD** hash like **SHA512** if we assume the compression function is ideal?



• SHA512 is a Merkle-Damgard hash function based on a compression function h



• SHA512 is a Merkle-Damgard hash function based on a compression function h

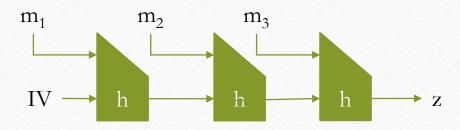


[CDMP05] MD hash is not indifferentiable, but chop-MD is.

 $Chop-MD[h](M) = MD[h](M) \mod 2^{c}$

This is almost the result we need, but replacing 2^{c} with p introduces **bias**.

• SHA512 is a Merkle-Damgard hash function based on a compression function h



[CDMP05] MD hash is not indifferentiable, but chop-MD is.

 $Chop-MD[h](M) = MD[h](M) \mod 2^c$

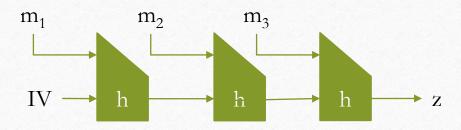
This is almost the result we need, but replacing 2^{c} with p introduces **bias**.

Shrink-MD[h, Out](M) = Out(MD[h](M))

3 conditions on Out:

- Reversibility: we can sample from the preimage set
- Quasi-regularity: Every point in the image set S has many preimages
- Near-Uniformity:
 D := z ← * Out⁻¹(y): y ← * S is close to the uniform distribution

• SHA512 is a Merkle-Damgard hash function based on a compression function h



[CDMP05] MD hash is not indifferentiable, but chop-MD is.

 $Chop-MD[h](M) = MD[h](M) \mod 2^c$

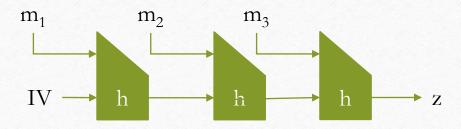
This is almost the result we need, but replacing 2^{c} with p introduces **bias**.

Shrink-MD[h, Out](M) = Out(MD[h](M))

3 conditions on Out:

- Reversibility: we can sample from the preimage set
- Quasi-regularity: Every point in the image set *S* has many preimages
- Near-Uniformity:
 D := z ← * Out⁻¹(y): y ← * S is close to the uniform distribution

• SHA512 is a Merkle-Damgard hash function based on a compression function h



[CDMP05] MD hash is not indifferentiable, but chop-MD is.

 $Chop-MD[h](M) = MD[h](M) \mod 2^{c}$

This is almost the result we need, but replacing 2^{c} with p introduces **bias**.

Shrink-MD[h, Out](M) = Out(MD[h](M))

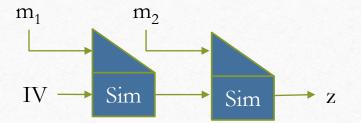
3 conditions on Out:

- Reversibility: we can sample from the preimage set
- Quasi-regularity: Every point in the image set *S* has many preimages
- Near-Uniformity:
 D := z ← * Out⁻¹(y): y ← * S is close to the uniform distribution

We prove **indifferentiability** for any **Shrink-MD** construction, including **Chop-MD** and MD mod p

The Indifferentiability of Shrink-MD

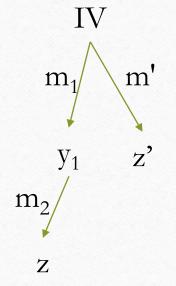
To show that a Shrink-MD hash function is indifferentiable, we must **consistently simulate a random compression function**



Prior simulators for chop-MD construct a tree to store all the queries.

The proofs **add extra nodes** to this tree that are **detectable** in certain situations

We solve this problem by constructing **two trees** in our simulator: one to answer adversarial queries, and one to track the extra nodes



Our contributions

A new proof of security for EdDSA

- Reduce directly to security of Schnorr signatures
 - Simpler, more modular analysis
 - Can leverage recent tighter bounds for Schnorr
- Weaken ROM assumption
 - Use indifferentiability to idealize only compression function/permutation
 - Rely on standard-model properties where possible
 - Explicitly capture length-extension attack

+ some handy generic results

Derive-then-Derandomize Transform: A generic signature-hardening transform that captures EdDSA's tweaks

Improved indifferentiability analysis for the **Shrink-MD hash function class** that transforms the output of an MD hash, **including chop-MD**

