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Pros

• Simple

• Efficient (for a DL-based 

scheme)

• Short signatures compared to 

RSA

Order-p

DL Group

g

Hash function

H

Schnorr Signatures[Schnorr91]
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Pros

• Simple

• Efficient (for a DL-based 
scheme)

• Short signatures

• Reducible to DL in the 
ROM

Order-p

DL Group

g

Schnorr Signatures[Schnorr91]

Random oracle
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Pros

• Simple

• Efficient (for a DL-based scheme)

• Short signatures

• Reducible to DL in the ROM

• Many formal security proofs with 
varying tightness & starting 
assumptions

Schnorr Signatures[Schnorr91]

DL 

assumption
Schnorr

identification 

scheme

Schnorr Signature

[PS00]

[AABN02]

[RS21]

MBDL 

assumption

[BD21]

DL + Algebraic

group model

[FPS21]

*curved arrows indicate non-tight reductions

[AABN02]

RO assumption on H
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Schnorr Signatures[Schnorr91]

DL 

assumption
Schnorr

identification 

scheme

Schnorr Signature

[PS00]

[AABN02]

[RS21]

MBDL 

assumption

[BD21]

DL + Algebraic

group model

[FPS21]

*curved arrows indicate non-tight reductions

[AABN02]

RO assumption on H

Tighter reductions validate shorter 

parameters

Pros

• Simple

• Efficient (for a DL-based scheme)

• Short signatures

• Reducible to DL in the ROM

• Many formal security proofs with 
varying tightness & starting 
assumptions
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Schnorr Signatures[Schnorr91]

Cons

• Susceptible to randomness-reuse attack

Given signatures and         on two different messages 

Pros

• Simple

• Efficient (for a DL-based scheme)

• Short signatures

• Reducible to DL in the ROM

• Many formal security proofs with 
varying tightness & starting 
assumptions



5/6/2023 11

EdDSA Signatures[BDLSY15]

EdDSA tweaks Schnorr for improved 

efficiency and security

• Choice of  group:

• Twisted Edwards curve

• order 

“permissive” verification vs 

“strict” verification



5/7/2023 12

EdDSA Signatures[BDLSY15]

EdDSA tweaks Schnorr for improved 

efficiency and security

• Choice of  group:

• Twisted Edwards curve

• order 

• Hash RNG input and “clamp” 

secret keys
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EdDSA tweaks Schnorr for improved

efficiency and security

• Choice of  group:

• Twisted Edwards curve

• order 

• Hash RNG input and “clamp” 

secret keys

• Derandomize Sign algorithm 
[Bar97][Wig97][NML97][Goldreich86][BPS16][BT16]

EdDSA Signatures[BDLSY15]
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EdDSA Signatures[BDLSY15]

EdDSA tweaks Schnorr for improved

efficiency and security

• Choice of  group:

• Twisted Edwards curve

• order 2^b * p

• Hash RNG input and “clamp” 

secret keys

• Derandomize Sign algorithm 
[Bar97][Wig97][NML97][Goldreich86][BPS16][BT16]

EdDSA also specifies concrete choices of  H

Ed25519 Ed448

SHA512 SHAKE

Can these be modeled as random oracles?
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Instantiating a Random Oracle

Do these functions behave like random oracles? No

SHA512

Compression 

function sha512

SHAKE

Permutation
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Instantiating a Random Oracle

SHA512
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function sha512

SHAKE

Permutation

Do these functions behave like random oracles? No

Do these functions behave like random oracles? 

SHA512 SHAKE

Random 

permutation
Random function h
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Instantiating a Random Oracle

Do these functions behave like random oracles? No

Do these functions behave like random oracles? 
Are SHA512 and SHAKE 

indifferentiable from a random 

oracle?[MRH04]

SHA512

Compression 

function sha512

SHAKE

Permutation

SHA512 SHAKE

Random 

permutation
Random function h
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Instantiating a Random Oracle

Do these functions behave like random oracles? No

Do these functions behave like random oracles? 

SHA512

Compression 

function sha512

SHAKE

Permutation

SHA512 SHAKE

Random 

permutation
Random function h

No[CDMP05] Yes[BDVA08]
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Instantiating a Random Oracle

Do these functions behave like random oracles? No

Do these functions behave like random oracles? 

SHA512(m1||m2) = 

sha512(SHA512(m1)||m2)

Given messages m1 and m2 and 

compression function h

Does this make Ed25519 insecure? No.

But it does mean that SHA512 should not be

modeled as a random oracle.

Length Extension Attack on SHA512

SHA512

Compression 

function sha512

SHAKE

Permutation

SHA512 SHAKE

Random 

permutation
Random function h

No[CDMP05] Yes[BDVA08]
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Security Analysis of  EdDSA

DL 

assumption

Schnorr

identification 

scheme

Schnorr Signature

[AABN02] [AABN02]

Custom 

identification 

scheme

EdDSA Signature

[BCJZ20]

[BCJZ20]
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Our Contributions

Schnorr Signature

EdDSA Signature

A new proof  of  security for 

EdDSA

• Reduce directly to security 

of  Schnorr signatures

• Simpler, more modular 

analysis

• Can leverage recent tighter 

bounds for Schnorr
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Our Contributions

Schnorr Signature

EdDSA Signature

A new proof  of  security for 

EdDSA

• Reduce directly to security 

of  Schnorr signatures

• Simpler, more modular 

analysis

• Can leverage recent tighter 

bounds for Schnorr

Ex: If  attacker A performs up to 270 operations and 

260 oracle queries, and curve x25519 has order ≈2252

Its DL advantage is at most 2^-112 
[Shoup97]

Its UF-CMA advantage against Schnorr is at most

• 2-41 assuming DL [RS21]

• 2-52 assuming MBDL[BD21]

• 2-130 assuming DL in the AGM[FPS19]

Its UF-CMA advantage against Ed25519 is at most

• 2-26 by [BCJZ20]

• 2-37 by [BDD23]

• 2-48 by [BDD23] assuming MBDL

• 2-126 by [BDD23] assuming DL + AGM
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Our Contributions

Schnorr Signature

EdDSA Signature

RO assumption on h
A new proof  of  security for 
EdDSA

• Reduce directly to security 
of  Schnorr signatures

• Simpler, more modular 
analysis

• Can leverage recent tighter 
bounds for Schnorr

• Weaker ROM assumption

• Idealize only compression 
function/permutation

• Rely on standard-model 
properties where possible

• Bounds attackers who use 
extension attack
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Our contributions
+ some handy generic results

Derive-then-Derandomize Transform:

A generic signature-hardening 

transform that captures EdDSA’s tweaks

A new proof  of  security for 
EdDSA

• Reduce directly to security 
of  Schnorr signatures

• Simpler, more modular 
analysis

• Can leverage recent tighter 
bounds for Schnorr

• Weaker ROM assumption

• Idealize only compression 
function/permutation

• Rely on standard-model 
properties where possible

• Bounds attackers who use 
extension attack
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Our contributions
+ some handy generic results

Derive-then-Derandomize Transform:

A generic signature-hardening 

transform that captures EdDSA’s tweaks

A new proof  of  security for 
EdDSA

• Reduce directly to security 
of  Schnorr signatures

• Simpler, more modular 
analysis

• Can leverage recent tighter 
bounds for Schnorr

• Weaker ROM assumption

• Idealize only compression 
function/permutation

• Rely on standard-model 
properties where possible

• Bounds attackers who use 
extension attack

Improved indifferentiability analysis for

the Shrink-MD hash function class

that transforms the output of  an MD 

hash, including chop-MD
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Derive-then-Derandomize transform

Randomized UF-CMA 

signature scheme DS
PRF F

Random oracle h

PRG G

DtD

transform

Deterministic UF-CMA 

Signature Scheme TS

Clamping

Function CF
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Derive-then-Derandomize transform

• The reduction is tight, with only 

constant loss depending on CF

• EdDSA’s parameters cause it to 

lose a factor of  16

Randomized UF-CMA 

signature scheme DS
PRF F

Random oracle h

PRG G

DtD

transform

Deterministic UF-CMA 

Signature Scheme TS

Clamping

Function CF
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Proving security for DtD

We reverse the transform step-by-step 

1
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Proving security for DtD

We reverse the transform step-by-step 

1 2
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Proving security for DtD

We reverse the transform step-by-step 

1 2 3

Lose a factor of  

|Im(CF)|/|K| 
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Instantiating F, G, and H

To cast EdDSA as the output of  a DtD

transform, we must define DS = Schnorr and

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?
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Instantiating F, G, and H

To cast EdDSA as the output of  a DtD

transform, we must define DS = Schnorr and

Yes, this is AMAC[BBT16]

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?
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Instantiating F, G, and H

To cast EdDSA as the output of  a DtD

transform, we must define DS = Schnorr and

Yes, this is easily shown

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?

Yes, this is AMAC[BBT16]

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p



5/7/2023 37

Instantiating F, G, and H

To cast EdDSA as the output of  a DtD

transform, we must define DS = Schnorr and

Yes, we prove this

Yes, this is AMAC[BBT16]

Function Desired security Instantiation in EdDSA

F Pseudorandom function F(sk, M) = H(sk || M) mod p

G Pseudorandom generator G(sk) = H(sk)

H Random oracle H(R||A||M) = H(R||A||M) mod p

Can we achieve the desired security when H is an MD hash like SHA512

if we assume the compression function is ideal?

Yes, this is easily shown



C

D

ro

Real World

D

S

Ideal World
S is a simulator, an algorithm 

whose job is to imitate the 

random oracle H

We say C is indifferentiable with respect 

to a simulator S if  distinguisher D

cannot tell which world it is in. 

RO

Indifferentiability [MRH04]
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Merkle-Damgard Hash Structure

• SHA512 is a Merkle-Damgard hash 
function based on a compression 
function h

hIV

m1

zh

m2

h

m3
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Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash 

function based on a compression 
function h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

hIV

m1

zh

m2

h

m3

This is almost the result we need, but replacing 

2c with p introduces bias. 
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Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash 

function based on a compression 
function h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

Shrink-MD[h, Out](M) = Out(MD[h](M))

hIV

m1

zh

m2

h

m3

This is almost the result we need, but replacing 

2c with p introduces bias. 

3 conditions on Out:
• Reversibility: we can sample from the preimage set

• Quasi-regularity: Every point in the image set S

has many preimages

• Near-Uniformity:

is close to the 

uniform distribution
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Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash 

function based on a compression 
function h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

Shrink-MD[h, Out](M) = Out(MD[h](M))

3 conditions on Out:
• Reversibility: we can sample from the preimage set

• Quasi-regularity: Every point in the image set S

has many preimages

• Near-Uniformity:

is close to the 

uniform distribution
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This is almost the result we need, but replacing 

2c with p introduces bias. 
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Merkle-Damgard Hash Structure
• SHA512 is a Merkle-Damgard hash 

function based on a compression 
function h

h

[CDMP05] MD hash is not indifferentiable, but chop-MD is.

Chop-MD[h](M) = MD[h](M) mod 2c

This is almost the result we need, but replacing 

2c with p introduces bias. 

Shrink-MD[h, Out](M) = Out(MD[h](M))

We prove indifferentiability for any 

Shrink-MD construction, including Chop-MD

and MD mod p

IV

m1

zh

m2

h

m3

3 conditions on Out:
• Reversibility: we can sample from the preimage set

• Quasi-regularity: Every point in the image set S

has many preimages

• Near-Uniformity:

is close to the 

uniform distribution
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The Indifferentiability of  Shrink-MD

To show that a Shrink-MD hash function is indifferentiable,

we must consistently simulate a random compression function

Prior simulators for chop-MD construct a tree to store all the queries. 

SimIV

m1

z

m2

Sim

IV

m1

m2

y1

z

z’

m'

The proofs add extra nodes to this tree that are detectable

in certain situations

We solve this problem by constructing two trees in our simulator: 

one to answer adversarial queries, and one to track the extra nodes
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Our contributions

A new proof  of  security for EdDSA

• Reduce directly to security of  
Schnorr signatures

• Simpler, more modular analysis

• Can leverage recent tighter bounds for 
Schnorr

• Weaken ROM assumption

• Use indifferentiability to idealize only
compression function/permutation

• Rely on standard-model properties where 
possible

• Explicitly capture length-extension attack

+ some handy generic results

Derive-then-Derandomize Transform:

A generic signature-hardening 

transform that captures EdDSA’s tweaks

Improved indifferentiability analysis for

the Shrink-MD hash function class

that transforms the output of  an MD 

hash, including chop-MD
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